跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/29 04:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王文琦
研究生(外文):WANG, WEN-CHI
論文名稱:玻璃模具於微金屬成形之應用
論文名稱(外文):Application of Glass Die to Micro Metal Forming
指導教授:張朝誠
指導教授(外文):CHANG, CHAO-CHENG
口試委員:徐中華洪兆宇
口試委員(外文):HSU, CHEUNG-HWAHUNG, CHAO-YU
口試日期:2022-06-17
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:64
中文關鍵詞:微金屬成形玻璃模具摩擦因子有限元素模擬
外文關鍵詞:Micro metal formingGlass dieFriction factorFinite element simulation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:1
微型金屬元件隨著不同領域的產品開發而逐漸多元化,不僅應用於電子產品與精密機械,也用於生醫與化學器具,其設計除了需要考慮產品使用的條件,成形方法與材料特性,包括產品與工具之材質也是製作微型元件的關鍵因素。

本研究提出一種玻璃模具於微金屬成形之應用,利用有限元素模擬與實驗探討此方法之可行性。為了準確模擬摩擦效應,本研究利用玻璃模具對鐵鈷鎳合金進行環形壓縮模擬並建立摩擦校正曲線圖,再搭配環形壓縮試驗預估玻璃與合金之間的摩擦因子。隨後將所得之摩擦校正因子帶入鐵鈷鎳合金頭部鍛粗模擬,以預估玻璃模具承受之應力,最後進行實驗驗證。

研究結果顯示,環形壓縮試驗之有限元素模擬的胚料幾何與成形負荷非常接近實驗結果,預估無潤滑條件的之摩擦因子約為0.12。此外,頭部鍛粗實驗結果顯示,玻璃模具可用於鍛粗成形製程,在適當地控制鍛打行程以避免玻璃模具發生破裂的條件下,可成功地製作微型鐵鈷鎳合金元件。


Micro metal components have been gradually diversified with the development of products in different fields. They are not only used in electronic products and precision machinery, but also biomedical and chemical instruments. The design of the micro metal components needs to consider the conditions in use. The forming method and the characteristics of the materials including the product and tools are also key factors in the manufacturing of the micro metal components.

This study proposes an application of a glass die to the micro metal forming process. The study used finite element simulation and experiments to investigate the feasibility of the proposed method. To accurately model the friction effect, the study used a set of glass dies in the simulation of the ring compression test of the Fe-Co-Ni alloy, established the friction calibration curves, and conducted the ring compression test to estimate the friction factor between the glass and alloy. The obtained friction factor is then used in the simulation of the heading process of the Fe-Co-Ni alloy to predict the stress in the glass die. Finally, experiments were carried out to verify the proposed method.

The results show that the billet geometry and the forming load predicted by the simulation of the ring compression test are very close to the experimental results. The estimated friction factor is about 0.12 in the process without lubrication. Moreover, the results of the heading process experiments show that the glass die under the condition with an appropriate control of the forging stroke to prevent the fracture can be used to successfully fabricate micro Fe-Co-Ni alloy components.

摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
一、緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.2.1 微金屬成形 1
1.2.2 摩擦效應 2
1.2.3 鍛粗成形 5
1.3 研究動機與目的 5
1.4 論文架構 7
二、基本理論 9
2.1 摩擦效應 9
2.2 環形壓縮試驗 11
2.3 鍛粗成形 13
2.4 微金屬成形 13
2.5 玻璃模具於微金屬成形之應用 14
三、數值模擬 15
3.1 有限元素模擬軟體 15
3.2 收斂性分析 16
3.3 摩擦因子預估 20
3.3.1 環形壓縮 21
3.3.2 頭部鍛粗 21
3.4 玻璃模具於微金屬成形之應用 25
3.4.1 胚料變形 26
3.4.2 玻璃應力 28
四、實驗 31
4.1 模具設計 31
4.1.1 環形壓縮 31
4.1.2 頭部鍛粗 31
4.2 實驗設備 32
4.2.1 電子壓床 32
4.2.2 光學顯微鏡 33
4.2.3 線切割機 34
4.2.4 影像量測儀 34
4.3 實驗程序 35
4.3.1 Kovar合金環形壓縮試驗 35
4.3.2 Kovar合金頭部鍛粗實驗 35
4.4 成品觀察 36
4.4.1 顯微觀測 36
4.4.2 尺寸量測 36
4.4.3 玻璃觀察 36
五、結果與討論 37
5.1 顯微觀察 37
5.1.1 環形壓縮 37
5.1.2 頭部鍛粗 40
5.2 摩擦因子 41
5.3 成品尺寸 44
5.3.1 環形壓縮 44
5.3.2 頭部鍛粗 44
5.4 成形負荷 46
5.5 玻璃模具表面裂紋觀察 46
六、結論與未來展望 49
6.1 結論 49
6.2 未來展望 50
參考文獻 51
附錄 55
附錄一 : 玻璃特性表 55
附錄二 : 環形壓縮試片尺寸量測表 56
附錄二 : 環形壓縮試片尺寸量測表(續) 57
附錄三 : 頭部鍛粗鍛胚尺寸量測表 58
附錄四 : 模具工程圖 59
簡歷 64

[1]U. Engel, R. Eckstein, 2002, Microforming-from basic research to its realization, Journal of Materials Processing Technology, vol. 125-126, pp. 35-44.
[2]R. Z. Valive, 1997, “Structure and Mechanical Properties of Ultrafine-Grained Metals,” Materials Science and Engineering, vol. 234-236, pp. 59-66.
[3]J. T. Gau, C. Principem, M. Yu, 2007, Springback behavior of brass in micro sheet forming, Journal of Materials Processing Technology, vol. 191, issues. 1-3, pp. 7-10.
[4]F. Vollertsen, 2001, Metal Forming Microparts Encyclopedia of Materials Science and Technology, Amsterdam Elsevier, pp. 5424-5427.
[5]C. C. Chang, J. C. Lin, 2012, Influence of grain size and temperature on micro upsetting of copper, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 226, issue 1, pp. 183-190.
[6]M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engel, 2001, Microforming, CIRP Annals- Manufacturing Technology, pp. 445-462.
[7]J. H. Deng, M. W. Fu, W. L. Chan, 2011, Size effect on material surface deformation behavior in micor-forming process, Materials Science and Engineering A, vol. 528, pp. 4799-4806.
[8]U. Engel, 2006, Tribology in microforming, Wear, vol. 260, pp. 265-273.
[9]W. Schroeder, D. A. Webster, 1949, "Press Forging Thin Sections : Effect of Friction, Area and Thickness on Pressure Required", Journal of Applied Mechanics, vol.16, pp. 289-294.
[10]A. Barcellona, L. Cannizzaro, 1996, Validation of Frictional Studies by Double-Cup Extrusion Tests in Cold forming, Annals of the CIRP, vol. 45, issues 1, pp. 211-214.
[11]A. Buschhausen, K. Weinmann, J. Y. Lee, 1992, “Evaluation of lubrication and friction in cold forging using a double backward-extrusion processing”, Journal of Materials Processing Technology, vol. 33, pp. 34-38.
[12]A. Barcellona, L. Cannizzaro, 1996, “Validation of Frictional Studies by Double Cup Extrusion Tests in Cold forming”, Annals of the CIRP, vol. 45, pp. 211-214.
[13]N. Tiesler, U. Engel, M. Geiger, 1999, “Forming of Microparts-effect of iniaturization on friction”, Proceeding of the 6th ICTP, vol. II, pp. 889-894.
[14]F. Martin, M. J. Martin, L. Sevilla, M. A. Sebastian, 2015, The Ring Compression Test: Analysis of dimensions and canonical geometry, Procedia Engineering, vol. 132, pp. 326-333.
[15]T. Robinson, H. Ou, C. G. Armstrong, 2004, Study on ring compression test using physical modelling and FE simulation, Journal of Materials Processing Technology, vol. 153-154, pp. 54-59.
[16]G. J. Kang, W. J. Song, J. Kim, 2005, “Numerical approach to forging process of a gear with inner cam profile using FEM”, Journal of Materials Processing Technology, Korea, vol. 164-165, pp. 1212-1217.
[17]S. P. Cai, Z. J. Wang, 2020, An analysis for three-dimensional upset forging of elliptical disks and rings based on the upper-bound method, International Journal of Mechanical Sciences, vol. 183
[18]V. Nagpal, G. D. Lahoti, T. Altan, 1978, A Numerical Method For Simultaneous Prediction of Metal Flow and Temperatures in Upset Forging of Rings, Journal of Engineering for Industry, vol. 100, pp. 413.
[19]D. Zhang, G. Yang, S. Zhao, 2021, Frictional behavior during cold ring compression precess of aluminum alloy 5052, Chinese Journal of Aeronautics, vol. 34, pp. 47-64.
[20]D. Zhang, B. Liu, J. Li, M. Cui, S. Shao, 2020, Variation of the friction conditions in cold ring compression tests of medium carbon steel, Friction, vol. 8, pp. 311-322.
[21]R. K. Ohdar, P. Talukdar, Md. Israr Equbal, 2015, Evaluation of friction coefficient of 38MnVS6 medium carbon micro-alloyed steel in hot forging process by using ring compression test, Technology Letters, vol. 2, no. 3, pp. 12-16.
[22]C. Hu, Q. Yin, Z. Zhao, H. Ou, 2017, A new measuring method for friction factor by usong ring with inner boss compression test, International Journal of Mechanical Sciences, vol. 123, pp. 133.140.
[23]C. Hu, H. Ou, Z. Zhao, 2015, An alternative evaluation method for friction condition in cold forging by ring with boss compression test, Journal of Materials Processing Technology, vol. 224, pp. 18-25.
[24]K. Andersson, S. Kivivuori, A. S. Korhonen, 1996, Effect of the heat-transfer coefficient in ring-compression tests, Journal of Materials Processing Technology, vol. 62, pp. 10-13.
[25]V. Depierre, F. Gurney, 1974, A Method for Determination of Constant and Varying Friction Factors During Ring Compression Tests, Journal of Lubrication Technology, pp. 482-487.
[26]S. B. Petersen, P. A. F. Martins, N. Bay, 1998, An alternative ring-test geometry for the evaluation of friction under low normal pressure, Journal of Materials Processing Technology, vol. 79, pp. 14-24.
[27]X. Tan, P. A. F. Martins, N. Bay, W. Zhang, 1998, Friction studies at different normal pressures with alternative ring-compression tests, Journal of Materials Processing Technology, vol. 80-81. pp. 292-297.
[28]R. E. Dutton, V. Seetharaman, R. L. Goetz, S. L. Semiatin, 1999, Effect of flow softening on ring test calibration curves, Materials Science and Engineering, vol. A270, pp. 249-253.
[29]J. M. Alexander, 1960, An approximate analysis of the collapse of thin cylindrical shells under axial loading, The Quarterly Journal of Mechanics and Applied Mathematics, vol. 13, pp. 10-15.
[30]A. Pugsley, M. Macaulay, 1960, The large scale crumpling of thin cyclindrical columns, The Quarterly Journal of Mechanics and Applied Mathematics, vol. 13, pp. 1-9.
[31]A. G. Pugsley, 1979, On the crumping of thin tubular struts, The Quarterly Journal of Mechanics and Applied Mathematics, vol. 32, pp. 1-7.
[32]W, Abramowicz, N. Jones, 1984, Dynamic axial crushing of Square tubes, International Journal of Impact Engineering, vol. 2, no. 2, pp. 179-208.
[33]W, Abramowicz, N. Jones, 1984, Dynamic axial crushing of Square tubes, International Journal of Impact Engineering, vol. 2, no. 2, pp. 263-281.
[34]W, Abramowicz, N. Jones, 1986, Dynamic progressive buckling of circular and square tubes, International Journal of Impact Engineering, vol. 4, no. 4, pp. 243-270.
[35]C. Dineshbabu, R. Arivazhagan, R. Venkatesh, K. Balasubramani, R. Periyasamy, 2020, Investigation of aspect ratio and friction on barrelling in billets of aluminium upset forging, Materials Today:Proceedings, vol. 21, pp. 601-611.
[36]W. Abramowicz, N. Jones, 1997, Transition from Initial Global Bending to Progressive Buckling of Tubes Loaded Statically and Dynamically, International Journal of Impact Engineering, vol. 19, No. 5-6, pp. 415-437.
[37]C. J. Wang, D. B. Shan, J. Zhou, B.Guo, L. N. Sun, 2007, Size effects of the cavity dimension on the microforming ability during coining process, Journal of Materials Processing Technology, vol. 187-188, pp. 256-259.
[38]H. Sofuoglu, J. Rasty, 1999, On the measurement of friction coefficient utilizing the ring compression test, Tribology International, vol. 32, pp. 327-335.
[39]陳鶴崢,錢友榮,2001,塑性加工學(修訂版),大揚出版社,台北縣。
[40]吳君平,2021,雙金屬射出鍛造成形之研究,國立高雄科技大學,碩士論文。
[41]台灣玻璃工業股份有限公司,新材料事業部,電子級超薄觸控玻璃,頁8。
(相關資訊取自網址 : http://www.taiwanglass.com/tc/pdf/台玻電子級超薄玻璃.pdf)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top