跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高仲杰
研究生(外文):GAO, ZHONG-JIE
論文名稱:玻璃基板接觸熱傳導係數之分析與研究
論文名稱(外文):A Study of Thermal Contact Conductance of LCD Glass Substrate
指導教授:李泓原
指導教授(外文):LI, HUNG-YUAN
口試委員:林香君常閎智
口試委員(外文):LIN, SHIANG-JIUNCHANG, HUNG-CHIH
口試日期:2022-07-06
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:83
中文關鍵詞:配向膜瑕疵接觸熱傳導係數頂出銷
外文關鍵詞:Muraejector pinsthermal contact conductance coefficient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:1
近年來,隨著科技日新月異,使得各項電子產品越發普及。其中,如智慧型手機、液晶電視等各項需使用到薄膜電晶體液晶顯示器(TFT-LCD)的電子產品,對於其要求也越來越高,不斷地追求輕且薄。對於製造方來說,產品達客戶端的要求且仍能保持良率以降低成本消耗,已是各廠商發展中關鍵的一環。

本研究針對TFT-LCD玻璃基板與頂出銷之間的接觸熱傳導係數進行研究。TFT-LCD玻璃基板在配向製程中由頂出銷支撐,並加溫烘烤玻璃基板上的聚醯亞胺(Polyimide,PI)溶液,使PI液因受熱揮發後透過沉積作用後成為配向膜,在加溫過程中玻璃與頂出銷有接觸及無接觸的區域將產生溫差,導致PI液受熱不均,造成PI液揮發並沉積成膜後的厚度有所差異,以致色差瑕疵(Mura)出現。研究中首先計算玻璃與頂出銷之間的接觸熱傳導係數,再將計算結果套用至模擬程式中,透過實驗蒐集玻璃溫度量測數據與模擬分析的玻璃溫度數據比較修正,而得到接近的實際接觸熱傳導係數。

研究結果顯示,頂出銷與玻璃之間理論計算的接觸熱傳導係數分別為---W/m2K與---W/m2K,隨著頂出銷與玻璃接觸面積的縮小而減少,但透過分析得知,本次實驗中,理論計算的接觸熱傳導係數會略小於實際的接觸熱傳導係數。實際接觸熱傳導係數透過分析得知約在---W/m2K及---W/m2K,同樣以頂出銷與玻璃接觸面積的縮小而減少。

頂出銷的熱導率越低,對於玻璃表面所造成的溫差也就越小;在頂出銷與玻璃未接觸前,頂出銷均飽含熱能,而頂出銷的體積越小,所含熱能就越低,頂出銷接觸到玻璃後,玻璃升溫速度也隨之降低。而透過實驗結果證明,降低頂出銷與玻璃間的接觸面積可以有效減少玻璃表面因頂出銷導致受熱不均的問題,並且使膜厚差異減少。本研究以新發明專利的頂出銷實際驗證證明與理論相符。且經光電廠實際比較後發現對於Mura的產生有明顯的改善。

In this ever-changing world of technology, the thin film transistor liquid crystal display (TFT-LCD) has been widely used in many electric products, such as mobile and liquid-crystal display television devices, the quality of the products have become more rigorous. In order to obtain better product quality, the products must be lighter and thinner. Therefore, meeting customers’ requests and lowering the costs have been the crucial concerns for the manufacturers.

The objective of this study focuses on the thermal contact conductance coefficient between the TFT-LCD glass substrate and the supporting pins. During the manufacturing process of the glass substrate, the substrate is supported by the ejector pins. The Polyimide (PI) liquid will be dispersed on the substrate and heated up. After the process of volatilization and sedimentation, PI liquid solidify to a thin alignment film. The contact and non-contact region between the glass and the pins will lead to a small difference in temperature on the substrate. This temperature difference will cause uneven thickness to the alignment film and generate the defect of chromatic aberration, Mura. In order to have better quality of the LCD plate, this temperature difference must be reduced which means the understanding of the thermal contact conductance coefficient between the glass and the pins is needed. In this paper, the contact conductance coefficient between glass substrate and the ejectors pins is calculated and validated by experiments.

It was found that the thermal contact conductance coefficient is changing with the contact area. The lower the thermal conductivity and the thermal energy that the supporting pin possesses, the smaller the temperature difference of the glass surface will be. After validating the experimental results, the results demonstrate the glass and the supporting pins is roughly---W/m2 and---W/m2 in this study.

中文摘要 -------------------------------------------------------------------------- i
英文摘要 -------------------------------------------------------------------------- ii
誌謝 -------------------------------------------------------------------------- iv
目錄 -------------------------------------------------------------------------- v
表目錄 -------------------------------------------------------------------------- vii
圖目錄 -------------------------------------------------------------------------- viii
符號說明 -------------------------------------------------------------------------- x
第一章、 緒論-------------------------------------------------------------------- 1
1.1 前言-------------------------------------------------------------------- 1
1.2 TFT-LCD介紹------------------------------------------------------- 1
1.2.1 TFT-LCD結構組成----------------------------------------- 1
1.2.2 LCD顯示器零組件----------------------------------------- 2
1.2.3 TFT-LCD製程----------------------------------------------- 6
1.3 預烤爐(Pre Bake)結構介紹----------------------------------------- 8
1.4 Mura介紹-------------------------------------------------------------- 8
1.5 文獻回顧---------------------------------------------------------------
1.5.1 接觸熱傳導相關文獻--------------------------------------- 9
9
1.5.2 經驗式相關文獻--------------------------------------------- 13
1.6 研究動機與目的------------------------------------------------------ 15
第二章、 理論基礎--------------------------------------------------------------- 18
2.1 微觀接觸熱傳導基礎理論------------------------------------------ 18
2.1.2 接觸熱傳導係數公式--------------------------------------- 20
2.2 赫茲接觸公式--------------------------------------------------------- 22
2.3 Mura相關理論-------------------------------------------------------- 23
第三章、 實驗設備及方法與模擬分析方法--------------------------------- 25
3.1 實驗設備介紹--------------------------------------------------------- 25
3.2 理論計算結果--------------------------------------------------------- 28
3.3 熱傳計算實驗邊界條件描述--------------------------------------- 29
3.3.1 實驗方法描述------------------------------------------------ 32
3.3.2 實驗流程圖--------------------------------------------------- 34
3.3.3 實驗結果------------------------------------------------------ 34
3.4 模擬分析工具--------------------------------------------------------- 42
3.4.1 模擬分析模型------------------------------------------------ 42
3.4.2 模擬分析邊界條件------------------------------------------ 44
3.4.3 模擬分析結果------------------------------------------------ 45
第四章、 結果與討論------------------------------------------------------------ 52
4.1 實驗結果與分析結果比較------------------------------------------ 52
4.2 接觸面積改變對於膜厚的影響------------------------------------ 54
4.2.1接觸面積改變對於接觸熱傳導係數與溫差的影響----- 55
4.2.2溫度差異對膜厚的關係-------------------------------------- 58
4.3 總結頂出銷的改良對於溫度與膜厚改善情況------------------ 60
第五章、 結論與未來展望------------------------------------------------------ 62
5.1 結論--------------------------------------------------------------------- 62
5.2 未來發展方向--------------------------------------------------------- 63
參考文獻 --------------------------------------------------------------------------- 64
附錄 --------------------------------------------------------------------------- 66

[1]田民波 and 葉鋒, 2010, TFT液晶顯示器原理與技術. 科學出版社.
[2]康寧股份有限公司. 康寧超薄玻璃基板介紹. Available: https://www.corning.com/worldwide/en/products/display-glass/products/eagle-xg-slim.html
[3]王木俊 and 劉傳璽, 2008, 薄膜電晶體液晶顯示器. 新文京開發出版公司發行.
[4]謝明俊, "TFT-LCD表面瑕疵自動化光學檢測之研究與應用," 碩士, 模具工程系, 國立高雄應用科技大學, 高雄市.
[5]J. Gibbins, 2006, "Thermal contact resistance of polymer interfaces," University of Waterloo.
[6]J. Y. Lee and S. I. Yoo, 2004, "Automatic detection of region-mura defect in TFT-LCD," IEICE TRANSACTIONS on Information Systems, vol. 87, no. 10, pp. 2371-2378.
[7]D. W. Hahn and M. N. Özisik, 2012 ,Heat conduction. John Wiley & Sons.
[8]J. V. Beck, 1970 ,"Nonlinear estimation applied to the nonlinear inverse heat conduction problem," International Journal of heat mass transfer, vol. 13, no. 4, pp. 703-716.
[9]M. Yovanovich, 1982, "Thermal contact correlations," in 16th Thermophysics Conference, p. 1164.
[10]M. Bahrami, M. M. Yovanovich, and J. R. Culham, 2005, "Thermal contact resistance at low contact pressure: Effect of elastic deformation," International Journal of heat Mass Transfer, vol. 48, no. 16, pp. 3284-3293.
[11]蘇正熹, 2009, "不同材料界面熱傳之數值與實驗分析," 碩士, 工程科學系碩博士班, 國立成功大學, 台南市.
[12]C. V. Madhusudana, 1996, Thermal contact conductance. Springer.
[13]Y. Guo, K. Ruan, X. Shi, X. Yang, and J. Gu, 2020, "Factors affecting thermal conductivities of the polymers and polymer composites: A review," Composites Science Technology, vol. 193, p. 108-134.
[14]E. Marotta and L. Fletcher, 1996, "Thermal contact conductance of selected polymeric materials," Journal of Thermophysics and Heat Transfer, vol. 10, no. 2, pp. 334-342.
[15]J. J. Fuller and E. Marotta, 2001, "Thermal contact conductance of metal/polymer joints: an analytical and experimental investigation," Journal of Thermophysics and Heat Transfer, vol. 15, no. 2, pp. 228-238.
[16]A. Brzezinski and A. Tleoubaev, 2002, "Effects of interface resistance on measurements of thermal conductivity of composites and polymers," in Proceedings of the 30th Annual Conference on Thermal Analysis and Applications (NATAS), pp. 512-517: Pittsburgh: B&K Publishing.
[17]C. Ding and R. Wang, 2015, "Experimental investigation of thermal contact conductance across GFRP–GFRP joint," Heat Mass Transfer, vol. 51, no. 3, pp. 433-439.
[18]J. Doumouro et al., 2021, "Quantitative measurement of the thermal contact resistance between a glass microsphere and a plate," Physical Review Applied, vol. 15, no. 1, p. 14-63.
[19]SolidWorks, 2016, 熱接觸阻力. Available: http://help.solidworks.com/2016/chinese/SolidWorks/cworks/c_Thermal_Contact_Resistance_contact_analysis.htm
[20]M. Cooper, B. Mikic, and M. Yovanovich, 1969, "Thermal contact conductance," International Journal of heat mass transfer, vol. 12, no. 3, pp. 279-300.
[21]V. Antonetti, T. Whittle, and R. Simons, 1993, "An approximate thermal contact conductance correlation," Journal of Electronic Packaging, vol. 115, no.1, pp. 131-134.
[22]B. Christopher, 2015, Tears of wine and the Marangoni effect. Available: https://www.comsol.com/blogs/tears-of-wine-and-the-marangoni-effect/.
[23]J. Straub, A. Weinzierl, and M. Zell, 1990, "Thermokapillare Grenzflächenkonvektion an Gasblasen in einem Temperaturgradientenfeld," Wärme-und Stoffübertragung, vol. 25, no. 5, pp. 281-288.
[24]蘭中旭, 韋嘉, and 俞燕蕾, 2017, "柔性顯示基板材料研究進展," 華南師範大學學報: 自然科學版, vol. 49, no. 1, p. 9-16.
[25]AGC. Glass Substrates for TFTs (AN100). Available: https://www.agc.com/en/products/display/detail/an100.html
[26]P. i. G. Optics. Alkali- & arsenic free aluminosilicate glass. Available: https://www.pgo-online.com/intl/AF37.html
[27]賴建豪, 2010, "LCD配向製程聚醯亞胺塗佈膜之肥邊瑕疵改善研究," 碩士, 平面顯示技術碩士學位學程, 國立交通大學, 新竹市.
[28]黃俊銘, 2021, "頂出銷結構 EJECTOR PIN STRUCTURE," Patent 中華民國專利字號: I715986.
[29]MatWeb. Victrex PEEK Properties. Available: https://www.matweb.com/search/DataSheet.aspx?MatGUID=2164cacabcde4391a596640d553b2ebe


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top