跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:a8de:191f:a29b:1858) 您好!臺灣時間:2025/01/13 06:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:唐焌瑄
研究生(外文):Tang,Jun-Xuan
論文名稱:10B33回火脆性之微結構分析
論文名稱(外文):10B33 Microstructural Analysis of Temper Brittleness
指導教授:林俊宏林俊宏引用關係葉松瑋葉松瑋引用關係
指導教授(外文):LIN,JUN-HONGYEH,SUNG-WEI
口試委員:林俊宏葉松瑋毛世威
口試委員(外文):LIN,JUN-HONGYEH,SUNG-WEIMAO,SHI-WEI
口試日期:2022-07-28
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:87
中文關鍵詞:回火脆性10B33金相觀察
外文關鍵詞:Temper brittleness10B33Metallography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在觀察10B33之硼鋼的回火脆性所造成對於微觀結構上的問題。主要研究於不同條件下的熱處理機械性質的差異性比較以及對於回火特有之脆性進行觀察。在試片加工完畢後,以不同溫度對材料進行回火並進行包含衝擊、拉伸、扭轉與硬度的機械性質實驗,比較不同溫度條件下對於機械性質的影響當作參考。完成後對材料進行金相、SEM與EDS的微觀組織觀察與元素分布,以利了解材料在回火後不韌反脆的主要原因。最後對於機械性質與材料觀察進行系統上的分析以找出對於回火脆性的關鍵因素。
The purpose of this study is to observe the microstructural problems caused by the temper brittleness of 10B33 boron steel. The main research is on the difference comparison of the mechanical properties of heat treatment under different conditions and the observation of the brittleness unique to tempering. After the test piece is processed, the material is tempered at different temperatures and subjected to mechanical property experiments including impact, tensile, torsion and hardness, and the effects on mechanical properties under different temperature conditions are compared as a reference. After the completion, the microstructure observation and element distribution of the material were carried out by metallographic, SEM and EDS, in order to understand the main reasons for the material's toughness and brittleness after tempering. Finally, the mechanical properties and material observations were systematically analyzed to find out the key factors for temper brittleness.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
一、緒論 1
1.1 前言 1
1.2文獻回顧 1
1.2.1低合金鋼 1
1.2.2硼鋼概述 2
1.2.3硼鋼代號 2
1.2.4回火脆性對材料之影響 3
1.2.5回火溫度對回火脆性之關係 4
1.3研究動機與目的 4
二、研究理論 5
2.1 10B33硼鋼 5
2.2合金元素添加的影響 5
2.3熱處理 9
2.3.1淬火處理 9
2.3.2回火處理 11
2.4回火脆性(TEMPER BRITTLENESS) 12
2.5微觀組織分析 13
三、實驗方法與設備 14
3.1實驗流程 14
3.2試片備製 15
3.2.1試片取得與成分 15
3.2.2試片尺寸規範 15
3.2.3外型製作與矯直 17
3.3熱處理 18
3.3.1正常化與淬火 18
3.3.2回火 18
3.4機械性質量測 18
3.4.1衝擊試驗 18
3.4.2拉伸試驗 20
3.4.3扭轉試驗 20
3.4.4硬度試驗 20
3.5組織觀察 23
3.5.1衝擊與拉伸破斷面觀察 23
3.5.2研磨拋光與腐蝕 24
3.5.3金相試驗 26
3.5.4電解拋光與SEM/EDS 28
四、結果與討論 30
4.1機械性質 30
4.1.1硬度 30
4.1.2拉伸值強度 31
4.1.3扭轉值 33
4.1.4衝擊值 34
4.2微觀組織 35
4.2.1 OM金相觀察 35
4.2.2 SEM金相組織觀察 38
4.2.3 衝擊破斷面SEM觀察 44
4.2.4 拉伸破斷面SEM觀察 52
4.2.5 EDS/元素觀察 61
五、結論 70
5.1結論 70
參考文獻 71

[1]SAE,J403,(2001),https://tajhizkala.ir/doc/SAE/SAE-J403-2001.pdf
[2]Zhh,EP3.手把手教你畫鐵碳平衡圖,痞客邦.圖文創作.竹竿研究室,(2020.10.22),https://mecorner.pixnet.net/blog/post/21834113-%E6%89%8B%E6%8A%8A%E6%89%8B%E6%95%99%E4%BD%A0%E7%95%AB%E9%90%B5%E7%A2%B3%E5%B9%B3%E8%A1%A1%E5%9C%96
[3]S. Cottenier, T. Van Hoolst, M. Larmuseau, A. Rivoldini,Center for Molecular Modeling,(2019.05.06),https://molmod.ugent.be/subject/fe-si-phase-diagram-electrical-steel-planet-mercury-0
[4]A. Rabinkin,Fe-Mn Phase Diagram,Wikiversity,(2011),https://en.wikiversity.org/wiki/File:Fe-Mn_Phase_Diagram.gif
[5]Tobias1984,Fe-P-phase-diagram-IIG-IIAB-meteorites,Wikimedia Commons,(2012.12.27),https://commons.wikimedia.org/wiki/File:Fe-P-phase-diagram-IIG-IIAB-meteorites.svg#mw-jump-to-license
[6]Fiseha Tesfaye,Pekka Taskinen,Sulfide Mineralogy - Literature Review,ResearchGate/Book,(2010.01),https://www.researchgate.net/publication/215730622_Sulfide_Mineralogy_-_Literature_Review
[7]Szymanski, M., Homolová, V., and Leonowicz, M. (2017). Thermodynamic Assessment of the Fe-B System in the Ssol5 and User Databases. Int. J. Eng. Res. Appl., 7(01), 59-62.
[8]中鋼集團,中鋼公司品質政策,(2014),https://www.csc.com.tw/csc_c/pd/doc/spec_bd_2014.pdf
[9]ASTM,E23-18 Standard Test Methods for Notched Bar Impact Testing of Metallic Materials,(2018.11.05),https://compass.astm.org/document/?contentCode=ASTM%7CE0023-18%7Cen-US
[10]ASTM,E8/E8M-21 Standard Test Methods for Tension Testing of Metallic Materials,(2021.02.01),https://compass.astm.org/document/?contentCode=ASTM%7CE0008_E0008M-21%7Cen-US
[11]高立熱處裡工業股份有限公司,技術支援/硬度換算表,(2022.08.30),http://www.kaoroll.com.tw/index.php?temp=conversion&lang=cht
[12]盈億儀器工業股份有限公司,ACM-250A,(2022.08.30),https://plusover.com.tw/product/acm-250a/
[13]盈億儀器工業股份有限公司,PM2-200SA,(2022.08.22),https://plusover.com.tw/product/pm2-200sa/
[14]Olympus,BX41M-LED,(2022.08.29),https://microscopecentral.com/products/olympus-bx41m-reflected-light-metallurgical-microscope
[15]Thermo Fisher Scientific Inc.,Phenom Pro,(2022.08.22),https://www.thermofisher.com/tw/zt/home/electron-microscopy/products/desktop-scanning-electron-microscopes/phenom-pro.html#specifications
[16]Carl Zeiss AG,ZEISS GeminiSEM 450,(2022.8.31),https://www.zeiss.com.tw/microscopy/local-content/campaign-landingpages/geminisem.html#technology
[17]Lescano, D. E., and Silvetti, S. P. (2012). Study of microestructure and tempered martensite embrittlement in AISI 15B41 steel. Procedia Materials Science, 1, 134-140.
[18]Osanai, T., Sekido, N., Yonemura, M., Maruyama, K., Takeuchi, M., and Yoshimi, K. (2021). Evolution of boron segregation during tempering in B doped 9% Cr ferritic steel. Materials Characterization, 177, 111192.
[19]許鈞翔、林東毅,(2013),回火參數對10B33扭力控制型斷尾螺栓扭力值影響之研究,國立高雄大學化學與工程學系,碩士論文。
[20]Zheng, Y., Wang, F., Li, C., and He, Y. (2017). Dissolution and precipitation behaviors of boron bearing phase and their effects on hardenability and toughness of 25CrMoNbB steel. Materials Science and Engineering: A, 701, 45-55.
[21]Shigesato, G., Fujishiro, T., and Hara, T. (2012). Boron segregation to austenite grain boundary in low alloy steel measured by aberration corrected STEM–EELS. Materials Science and Engineering: A, 556, 358-365.
[22]Bastidas, D. M., Gil, A., Martin, U., Ress, J., Bosch, J., and Medina, S. F. (2021). Failure analysis of boron steel 27MnCrB5-2 structural bolts during tightening of railcar wheel-axle. Engineering Failure Analysis, 124, 105333.
[23]Bai, J., Jin, S., Liang, C., Li, X., You, Z., Zhao, Y., ... and Sha, G. (2022). Microstructural origins for quench cracking of a boron steel: Boron distribution. Materials Characterization, 112022.
[24]Zheng, Y., Wang, F., Li, C., Li, Y., and Cheng, J. (2018). Microstructural evolution, coarsening behavior of precipitates and mechanical properties of boron bearing steel 25CrMoNbB during tempering. Materials Science and Engineering: A, 712, 453-465.
[25]曾春風、郭央諶,(2010),構造用鎳鉻鉬合金鋼JIS-SNCM 439熱處理之研究,國立虎尾科技大學材料科學與工程系,技術學刊第二十五卷第二期第121頁到130頁。
[26]Xiong, Z., Jacques, P. J., Perlade, A., and Pardoen, T. (2018). Ductile and intergranular brittle fracture in a two-step quenching and partitioning steel. Scripta Materialia, 157, 6-9.
[27]Tang, B., Wang, Q., Guo, N., Liu, J., Ge, H., Luo, Z., and Li, X. (2020). Microstructure-based RVE modeling of ductile failure induced by plastic strain localization in tailor-tempered 22MnB5 boron steel. Engineering Fracture Mechanics, 240, 107351.
[28]Cao, R., Han, C., Guo, X., Jiang, Y., Liao, F., Yang, F., ... and Chen, J. (2022). Effects of boron on the microstructure and impact toughness of weathering steel weld metals and existing form of boron. Materials Science and Engineering: A, 833, 142560.
[29]Hordych, I., Bild, K., Boiarkin, V., Rodman, D., and Nürnberger, F. (2018). Phase transformations in a boron-alloyed steel at high heating rates. Procedia Manufacturing, 15, 1062-1070.
[30]Mejía, I., Bedolla-Jacuinde, A., Maldonado, C., and Cabrera, J. M. (2011). Determination of the critical conditions for the initiation of dynamic recrystallization in boron microalloyed steels. Materials Science and Engineering: A, 528(12), 4133-4140.
[31]Kim, S., Kang, Y., and Lee, C. (2013). Variation in microstructures and mechanical properties in the coarse-grained heat-affected zone of low-alloy steel with boron content. Materials Science and Engineering: A, 559, 178-186.
[32]Kim, D. W., Yoo, J., Sohn, S. S., and Lee, S. (2021). Austenite reversion through subzero transformation and tempering of a boron-doped strong and ductile medium-Mn lightweight steel. Materials Science and Engineering: A, 802, 140619.
[33]Hwang, B., Suh, D. W., and Kim, S. J. (2011). Austenitizing temperature and hardenability of low-carbon boron steels. Scripta Materialia, 64(12), 1118-1120.
[34]楊哲人、李欣怡、張雅齡,(2010),AISI 440C麻田散鐵之奈米結構,國立台灣大學材料科學與工程學系,期末報告
[35]百度百科,硼鋼,(2021.01.27),https://baike.baidu.hk/item/%E7%A1%BC%E9%8B%BC/2165046
[36]中文百科,回火脆化,(2022/7/25),https://www.newton.com.tw/wiki/%E5%9B%9E%E7%81%AB%E8%84%86%E5%8C%96/9081412
[37]百科知識,回火脆性,(2022/7/25),https://www.easyatm.com.tw/wiki/%E5%9B%9E%E7%81%AB%E8%84%86%E6%80%A7
[38]優客網.科技,鋼的回火脆性是什麼意思?有什麼對策?,(2021.04.08),https://www.udoc.pub/a/202104/867.html

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top