1.Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H. M., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337-365.
2.Najafi, L.; Bellani, S.; Oropesa-Nuñez, R.; Prato, M.; Martín-García, B.; Brescia, R.; Bonaccorso, F., Carbon Nanotube-Supported MoSe2 Holey Flake:Mo2C Ball Hybrids for Bifunctional pH-Universal Water Splitting. ACS Nano 2019, 13, 3162-3176.
3.Du, C.; Yang, L.; Yang, F.; Cheng, G.; Luo, W., Nest-like NiCoP for Highly Efficient Overall Water Splitting. ACS Catal. 2017, 7, 4131-4137.
4.Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P., Direct Electrolytic Splitting of Seawater: Opportunities and Challenges. ACS Energy Lett. 2019, 4, 933-942.
5.Zhang, T.; Du, J.; Xi, P.; Xu, C., Hybrids of Cobalt/Iron Phosphides Derived from Bimetal–Organic Frameworks as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2017, 9, 362-370.
6.Wang, H.; Lee, H.-W.; Deng, Y.; Lu, Z.; Hsu, P.-C.; Liu, Y.; Lin, D.; Cui, Y., Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.
7.Liu, K.; Zhang, C.; Sun, Y.; Zhang, G.; Shen, X.; Zou, F.; Zhang, H.; Wu, Z.; Wegener, E. C.; Taubert, C. J.; Miller, J. T.; Peng, Z.; Zhu, Y., High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction. ACS Nano 2018, 12, 158-167.
8.Wang, J.-G.; Hua, W.; Li, M.; Liu, H.; Shao, M.; Wei, B., Structurally Engineered Hyperbranched NiCoP Arrays with Superior Electrocatalytic Activities toward Highly Efficient Overall Water Splitting. ACS Appl. Mater. Interfaces 2018, 10, 41237-41245.
9.Burke, M. S.; Zou, S.; Enman, L. J.; Kellon, J. E.; Gabor, C. A.; Pledger, E.; Boettcher, S. W., Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media. J. Phys. Chem. Lett. 2015, 6, 3737-3742.
10.Ma, Y.; Liu, D.; Wu, H.; Li, M.; Ding, S.; Hall, A. S.; Xiao, C., Promoting Bifunctional Water Splitting by Modification of the Electronic Structure at the Interface of NiFe Layered Double Hydroxide and Ag. ACS Appl. Mater. Interfaces 2021, 13, 26055-26063.
11.Li, L.; Hu, Z.; Tao, L.; Xu, J.; Yu, J. C., Efficient Electronic Transport in Partially Disordered Co3O4 Nanosheets for Electrocatalytic Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2020, 3, 3071-3081.
12.Yu, J.; Cao, Q.; Li, Y.; Long, X.; Yang, S.; Clark, J. K.; Nakabayashi, M.; Shibata, N.; Delaunay, J.-J., Defect-Rich NiCeOx Electrocatalyst with Ultrahigh Stability and Low Overpotential for Water Oxidation. ACS Catal. 2019, 9, 1605-1611.
13.Liu, H.; He, Q.; Jiang, H.; Lin, Y.; Zhang, Y.; Habib, M.; Chen, S.; Song, L., Electronic Structure Reconfiguration toward Pyrite NiS2 via Engineered Heteroatom Defect Boosting Overall Water Splitting. ACS Nano 2017, 11, 11574-11583.
14.Ham, K.; Hong, S.; Kang, S.; Cho, K.; Lee, J., Extensive Active-Site Formation in Trirutile CoSb2O6 by Oxygen Vacancy for Oxygen Evolution Reaction in Anion Exchange Membrane Water Splitting. ACS Energy Lett. 2021, 6, 364-370.
15.藍文婕. 藍文婕(2014)。奈米結構之石墨烯-鈷錳金屬氧化物混成材料之合成及電化學催化應用。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/naumta. 國立中山大學, 高雄市, 2014.16.Lan, W.-J.; Kuo, C.-C.; Chen, C.-H., Hierarchical nanostructures with unique Y-shaped interconnection networks in manganese substituted cobalt oxides: the enhancement effect on electrochemical sensing performance. Chem. Commun. 2013, 49, 3025-3027.
17.Kuo, C.-C.; Lan, W.-J.; Chen, C.-H., Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide. Nanoscale 2014, 6, 334-341.
18.Lan, W.-J.; Chen, C.-H., Hybridization of Graphene in 3D Complex Nanovoids: Synergistic Nanocomposites for Electrocatalytic Reduction of Hydrogen Peroxide. Electrochim. Acta 2015, 180, 1014-1022.
19.張仁懷(2018)。氧化還原反應法沉積非晶形鈷錳金屬氧化物薄膜於析氧反應上之應用。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/crtm3e. 國立中山大學, 高雄市, 2018.20.楊長穎(2016)。大面積石墨烯-鈷錳氧化物薄膜在產氧反應上之應用。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/kahj59. 國立中山大學, 高雄市, 2016.21.Jhang, R.-H.; Yang, C.-Y.; Shih, M.-C.; Ho, J.-Q.; Tsai, Y.-T.; Chen, C.-H., Redox-assisted multicomponent deposition of ultrathin amorphous metal oxides on arbitrary substrates: highly durable cobalt manganese oxyhydroxide for efficient oxygen evolution. J. Mater. Chem. A 2018, 6, 17915-17928.
22.賴佩妏(2020)。液相氧化還原法沉積超薄多元金屬薄膜。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/chk9mt. 國立中山大學, 高雄市, 2020.23.Shih, M.-C.; Jhang, R.-H.; Tsai, Y.-T.; Huang, C.-W.; Hung, Y.-J.; Liao, M.-Y.; Huang, J.; Chen, C.-H., Discontinuity-Enhanced Thin Film Electrocatalytic Oxygen Evolution. Small 2019, 15, 1903363.
24.施銘奇(2019)。合成多元金屬氧化物薄膜與不連續鈷錳氧化物薄膜提升電催化析氧反應之效率。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/zh8w5d. 國立中山大學, 高雄市, 2019.25.Tong, W.; Forster, M.; Dionigi, F.; Dresp, S.; Sadeghi Erami, R.; Strasser, P.; Cowan, A. J.; Farràs, P., Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367-377.
26.Xu, D.; Stevens, M. B.; Cosby, M. R.; Oener, S. Z.; Smith, A. M.; Enman, L. J.; Ayers, K. E.; Capuano, C. B.; Renner, J. N.; Danilovic, N.; Li, Y.; Wang, H.; Zhang, Q.; Boettcher, S. W., Earth-Abundant Oxygen Electrocatalysts for Alkaline Anion-Exchange-Membrane Water Electrolysis: Effects of Catalyst Conductivity and Comparison with Performance in Three-Electrode Cells. ACS Catal. 2019, 9, 7-15.
27.Ambrosi, A.; Pumera, M., Multimaterial 3D-Printed Water Electrolyzer with Earth-Abundant Electrodeposited Catalysts. ACS Sustainable Chem. Eng. 2018, 6, 16968-16975.
28.Peng, Y.; Jiang, K.; Hill, W.; Lu, Z.; Yao, H.; Wang, H., Large-Scale, Low-Cost, and High-Efficiency Water-Splitting System for Clean H2 Generation. ACS Appl. Mater. Interfaces 2019, 11, 3971-3977.
29.Yu, L.; Zhu, Q.; Song, S.; McElhenny, B.; Wang, D.; Wu, C.; Qin, Z.; Bao, J.; Yu, Y.; Chen, S.; Ren, Z., Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.
30.Leng, Y.; Chen, G.; Mendoza, A. J.; Tighe, T. B.; Hickner, M. A.; Wang, C.-Y., Solid-State Water Electrolysis with an Alkaline Membrane. J. Am. Chem. Soc. 2012, 134, 9054-9057.
31.Li, M.; Xiong, Y.; Liu, X.; Bo, X.; Zhang, Y.; Han, C.; Guo, L., Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale 2015, 7, 8920-8930.
32.Gupta, S.; Zhao, S.; Wang, X. X.; Hwang, S.; Karakalos, S.; Devaguptapu, S. V.; Mukherjee, S.; Su, D.; Xu, H.; Wu, G., Quaternary FeCoNiMn-Based Nanocarbon Electrocatalysts for Bifunctional Oxygen Reduction and Evolution: Promotional Role of Mn Doping in Stabilizing Carbon. ACS Catal. 2017, 7, 8386-8393.
33.Yu, L.; Wu, L.; Song, S.; McElhenny, B.; Zhang, F.; Chen, S.; Ren, Z., Hydrogen Generation from Seawater Electrolysis over a Sandwich-like NiCoN|NixP|NiCoN Microsheet Array Catalyst. ACS Energy Lett. 2020, 5, 2681-2689.
34.Lv, Q.; Han, J.; Tan, X.; Wang, W.; Cao, L.; Dong, B., Featherlike NiCoP Holey Nanoarrys for Efficient and Stable Seawater Splitting. ACS Appl. Energy Mater. 2019, 2, 3910-3917.
35.Dresp, S.; Dionigi, F.; Klingenhof, M.; Merzdorf, T.; Schmies, H.; Drnec, J.; Poulain, A.; Strasser, P., Molecular Understanding of the Impact of Saline Contaminants and Alkaline pH on NiFe Layered Double Hydroxide Oxygen Evolution Catalysts. ACS Catal. 2021, 11, 6800-6809.
36.Kirk, D. W.; Ledas, A. E., Precipitate formation during sea water electrolysis. Int. J. Hydrog. Energy 1982, 7, 925-932.
37.Dionigi, F.; Reier, T.; Pawolek, Z.; Gliech, M.; Strasser, P., Design Criteria, Operating Conditions, and Nickel–Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis. ChemSusChem 2016, 9, 962-972.
38.Vos, J. G.; Wezendonk, T. A.; Jeremiasse, A. W.; Koper, M. T. M., MnOx/IrOx as Selective Oxygen Evolution Electrocatalyst in Acidic Chloride Solution. J. Am. Chem. Soc. 2018, 140, 10270-10281.
39.Obata, K.; Takanabe, K., A Permselective CeOx Coating To Improve the Stability of Oxygen Evolution Electrocatalysts. Angew. Chem. Int. Ed. 2018, 57, 1616-1620.
40.Cui, B.; Hu, Z.; Liu, C.; Liu, S.; Chen, F.; Hu, S.; Zhang, J.; Zhou, W.; Deng, Y.; Qin, Z.; Wu, Z.; Chen, Y.; Cui, L.; Hu, W., Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149-1155.
41.Kuang, Y.; Kenney, M. J.; Meng, Y.; Hung, W. H.; Liu, Y.; Huang, J. E.; Prasanna, R.; Li, P.; Li, Y.; Wang, L.; Lin, M. C.; McGehee, M. D.; Sun, X.; Dai, H., Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 6624-6629.
42.Wu, L.; Yu, L.; Zhu, Q.; McElhenny, B.; Zhang, F.; Wu, C.; Xing, X.; Bao, J.; Chen, S.; Ren, Z., Boron-modified cobalt iron layered double hydroxides for high efficiency seawater oxidation. Nano Energy 2021, 83, 105838.
43.Gupta, S.; Forster, M.; Yadav, A.; Cowan, A. J.; Patel, N.; Patel, M., Highly Efficient and Selective Metal Oxy-Boride Electrocatalysts for Oxygen Evolution from Alkali and Saline Solutions. ACS Appl. Energy Mater. 2020, 3, 7619-7628.
44.Song, H. J.; Yoon, H.; Ju, B.; Lee, D.-Y.; Kim, D.-W., Electrocatalytic Selective Oxygen Evolution of Carbon-Coated Na2Co1–xFexP2O7 Nanoparticles for Alkaline Seawater Electrolysis. ACS Catal. 2020, 10, 702-709.
45.You, B.; Jiang, N.; Sheng, M.; Bhushan, M. W.; Sun, Y., Hierarchically Porous Urchin-Like Ni2P Superstructures Supported on Nickel Foam as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catal. 2016, 6, 714-721.
46.Jung, S.; McCrory, C. C. L.; Ferrer, I. M.; Peters, J. C.; Jaramillo, T. F., Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. J. Mater. Chem. A 2016, 4, 3068-3076.
47.Teng, X.; Wang, J.; Ji, L.; Lv, Y.; Chen, Z., Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting. Nanoscale 2018, 10, 9276-9285.
48.Li, Y.; Huang, B.; Sun, Y.; Luo, M.; Yang, Y.; Qin, Y.; Wang, L.; Li, C.; Lv, F.; Zhang, W.; Guo, S., Multimetal Borides Nanochains as Efficient Electrocatalysts for Overall Water Splitting. Small 2019, 15, 1804212.
49.Han, N.; Zhao, F.; Li, Y., Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation. J. Mater. Chem. A 2015, 3, 16348-16353.
50.Gao, T.; Jin, Z.; Liao, M.; Xiao, J.; Yuan, H.; Xiao, D., A trimetallic V–Co–Fe oxide nanoparticle as an efficient and stable electrocatalyst for oxygen evolution reaction. J. Mater. Chem. A 2015, 3, 17763-17770.
51.Yang, Y.; Lin, Z.; Gao, S.; Su, J.; Lun, Z.; Xia, G.; Chen, J.; Zhang, R.; Chen, Q., Tuning Electronic Structures of Nonprecious Ternary Alloys Encapsulated in Graphene Layers for Optimizing Overall Water Splitting Activity. ACS Catal. 2017, 7, 469-479.
52.Lu, Z.; Wang, H.; Kong, D.; Yan, K.; Hsu, P.-C.; Zheng, G.; Yao, H.; Liang, Z.; Sun, X.; Cui, Y., Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 2014, 5, 4345.
53.Feng, C.; Faheem, M. B.; Fu, J.; Xiao, Y.; Li, C.; Li, Y., Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catal. 2020, 10, 4019-4047.
54.Sun, Z.; Cao, X.; Tian, M.; Zeng, K.; Jiang, Y.; Rummeli, M. H.; Strasser, P.; Yang, R., Synergized Multimetal Oxides with Amorphous/Crystalline Heterostructure as Efficient Electrocatalysts for Lithium–Oxygen Batteries. Adv. Energy Mater. 2021, 11, 2100110.
55.Bates, M. K.; Jia, Q.; Doan, H.; Liang, W.; Mukerjee, S., Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction. ACS Catal. 2016, 6, 155-161.
56.Dong, C.; Han, L.; Zhang, C.; Zhang, Z., Scalable Dealloying Route to Mesoporous Ternary CoNiFe Layered Double Hydroxides for Efficient Oxygen Evolution. ACS Sustainable Chem. Eng. 2018, 6, 16096-16104.
57.Wu, Z.; Wang, X.; Huang, J.; Gao, F., A Co-doped Ni–Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting. J. Mater. Chem. A 2018, 6, 167-178.
58.Pickrahn, K. L.; Park, S. W.; Gorlin, Y.; Lee, H.-B.-R.; Jaramillo, T. F.; Bent, S. F., Active MnOx Electrocatalysts Prepared by Atomic Layer Deposition for Oxygen Evolution and Oxygen Reduction Reactions. Adv. Energy Mater. 2012, 2, 1269-1277.
59.Mondschein, J. S.; Callejas, J. F.; Read, C. G.; Chen, J. Y. C.; Holder, C. F.; Badding, C. K.; Schaak, R. E., Crystalline Cobalt Oxide Films for Sustained Electrocatalytic Oxygen Evolution under Strongly Acidic Conditions. Chem. Mater. 2017, 29, 950-957.
60.Xie, R.; Hu, X.; Shi, Y.; Nie, Z.; Zhang, N.; Traversa, E.; Yu, Y.; Yang, N., Enhanced Oxygen Evolution Activity of CoO–La0.7Sr0.3MnO3−δ Heterostructured Thin Film. ACS Appl. Energy Mater. 2020, 3, 7988-7996.
61.Noori, Y. J.; Thomas, S.; Ramadan, S.; Smith, D. E.; Greenacre, V. K.; Abdelazim, N.; Han, Y.; Beanland, R.; Hector, A. L.; Klein, N.; Reid, G.; Bartlett, P. N.; Kees de Groot, C. H., Large-Area Electrodeposition of Few-Layer MoS2 on Graphene for 2D Material Heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 49786-49794.
62.Zhang, W.; Wu, Y.; Qi, J.; Chen, M.; Cao, R., A Thin NiFe Hydroxide Film Formed by Stepwise Electrodeposition Strategy with Significantly Improved Catalytic Water Oxidation Efficiency. Adv. Energy Mater. 2017, 7, 1602547.
63.Smith, R. D.; Prévot, M. S.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P., Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 2013, 135, 11580-6.
64.Lu, X.; Zhao, C., Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.
65.Akamatsu, K.; Nakano, S.-i.; Kimura, K.; Takashima, Y.; Tsuruoka, T.; Nawafune, H.; Sato, Y.; Murai, J.; Yanagimoto, H., Controlling Interfacial Ion-Transport Kinetics Using Polyelectrolyte Membranes for Additive- and Effluent-free, High-Performance Electrodeposition. ACS Appl. Mater. Interfaces 2021, 13, 13896-13906.
66.Gu, J.; Hsu, C.-S.; Bai, L.; Chen, H. M.; Hu, X., Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091-1094.
67.Kumar, N.; Naveen, K.; Kumar, M.; Nagaiah, T. C.; Sakla, R.; Ghosh, A.; Siruguri, V.; Sadhukhan, S.; Kanungo, S.; Paul, A. K., Multifunctionality Exploration of Ca2FeRuO6: An Efficient Trifunctional Electrocatalyst toward OER/ORR/HER and Photocatalyst for Water Splitting. ACS Appl. Energy Mater. 2021, 4, 1323-1334.
68.Zhou, Z.; Zhang, Y.; Wang, Z.; Wei, W.; Tang, W.; Shi, J.; Xiong, R., Electronic structure studies of the spinel CoFe2O4 by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2008, 254, 6972-6975.
69.Dong, R.; Du, H.; Sun, Y.; Huang, K.; Li, W.; Geng, B., Selective Reduction–Oxidation Strategy to the Conductivity-Enhancing Ag-Decorated Co-Based 2D Hydroxides as Efficient Electrocatalyst in Oxygen Evolution Reaction. ACS Sustainable Chem. Eng. 2018, 6, 13420-13426.
70.Huang, Y.-C.; Wu, S.-H.; Hsiao, C.-H.; Lee, A.-T.; Huang, M. H., Mild Synthesis of Size-Tunable CeO2 Octahedra for Band Gap Variation. Chem. Mater. 2020, 32, 2631-2638.
71.Chen, J.; Zheng, F.; Zhang, S.-J.; Fisher, A.; Zhou, Y.; Wang, Z.; Li, Y.; Xu, B.-B.; Li, J.-T.; Sun, S.-G., Interfacial Interaction between FeOOH and Ni–Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis. ACS Catal. 2018, 8, 11342-11351.
72.Meyer, Q.; Zeng, Y.; Zhao, C., Electrochemical impedance spectroscopy of catalyst and carbon degradations in proton exchange membrane fuel cells. J. Power Sources 2019, 437, 226922.
73.Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W., Cobalt–Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. J. Am. Chem. Soc. 2015, 137, 3638-3648.
74.Abe, H.; Murakami, A.; Tsunekawa, S.; Okada, T.; Wakabayashi, T.; Yoshida, M.; Nakayama, M., Selective Catalyst for Oxygen Evolution in Neutral Brine Electrolysis: An Oxygen-Deficient Manganese Oxide Film. ACS Catal. 2021, 11, 6390-6397.
75.Abdallah, M.; Al-jahdaly, B.; Salem, M.; Fawzy, A.; Fattah, A., Pitting Corrosion of Nickel Alloys and Stainless Steel in Chloride Solutions and its Inhibition Using Some Inorganic Compounds. J. Mater. Environ. Sci. 2017, 8, 2599-2607.
76.Kuang, Y.; Kenney, M. J.; Meng, Y.; Hung, W.-H.; Liu, Y.; Huang, J. E.; Prasanna, R.; Li, P.; Li, Y.; Wang, L.; Lin, M.-C.; McGehee, M. D.; Sun, X.; Dai, H., Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl Acad. Sci. USA 2019, 116, 6624.