跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/15 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林文盛
研究生(外文):LIN, WEN-SHENG
論文名稱:碳化矽研磨污泥應用於水泥砂漿之工程性質研究
論文名稱(外文):A study of engineering properties of cement mortar with silicon carbide grinding sludges
指導教授:賴怡潔賴怡潔引用關係
指導教授(外文):LAI, YI-CHIEH
口試委員:郭益銘李孟珊陳盈良
口試委員(外文):GUO, YI-MINGLEE, MENG-SHANCHEN, YING-LIANG
口試日期:2022-03-24
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:100
中文關鍵詞:碳化矽污泥卜作嵐材料水泥砂漿田口實驗設計法耐久性質
外文關鍵詞:Silicon Carbide sludgePozzolanic materialCement mortarTaguchi experimental design methodDurable quality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
碳化矽(SiC)研磨污泥主要為機械研磨加工業,進行研磨與拋光加工後所衍生之廢棄物,若未妥善處理恐對生態環境造成危害。為評估以碳化矽研磨污泥替代水泥製成水泥砂漿之可行性,本研究首先進行碳化矽污泥之物理及化學基本特性分析,並藉由田口實驗設計法歸納碳化矽污泥製成水泥砂漿之最適化參數配比,再以耐久實驗瞭解其工程適用途徑。
研究結果顯示,碳化矽污泥粒徑細(主要範圍45~75 μm)、矽含量高、含水率低且卜作嵐活性指數達82%,適合替代水泥製作水泥砂漿。田口實驗設計法之最適化參數配比實驗結果顯示,添加碳化矽污泥替代水泥,所製成水泥砂漿之流動度與污泥摻配量成正比,抗壓強度則成反比;歸納最適參數配比為骨膠比:2.5、水膠比:0.52、碳化矽污泥摻配比:15 wt.%及水養護,製成水泥砂漿之流動度適中為113%,且於7天養護後抗壓強度達 24.01 MPa。
耐久性實驗結果顯示,以碳化矽研磨污泥替代水泥對於製成水泥砂漿之吸水率及乾縮性質並無明顯幫助;摻配15 wt.%碳化矽污泥對於製成水泥砂漿之硫酸鹽抗性有明顯成效,浸泡硫酸鈉溶液15週後,長度變化率僅為0.019%,顯示添加適當比例碳化矽污泥製成水泥砂漿之硫酸鹽抗性穩定,不易遭受侵蝕造成試體膨脹。綜合上述,以碳化矽研磨污泥替代部分水泥具有技術可行性,有利於降低環境污染並提升循環再利用效益。
Silicon Carbide (SiC) grinding sludge is mainly used in mechanical grinding and processing industries. The wastes derived from grinding and polishing processing may cause harm to the ecological environment if not properly disposed of. In order to evaluate the feasibility of replacing cement with SiC sludge to make cement mortar, the physical and chemical properties of SiC sludge were first confirmed the optimal parameter ratio was summarized by Taguchi experimental design method, and then the engineering application method was understood by durability experiment.
The results show that the SiC sludge has fine particle size (mainly in the range of 45-75 μm), high Si content, low moisture content and Pozzolanic Activity Index of 82%, which is suitable for replacing cement to make cement mortar. Subsequently, the Taguchi experimental design method was used to conclude that the optimal parameter ratio in cement morter was Fine aggregate-to-binder ratio: 2.5, Water-to-binder ratio: 0.52, SiC sludge mixing ratio: 15 wt.% and water curing; its fluidity is moderate at 113%, and the compressive strength reaches 24.01 MPa after 7 days of curing.
The results of the optimal parameter ratio experiment show that adding SiC sludge to replace cement, the fluidity of cement mortar is proportional to the amount of sludge mixed, and its compressive strength is inversely proportional. The SiC sludge did not significantly improve the water absorption and drying shrinkage properties. The sulfate resistance was obviously effective by mixing 15 wt.% of SiC sludge. After soaking in sodium sulfate solution for 15 weeks, the length change rate was only 0.019%.Results revealed that the sulfate resistance is stable after adding an appropriate ratio of SiC sludge, and it won’t be corroded and easily causing the expansion of the cement mortar. Based on the above, it is technically feasible to replace part of cement with SiC grinding sludge, which is conducive to reducing environmental pollution and improving recycling efficiency.
摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
1.1研究動機 1
1.2研究目的 2
第二章 文獻回顧 3
2.1無機污泥處理現況 3
2.2碳化矽之特性及應用 6
2.2.1碳化矽之特性 6
2.2.2碳化矽之應用 8
2.3研磨污泥與資源化發展 12
2.4水泥與卜作嵐材料 16
2.4.1卜特蘭水泥與水化反應 16
2.4.2卜作嵐材料 19
2.5混凝土強度之影響因素 24
第三章 研究設計與方法 27
3.1研究流程 27
3.2實驗材料與設備 29
3.3田口實驗設計法 31
3.3.1控制因子及水準值 31
3.3.2田口直交表L9(34)設計 32
3.3.3田口方法分析 34
3.4試體製作與養護 36
3.5實驗分析方法 37
3.5.1污泥基本分析 37
3.5.2新拌性質 40
3.5.3硬固性質 40
3.5.4耐久性質 42
3.5.5微觀性質 43
第四章 結果與討論 44
4.1碳化矽研磨污泥基本分析 44
4.1.1粒徑分析 44
4.1.2三成份分析 45
4.1.3化學組成分析 46
4.1.4卜作嵐活性指數分析 50
4.2田口法實驗結果分析 52
4.2.1新拌性質分析 52
4.2.2硬固性質分析 55
4.2.3吸水率分析 59
4.3耐久性質分析 62
4.3.1乾縮性質分析 62
4.3.2抗硫酸鹽分析 65
4.4微觀性質分析 70
第五章 結論與建議 77
5.1結論 77
5.2建議 79
第六章 參考文獻 80

1、Ahmed, K., Nizami, S. S., Raza, N. Z., & Habib, F. (2013). The effect of silica on the properties of marble sludge filled hybrid natural rubber composites. Journal of King Saud University-Science, 25(4), 331-339.
2、Ahn, N. S., Lee, J. H., & Lee, Y. H. (2011). Sulfate attack according to the quantity of composition of cement and mineral admixtures. Journal of the Korea Institute of Building Construction, 11(6), 547-556.
3、Andrade, O., Nomura, M., Yamato, H., & Torii, K. (2011). The mechanisms of alkali silica reaction in mortars immersed in sodium sulphate and phosphate solutions. Proceedings of the Japan Concrete Institute, 33(1), 1025-1030.
4、Bhoite, H. V., & Thorvat, A. R. (2020). Low cost treatment and reuse of grinding sludge. International Research Journal of Environmental Sciences, 9(2), 13-19.
5、Chen, Z., & Poon, C. S. (2017). Comparative studies on the effects of sewage sludge ash and fly ash on cement hydration and properties of cement mortars. Construction and Building Materials, 154, 791-803.
6、Cullity, B.D., & Stock, S.R(2001).Elements of X-Ray Diffeaction.Upper Saddle:Prentice Hall.New York.
7、Demir, İ., Güzelkücük, S., & Sevim, Ö. (2018). Effects of sulfate on cement mortar with hybrid pozzolan substitution. Engineering Science and Technology, an International Journal, 21(3), 275-283.
8、De Silva, G. S., & Hansamali, E. (2019). Eco-friendly fired clay bricks incorporated with porcelain ceramic sludge. Construction and Building Materials, 228, 116754.
9、Gu, C., Ji, Y., Yang, Y., Liu, J., & Ni, T. (2021). The effect of sulfate-rich sewage sludge ash on the volume deformation and micorstructure of cement paste.
10、Horvath, N., Honeycutt, A., & Davies, M. A. (2020). Grinding of additively manufactured silicon carbide surfaces for optical applications. CIRP Annals- Manufacturing Technology, 69(1), 509-512.
11、Jeon, I. K., Qudoos, A., Jakhrani, S. H., Kim, H. G., & Ryou, J. S. (2020). Investigation of sulfuric acid attack upon cement mortars containing silicon carbide powder. Powder Technology, 359, 181-189.
12、Jiang, Z., Ren, Q., Li, H., & Chen, Q. (2017). Silicon carbide waste as a source of mixture materials for cement mortar. Frontiers of Environmental Science & Engineering, 11(5), 1-8.
13、Katoh, Y., & Snead, L. L. (2019). Silicon carbide and its composites for nuclear applications–Historical overview. Journal of Nuclear Materials, 526, 151849.
14、Kumar, S., Panda, B. P., Mohanty, S., & Nayak, S. K. (2020). Effect of silicon carbide on the mechanical and thermal properties of ethylene propylene diene monomer‐based carbon fiber composite material for heat shield application. Journal of Applied Polymer Science, 137(37), 49097.
15、Lee, Y. L., Jeong, S. T., & Park, S. J. (2014). Study on manufacturing of recycled SiC powder from solar wafering sludge and its application. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(4), 299-304.
16、Liu, P., Chen, Y., & Yu, Z. (2020). Effects of erosion form and admixture on cement mortar performances exposed to sulfate environment. Crystals, 10(9), 774.
17、Ma, J., Wang, D., Zhao, S., Duan, P., & Yang, S. (2021). Influence of particle morphology of ground fly ash on the fluidity and strength of cement paste. Materials, 14(2), 283.
18、Ma, Z., Li, J., Cao, F., Yang, J., Liu, R., & Zhao, D. (2020). Porous silicon carbide coated with tantalum as potential material for bone implants. Regenerative Biomaterials, 7(5), 453-459.
19、Mahawish, A., Ibrahim, S. I., Jawad, A. H., & Othman, F. M. (2017). Effect of adding silicon carbide and titanium carbide nanoparticles on the performance of the cement pastes. J. Civ. Environ. Eng, 7(2).
20、Phan, H. P., Dinh, T., Nguyen, T. K., Qamar, A., Nguyen, T., Han, J., Dau, V. T., Han, J., Dao, D. V., & Nguyen, N. T. (2020). High temperature silicon-carbide-based flexible electronics for monitoring hazardous environments. Journal of Hazardous Materials, 394, 122486.
21、Pinto, S. R., da Luz, C. A., Munhoz, G. S., & Medeiros-Junior, R. A. (2020). Durability of phosphogypsum-based supersulfated cement mortar against external attack by sodium and magnesium sulfate. Cement and Concrete Research, 136, 106172.
22、Polyakov, S. A., Solomatina, T. V., & Shishkina, L. M. (1975). Nonabrasive silicon carbide as rammed lining for boiler furnaces. Refractories, 16(7), 426-428.
23、Qian, M., Xu, X., Qin, Z., & Yan, S. (2019). Silicon carbide whiskers enhance mechanical and anti-wear properties of PA6 towards potential applications in aerospace and automobile fields. Composites Part B: Engineering, 175, 107096.
24、Quercia, G., Van Der Putten, J. J. G., Hüsken, G., & Brouwers, H. J. H. (2013). Photovoltaic's silica-rich waste sludge as supplementary cementitious material (SCM). Cement and Concrete Research, 54, 161-179.
25、Rashwan, M. A., Al-Basiony, T. M., Mashaly, A. O., & Khalil, M. M. (2020). Behaviour of fresh and hardened concrete incorporating marble and granite sludge as cement replacement. Journal of Building Engineering, 32, 101697.
26、Saberi, M., Niknam, S. A., & Hashemi, R. (2020). On the impacts of cutting parameters on surface roughness, tool wear mode and size in slot milling of A356 metal matrix composites reinforced with silicon carbide elements. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 0954405420937502.
27、Sadrmomtazi, A., Fasihi, A., Balalaei, F., & Haghi, A. K. (2009). Investigation of mechanical and physical properties of mortars containing silica fume and nano-SiO2. In Proceedings of the third international conference on concrete and development, Tehran, Iran (pp. 27-29).
28、Selim, M. S., Mo, P. J., Hao, Z., Fatthallah, N. A., & Chen, X. (2020). Blade-like structure of graphene oxide sheets decorated with cuprous oxide and silicon carbide nanocomposites as bactericidal materials. Journal of Colloid and Interface Science, 578, 698-709.
29、Souza, D. J. D., Medeiros, M. H. F. D., & Hoppe, J. (2020). Evaluation of external sulfate attack (Na2SO4 and MgSO4): Portland cement mortars containing siliceous supplementary cementitious materials. Revista IBRACON de Estruturase Materiais, 13.
30、Taeko, A., & Xiao-An,F.,(2019)Sensors and Actuators A:Physical. ELSEVIER. 296.340-351.
31、Zhang, W., Hama, Y., & Na, S. H. (2015). Drying shrinkage and microstructure characteristics of mortar incorporating ground granulated blast furnace slag and shrinkage reducing admixture. Construction and building materials, 93, 267-277.
32、行政院環保署,循環經濟,資源循環網。
33、鄭安(2011),光電矽晶粉應用於水泥基質材料力學及耐久性之研究,2011能源環境及可持續發展國際學術研討會,中國上海。
34、曾志雄、林志善(1997),石材污泥與切割邊材資源化利用之現況及未來展望,工業簡訊。
35、經濟部工業局(2002),資源化工業輔導計畫。
36、郭志成(1998),花崗石污泥吸附劑濕式排煙脫硫模型廠測試,1998工業減廢暨永續發展研討會,台北。
37、林凱隆、黃冠誌(2015),回收再利用廢噴砂取代部分水泥之經濟效益與碳排放分析,工業污染防治期刊,第132期。
38、李珣琦、黃偉聖(2017),廢矽泥回收研究之探討,工業污染防治期刊,第141期。
39、台灣綠色生產力基金會(2007),矽晶圓製造業資源化應用技術手冊。
40、黃兆龍(2007),混凝土性質與行為,詹氏書局,台北。
41、黃兆龍(2003),高性能混凝土理論與實務,詹氏書局,台北。
42、黃兆龍(1997),混凝土品質保證檢驗與制度,詹氏書局,台北。
43、中華民國品質協會(2009),田口式品質工程導論,台北。
44、林凱隆、張文軒(2014),回收再利用碳化矽污泥燒製環保磚之技術研發,科技部補助計畫。
45、林平全(1995),飛灰混凝土,科技圖書股份有限公司,台北。
46、陳嘉鴻(2008),碳熱還原燒結碳化矽陶瓷,國立聯合大學,苗栗縣,碩士論文。
47、余欣容(2017),碳化矽低溫擴散接合之結構特性研究,國立臺北科技大學,台北市,碩士論文。
48、林佩誼(2020),碳化矽微切削加工之刀具狀態及切削模式與聲射/切削力訊號之關聯性分析,國立中興大學,台中市,碩士論文。
49、歐俊龍(2020),碳化矽耐火材料性能之研究,吳鳳科技大學,嘉義縣,碩士論文。
50、林有德(2015),第三代半導體材料碳化矽發展趨勢研究,中華科技大學,台北市,碩士論文。
51、莊富翔(2020),利用離子佈植製作4H碳化矽紫外光偵測器,國立交通大學,新竹縣,碩士論文。
52、支耀崧(2019),以靜電紡絲法製作碳化矽纖維奠基技術研究,國防大學,桃園市,碩士論文。
53、莊承叡(2020),回收再利用碳化矽污泥及廢玻璃纖維為觸媒應用於染整廢水,國立宜蘭大學,宜蘭縣,碩士論文。
54、張正成(2012),LED污泥於水泥砂漿之工程性質研究,國立聯合大學,苗栗縣,碩士論文。
55、張凱翔(2014),添加纖維對水泥砂漿之影響,國立雲林科技大學,雲林縣,碩士論文。
56、于力偉(2020),含爐石飛灰之高性能混凝土應用於離岸風機灌漿材料之工程性質研究,國立高雄科技大學,高雄市,碩士論文。
57、吳秉洋(2020),摻有高量卜作嵐材料混凝土耐久性之研究,國立中興大學,台中市,碩士論文。
58、蔡嘉榮(2014),混合轉爐石粉與高爐石粉膠凝特性之研究,國立臺灣海洋大學,基隆市,博士論文。
59、陳俊村(2012),矽灰混凝土配比簡化模式建構與其相應工程性質之研究,國立臺灣科技大學,台北市,博士論文。
60、黃稚翔(2017),水流條件對卜作嵐混凝土沖擊磨耗之影響,國立嘉義大學,嘉義市,碩士論文。
61、裴黎英俊(2010),越南稻殼灰燃燒方式及其對稻穀灰混凝土影響之研究,國立臺灣科技大學,台北市,碩士論文。
62、王思婷(2019),利用田口法最佳化以複製模板回收廢棄碳化矽合成網狀多孔陶瓷,國立臺北科技大學,台北市,碩士論文。
63、陳建良(2007),應用廢棄纖維、爐石和灰渣等再生材料於水泥砂漿之研究,國立中央大學,桃園市,碩士論文。
64、楊士鋒(2019),流體化床鍋爐燃煤飛灰與混燒飛灰卜作嵐特性比較之研究-以紡織汙泥為例,國立中央大學,桃園市,碩士論文。

電子全文 電子全文(網際網路公開日期:20270803)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊