[1]U. Engel, R. Eckstein, 2002, Microforming-from basic research to its realization, Journal of Materials Processing Technology, vol. 125-126, pp. 35-44.
[2]R. Z. Valive, 1997, “Structure and Mechanical Properties of Ultrafine-Grained Metals,” Materials Science and Engineering, vol. 234-236, pp. 59-66.
[3]J. T. Gau, C. Principem, M. Yu, 2007, Springback behavior of brass in micro sheet forming, Journal of Materials Processing Technology, vol. 191, issues. 1-3, pp. 7-10.
[4]F. Vollertsen, 2001, Metal Forming Microparts Encyclopedia of Materials Science and Technology, Amsterdam Elsevier, pp. 5424-5427.
[5]C. C. Chang, J. C. Lin, 2012, Influence of grain size and temperature on micro upsetting of copper, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 226, issue 1, pp. 183-190.
[6]M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engel, 2001, Microforming, CIRP Annals- Manufacturing Technology, pp. 445-462.
[7]J. H. Deng, M. W. Fu, W. L. Chan, 2011, Size effect on material surface deformation behavior in micor-forming process, Materials Science and Engineering A, vol. 528, pp. 4799-4806.
[8]U. Engel, 2006, Tribology in microforming, Wear, vol. 260, pp. 265-273.
[9]W. Schroeder, D. A. Webster, 1949, "Press Forging Thin Sections : Effect of Friction, Area and Thickness on Pressure Required", Journal of Applied Mechanics, vol.16, pp. 289-294.
[10]A. Barcellona, L. Cannizzaro, 1996, Validation of Frictional Studies by Double-Cup Extrusion Tests in Cold forming, Annals of the CIRP, vol. 45, issues 1, pp. 211-214.
[11]A. Buschhausen, K. Weinmann, J. Y. Lee, 1992, “Evaluation of lubrication and friction in cold forging using a double backward-extrusion processing”, Journal of Materials Processing Technology, vol. 33, pp. 34-38.
[12]A. Barcellona, L. Cannizzaro, 1996, “Validation of Frictional Studies by Double Cup Extrusion Tests in Cold forming”, Annals of the CIRP, vol. 45, pp. 211-214.
[13]N. Tiesler, U. Engel, M. Geiger, 1999, “Forming of Microparts-effect of iniaturization on friction”, Proceeding of the 6th ICTP, vol. II, pp. 889-894.
[14]F. Martin, M. J. Martin, L. Sevilla, M. A. Sebastian, 2015, The Ring Compression Test: Analysis of dimensions and canonical geometry, Procedia Engineering, vol. 132, pp. 326-333.
[15]T. Robinson, H. Ou, C. G. Armstrong, 2004, Study on ring compression test using physical modelling and FE simulation, Journal of Materials Processing Technology, vol. 153-154, pp. 54-59.
[16]G. J. Kang, W. J. Song, J. Kim, 2005, “Numerical approach to forging process of a gear with inner cam profile using FEM”, Journal of Materials Processing Technology, Korea, vol. 164-165, pp. 1212-1217.
[17]S. P. Cai, Z. J. Wang, 2020, An analysis for three-dimensional upset forging of elliptical disks and rings based on the upper-bound method, International Journal of Mechanical Sciences, vol. 183
[18]V. Nagpal, G. D. Lahoti, T. Altan, 1978, A Numerical Method For Simultaneous Prediction of Metal Flow and Temperatures in Upset Forging of Rings, Journal of Engineering for Industry, vol. 100, pp. 413.
[19]D. Zhang, G. Yang, S. Zhao, 2021, Frictional behavior during cold ring compression precess of aluminum alloy 5052, Chinese Journal of Aeronautics, vol. 34, pp. 47-64.
[20]D. Zhang, B. Liu, J. Li, M. Cui, S. Shao, 2020, Variation of the friction conditions in cold ring compression tests of medium carbon steel, Friction, vol. 8, pp. 311-322.
[21]R. K. Ohdar, P. Talukdar, Md. Israr Equbal, 2015, Evaluation of friction coefficient of 38MnVS6 medium carbon micro-alloyed steel in hot forging process by using ring compression test, Technology Letters, vol. 2, no. 3, pp. 12-16.
[22]C. Hu, Q. Yin, Z. Zhao, H. Ou, 2017, A new measuring method for friction factor by usong ring with inner boss compression test, International Journal of Mechanical Sciences, vol. 123, pp. 133.140.
[23]C. Hu, H. Ou, Z. Zhao, 2015, An alternative evaluation method for friction condition in cold forging by ring with boss compression test, Journal of Materials Processing Technology, vol. 224, pp. 18-25.
[24]K. Andersson, S. Kivivuori, A. S. Korhonen, 1996, Effect of the heat-transfer coefficient in ring-compression tests, Journal of Materials Processing Technology, vol. 62, pp. 10-13.
[25]V. Depierre, F. Gurney, 1974, A Method for Determination of Constant and Varying Friction Factors During Ring Compression Tests, Journal of Lubrication Technology, pp. 482-487.
[26]S. B. Petersen, P. A. F. Martins, N. Bay, 1998, An alternative ring-test geometry for the evaluation of friction under low normal pressure, Journal of Materials Processing Technology, vol. 79, pp. 14-24.
[27]X. Tan, P. A. F. Martins, N. Bay, W. Zhang, 1998, Friction studies at different normal pressures with alternative ring-compression tests, Journal of Materials Processing Technology, vol. 80-81. pp. 292-297.
[28]R. E. Dutton, V. Seetharaman, R. L. Goetz, S. L. Semiatin, 1999, Effect of flow softening on ring test calibration curves, Materials Science and Engineering, vol. A270, pp. 249-253.
[29]J. M. Alexander, 1960, An approximate analysis of the collapse of thin cylindrical shells under axial loading, The Quarterly Journal of Mechanics and Applied Mathematics, vol. 13, pp. 10-15.
[30]A. Pugsley, M. Macaulay, 1960, The large scale crumpling of thin cyclindrical columns, The Quarterly Journal of Mechanics and Applied Mathematics, vol. 13, pp. 1-9.
[31]A. G. Pugsley, 1979, On the crumping of thin tubular struts, The Quarterly Journal of Mechanics and Applied Mathematics, vol. 32, pp. 1-7.
[32]W, Abramowicz, N. Jones, 1984, Dynamic axial crushing of Square tubes, International Journal of Impact Engineering, vol. 2, no. 2, pp. 179-208.
[33]W, Abramowicz, N. Jones, 1984, Dynamic axial crushing of Square tubes, International Journal of Impact Engineering, vol. 2, no. 2, pp. 263-281.
[34]W, Abramowicz, N. Jones, 1986, Dynamic progressive buckling of circular and square tubes, International Journal of Impact Engineering, vol. 4, no. 4, pp. 243-270.
[35]C. Dineshbabu, R. Arivazhagan, R. Venkatesh, K. Balasubramani, R. Periyasamy, 2020, Investigation of aspect ratio and friction on barrelling in billets of aluminium upset forging, Materials Today:Proceedings, vol. 21, pp. 601-611.
[36]W. Abramowicz, N. Jones, 1997, Transition from Initial Global Bending to Progressive Buckling of Tubes Loaded Statically and Dynamically, International Journal of Impact Engineering, vol. 19, No. 5-6, pp. 415-437.
[37]C. J. Wang, D. B. Shan, J. Zhou, B.Guo, L. N. Sun, 2007, Size effects of the cavity dimension on the microforming ability during coining process, Journal of Materials Processing Technology, vol. 187-188, pp. 256-259.
[38]H. Sofuoglu, J. Rasty, 1999, On the measurement of friction coefficient utilizing the ring compression test, Tribology International, vol. 32, pp. 327-335.
[39]陳鶴崢,錢友榮,2001,塑性加工學(修訂版),大揚出版社,台北縣。
[40]吳君平,2021,雙金屬射出鍛造成形之研究,國立高雄科技大學,碩士論文。[41]台灣玻璃工業股份有限公司,新材料事業部,電子級超薄觸控玻璃,頁8。
(相關資訊取自網址 : http://www.taiwanglass.com/tc/pdf/台玻電子級超薄玻璃.pdf)