跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/01/30 12:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳文泰
研究生(外文):Wen-Tai Chen
論文名稱:摻雜銀跟鈰至鐵錳氫氧化物薄膜應用於海水分解
論文名稱(外文):Sliver and Cerium-doped Iron Manganese Oxyhydroxide Film for Seawater Splitting
指導教授:陳軍互
指導教授(外文):Chen, Chun-hu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:82
中文關鍵詞:四元金屬水分解海水腐蝕選擇性氫氧化物薄膜
外文關鍵詞:quaternary metalwater splittingsea watercorrosionselectivityhydroxide film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於石化燃料會有大量的碳排放造成全球暖化,因此需尋找替代能源。在替代能源中,氫能以電解水的方式生成且不會產生任何含碳產物,以符合綠色環保的趨勢。然而,世界各國的淡水資源不足,需找尋其他水源替代。因海水佔有地球 96 % 以上的水資源,故以海水做為優先選擇。但在電解海水的過程中會面臨氯與氧的競爭反應以及腐蝕的問題,因此需開發出具抗腐蝕和對氧的高選擇性之薄膜催化劑。
本次研究利用酸性氧化還原沉積 (Acidic Redox-assisted Deposition, ARD) 實現薄膜的開發。透過鐵及錳所組成的鐵錳氫氧化物 (FMOH),且摻雜銀和鈰以降低電阻及增強催化活性,開發出四元金屬氫氧化物薄膜。並應用於 AEM 水分解系統,在三種環境中(1 M KOH、1 M KOH + 0.5 M NaCl 和1 M KOH + 海水) 進行比較,其水分解效率皆優異於 RuO2。
除此之外,利用鹼性鹽水模擬海水環境進行法拉第效率,以評估對氧的選擇性。從法拉第效率的結果中得知,對氧的選擇性高達 99 %,證實在水分解反應的過程中不被氯所干擾。電解模擬海水過程中發現 Ag 3 % Ce 7 % 摻雜之鐵錳氫氧化物薄膜具有抗腐蝕的特性,可做為保護層,防止底層的金屬基板不受腐蝕。
經由上述得知,在本研究中成功開發出四元金屬氫氧化物薄膜。其水分解效率優異於 RuO2 外,還克服海水中對氧的選擇性以及抗腐蝕性,而有利於氫能的發展。
Fossil fuels generate a large amount of carbon dioxide leading to global warming. It is necessary to find alternative energy sources. Hydrogen generated by electrolyzing water produces no carbon-containing products, which is considered as an ideal green source of energy. However, when all countries in the world have insufficient freshwater resource, using fresh water to yield hydrogen becomes challenging. Seawater, on the other hand, is an abundant choice for hydrogen production than freshwater. But chlorine evolution and corrosion are the key difficulty that significantly reduces the efficiency of energy conversion (from electricity to hydrogen). Therefore, it is necessary to develop a thin film catalyst with chloride corrosion resistance and high selectivity to the oxygen evolution reaction.
In this study, the thin film of FMOH was prepared using acidic redox-assisted deposition (ARD), which is composed of iron and manganese doped with silver and cerium. These thin film catalysts show reduce electrical resistance and enhance catalytic activity. Ag, Ce-doped FMOH shows better water decomposition efficiency as compared to RuO2 in conditions of 1 M KOH, 1 M KOH + 0.5 M NaCl and 1 M KOH + sea water, as well as in anion exchange embrace (AEM) devices. From the results of Faraday efficiency, the selectivity to oxygen is as high as 99%, which proves a weak impact of chlorine generation. It was found that the FMOH doped by Ag0 (3 %) and CeIV (7 %) has strong anti-corrosion properties and can serve as a protective layer to prevent the underlying metal substrate from being corroded.
Based on the above knowledge, a quaternary metal hydroxide film was successfully developed in this research. Its water splitting efficiency is superior to that of the precious metal ruthenium, and it also overcomes the selectivity to oxygen evolution reaction and corrosion resistance in seawater.
論文審定書 i
謝誌 ii
摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xii
第1章、 研究動機 1
1.1 研究動機 1
1.2 研究背景 3
1.2.1 水分解系統 3
1.2.2 海水分解 3
1.2.3 多元金屬催化劑的發展 4
1.2.4 薄膜製造技術 5
第2章、 實驗樣品合成及鑑定方法 6
2.1 實驗藥品 6
2.2 樣品製備 8
2.2.1 金基板的製備 8
2.2.2 金基板的清洗 8
2.2.3 FTO 導電玻璃的清洗 8
2.2.4 鎳泡沫的清潔 9
2.2.5 人造海水 (artificial seawater) 的配製 9
2.2.6 海水的前處理 9
2.2.7 合成鐵錳二元金屬薄膜催化劑 10
2.2.8 合成三元金屬薄膜催化劑 10
2.2.9 四元金屬薄膜的合成 11
2.2.10 CMOH / FMOH 的合成步驟 11
2.3 實驗儀器 12
2.3.1 高解析感應耦合電漿質譜分析儀 (Inductivcly Coupled Plasma-Mass Spectromemter, ICP-MS) 12
2.3.2 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 12
2.3.3 電化學分析 13
2.3.4 法拉第效率 14
2.3.5 AEM 水分解元件 15
第3章、 研究結果 16
3.1 摻雜金屬的選擇 16
3.2 四元金屬的摻雜比例 17
3.3 多元金屬表面鑑定 17
3.4 元素價態分析 18
3.5 元素的組成與分佈 22
3.6 四元金屬薄膜結構鑑定 23
3.7 水分解活性分析 25
3.8 電解液中鐵雜質對於催化劑的影響 27
3.9 氯離子對活性的影響 28
3.10 模擬海水環境中進行法拉第效率評估 29
3.11 應用於真實海水進行活性評估 31
3.12 Ag 3 % Ce 7 % 的穩定度測試 32
3.13 AEM 水分解系統應用 34
3.14 氯所產生的腐蝕問題 35
3.15 電解模擬海水後的外觀變化 36
3.16 CMOH 保護層的概念 38
3.16.1 保護層 TEM 拍攝 39
3.16.2 保護層的附著力改善測試 40
3.16.3 長時間電解後 LSV 活性比較 41
3.17 開發雙層多元金屬薄膜催化劑 43
3.17.1 CMOH / Ag 5 % / CMOH1/100 的合成 43
3.17.2 銀的摻雜量對於活性探討 44
3.17.3 SEM 電子顯微鏡鑑定雙層薄膜外觀 45
3.17.4 TEM 電子顯微鏡拍攝薄膜橫切面 46
3.17.5 與四元金屬活性比較 48
3.18 八元金屬薄膜的研究 49
3.18.1 八元金屬薄膜合成 49
3.18.2 ICP – MS 檢測元素組成 50
3.18.3 八元金屬的生長時間條件比較 51
3.18.4 二元金屬到八元金屬薄膜進行活性比較 52
第4章、 討論 53
4.1 四元金屬氫氧化物薄膜合成的困難 53
4.2 多元金屬氧化物薄膜的活性 53
4.3 海水對催化劑活性的影響 54
4.4 氯離子的腐蝕現象 54
4.5 保護層的保護機制推測 55
第5章、 結論 57
參考文獻 58
1.Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H. M., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337-365.
2.Najafi, L.; Bellani, S.; Oropesa-Nuñez, R.; Prato, M.; Martín-García, B.; Brescia, R.; Bonaccorso, F., Carbon Nanotube-Supported MoSe2 Holey Flake:Mo2C Ball Hybrids for Bifunctional pH-Universal Water Splitting. ACS Nano 2019, 13, 3162-3176.
3.Du, C.; Yang, L.; Yang, F.; Cheng, G.; Luo, W., Nest-like NiCoP for Highly Efficient Overall Water Splitting. ACS Catal. 2017, 7, 4131-4137.
4.Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P., Direct Electrolytic Splitting of Seawater: Opportunities and Challenges. ACS Energy Lett. 2019, 4, 933-942.
5.Zhang, T.; Du, J.; Xi, P.; Xu, C., Hybrids of Cobalt/Iron Phosphides Derived from Bimetal–Organic Frameworks as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2017, 9, 362-370.
6.Wang, H.; Lee, H.-W.; Deng, Y.; Lu, Z.; Hsu, P.-C.; Liu, Y.; Lin, D.; Cui, Y., Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.
7.Liu, K.; Zhang, C.; Sun, Y.; Zhang, G.; Shen, X.; Zou, F.; Zhang, H.; Wu, Z.; Wegener, E. C.; Taubert, C. J.; Miller, J. T.; Peng, Z.; Zhu, Y., High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction. ACS Nano 2018, 12, 158-167.
8.Wang, J.-G.; Hua, W.; Li, M.; Liu, H.; Shao, M.; Wei, B., Structurally Engineered Hyperbranched NiCoP Arrays with Superior Electrocatalytic Activities toward Highly Efficient Overall Water Splitting. ACS Appl. Mater. Interfaces 2018, 10, 41237-41245.
9.Burke, M. S.; Zou, S.; Enman, L. J.; Kellon, J. E.; Gabor, C. A.; Pledger, E.; Boettcher, S. W., Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media. J. Phys. Chem. Lett. 2015, 6, 3737-3742.
10.Ma, Y.; Liu, D.; Wu, H.; Li, M.; Ding, S.; Hall, A. S.; Xiao, C., Promoting Bifunctional Water Splitting by Modification of the Electronic Structure at the Interface of NiFe Layered Double Hydroxide and Ag. ACS Appl. Mater. Interfaces 2021, 13, 26055-26063.
11.Li, L.; Hu, Z.; Tao, L.; Xu, J.; Yu, J. C., Efficient Electronic Transport in Partially Disordered Co3O4 Nanosheets for Electrocatalytic Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2020, 3, 3071-3081.
12.Yu, J.; Cao, Q.; Li, Y.; Long, X.; Yang, S.; Clark, J. K.; Nakabayashi, M.; Shibata, N.; Delaunay, J.-J., Defect-Rich NiCeOx Electrocatalyst with Ultrahigh Stability and Low Overpotential for Water Oxidation. ACS Catal. 2019, 9, 1605-1611.
13.Liu, H.; He, Q.; Jiang, H.; Lin, Y.; Zhang, Y.; Habib, M.; Chen, S.; Song, L., Electronic Structure Reconfiguration toward Pyrite NiS2 via Engineered Heteroatom Defect Boosting Overall Water Splitting. ACS Nano 2017, 11, 11574-11583.
14.Ham, K.; Hong, S.; Kang, S.; Cho, K.; Lee, J., Extensive Active-Site Formation in Trirutile CoSb2O6 by Oxygen Vacancy for Oxygen Evolution Reaction in Anion Exchange Membrane Water Splitting. ACS Energy Lett. 2021, 6, 364-370.
15.藍文婕. 藍文婕(2014)。奈米結構之石墨烯-鈷錳金屬氧化物混成材料之合成及電化學催化應用。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/naumta. 國立中山大學, 高雄市, 2014.
16.Lan, W.-J.; Kuo, C.-C.; Chen, C.-H., Hierarchical nanostructures with unique Y-shaped interconnection networks in manganese substituted cobalt oxides: the enhancement effect on electrochemical sensing performance. Chem. Commun. 2013, 49, 3025-3027.
17.Kuo, C.-C.; Lan, W.-J.; Chen, C.-H., Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide. Nanoscale 2014, 6, 334-341.
18.Lan, W.-J.; Chen, C.-H., Hybridization of Graphene in 3D Complex Nanovoids: Synergistic Nanocomposites for Electrocatalytic Reduction of Hydrogen Peroxide. Electrochim. Acta 2015, 180, 1014-1022.
19.張仁懷(2018)。氧化還原反應法沉積非晶形鈷錳金屬氧化物薄膜於析氧反應上之應用。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/crtm3e. 國立中山大學, 高雄市, 2018.
20.楊長穎(2016)。大面積石墨烯-鈷錳氧化物薄膜在產氧反應上之應用。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/kahj59. 國立中山大學, 高雄市, 2016.
21.Jhang, R.-H.; Yang, C.-Y.; Shih, M.-C.; Ho, J.-Q.; Tsai, Y.-T.; Chen, C.-H., Redox-assisted multicomponent deposition of ultrathin amorphous metal oxides on arbitrary substrates: highly durable cobalt manganese oxyhydroxide for efficient oxygen evolution. J. Mater. Chem. A 2018, 6, 17915-17928.
22.賴佩妏(2020)。液相氧化還原法沉積超薄多元金屬薄膜。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/chk9mt. 國立中山大學, 高雄市, 2020.
23.Shih, M.-C.; Jhang, R.-H.; Tsai, Y.-T.; Huang, C.-W.; Hung, Y.-J.; Liao, M.-Y.; Huang, J.; Chen, C.-H., Discontinuity-Enhanced Thin Film Electrocatalytic Oxygen Evolution. Small 2019, 15, 1903363.
24.施銘奇(2019)。合成多元金屬氧化物薄膜與不連續鈷錳氧化物薄膜提升電催化析氧反應之效率。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/zh8w5d. 國立中山大學, 高雄市, 2019.
25.Tong, W.; Forster, M.; Dionigi, F.; Dresp, S.; Sadeghi Erami, R.; Strasser, P.; Cowan, A. J.; Farràs, P., Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367-377.
26.Xu, D.; Stevens, M. B.; Cosby, M. R.; Oener, S. Z.; Smith, A. M.; Enman, L. J.; Ayers, K. E.; Capuano, C. B.; Renner, J. N.; Danilovic, N.; Li, Y.; Wang, H.; Zhang, Q.; Boettcher, S. W., Earth-Abundant Oxygen Electrocatalysts for Alkaline Anion-Exchange-Membrane Water Electrolysis: Effects of Catalyst Conductivity and Comparison with Performance in Three-Electrode Cells. ACS Catal. 2019, 9, 7-15.
27.Ambrosi, A.; Pumera, M., Multimaterial 3D-Printed Water Electrolyzer with Earth-Abundant Electrodeposited Catalysts. ACS Sustainable Chem. Eng. 2018, 6, 16968-16975.
28.Peng, Y.; Jiang, K.; Hill, W.; Lu, Z.; Yao, H.; Wang, H., Large-Scale, Low-Cost, and High-Efficiency Water-Splitting System for Clean H2 Generation. ACS Appl. Mater. Interfaces 2019, 11, 3971-3977.
29.Yu, L.; Zhu, Q.; Song, S.; McElhenny, B.; Wang, D.; Wu, C.; Qin, Z.; Bao, J.; Yu, Y.; Chen, S.; Ren, Z., Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.
30.Leng, Y.; Chen, G.; Mendoza, A. J.; Tighe, T. B.; Hickner, M. A.; Wang, C.-Y., Solid-State Water Electrolysis with an Alkaline Membrane. J. Am. Chem. Soc. 2012, 134, 9054-9057.
31.Li, M.; Xiong, Y.; Liu, X.; Bo, X.; Zhang, Y.; Han, C.; Guo, L., Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale 2015, 7, 8920-8930.
32.Gupta, S.; Zhao, S.; Wang, X. X.; Hwang, S.; Karakalos, S.; Devaguptapu, S. V.; Mukherjee, S.; Su, D.; Xu, H.; Wu, G., Quaternary FeCoNiMn-Based Nanocarbon Electrocatalysts for Bifunctional Oxygen Reduction and Evolution: Promotional Role of Mn Doping in Stabilizing Carbon. ACS Catal. 2017, 7, 8386-8393.
33.Yu, L.; Wu, L.; Song, S.; McElhenny, B.; Zhang, F.; Chen, S.; Ren, Z., Hydrogen Generation from Seawater Electrolysis over a Sandwich-like NiCoN|NixP|NiCoN Microsheet Array Catalyst. ACS Energy Lett. 2020, 5, 2681-2689.
34.Lv, Q.; Han, J.; Tan, X.; Wang, W.; Cao, L.; Dong, B., Featherlike NiCoP Holey Nanoarrys for Efficient and Stable Seawater Splitting. ACS Appl. Energy Mater. 2019, 2, 3910-3917.
35.Dresp, S.; Dionigi, F.; Klingenhof, M.; Merzdorf, T.; Schmies, H.; Drnec, J.; Poulain, A.; Strasser, P., Molecular Understanding of the Impact of Saline Contaminants and Alkaline pH on NiFe Layered Double Hydroxide Oxygen Evolution Catalysts. ACS Catal. 2021, 11, 6800-6809.
36.Kirk, D. W.; Ledas, A. E., Precipitate formation during sea water electrolysis. Int. J. Hydrog. Energy 1982, 7, 925-932.
37.Dionigi, F.; Reier, T.; Pawolek, Z.; Gliech, M.; Strasser, P., Design Criteria, Operating Conditions, and Nickel–Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis. ChemSusChem 2016, 9, 962-972.
38.Vos, J. G.; Wezendonk, T. A.; Jeremiasse, A. W.; Koper, M. T. M., MnOx/IrOx as Selective Oxygen Evolution Electrocatalyst in Acidic Chloride Solution. J. Am. Chem. Soc. 2018, 140, 10270-10281.
39.Obata, K.; Takanabe, K., A Permselective CeOx Coating To Improve the Stability of Oxygen Evolution Electrocatalysts. Angew. Chem. Int. Ed. 2018, 57, 1616-1620.
40.Cui, B.; Hu, Z.; Liu, C.; Liu, S.; Chen, F.; Hu, S.; Zhang, J.; Zhou, W.; Deng, Y.; Qin, Z.; Wu, Z.; Chen, Y.; Cui, L.; Hu, W., Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149-1155.
41.Kuang, Y.; Kenney, M. J.; Meng, Y.; Hung, W. H.; Liu, Y.; Huang, J. E.; Prasanna, R.; Li, P.; Li, Y.; Wang, L.; Lin, M. C.; McGehee, M. D.; Sun, X.; Dai, H., Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 6624-6629.
42.Wu, L.; Yu, L.; Zhu, Q.; McElhenny, B.; Zhang, F.; Wu, C.; Xing, X.; Bao, J.; Chen, S.; Ren, Z., Boron-modified cobalt iron layered double hydroxides for high efficiency seawater oxidation. Nano Energy 2021, 83, 105838.
43.Gupta, S.; Forster, M.; Yadav, A.; Cowan, A. J.; Patel, N.; Patel, M., Highly Efficient and Selective Metal Oxy-Boride Electrocatalysts for Oxygen Evolution from Alkali and Saline Solutions. ACS Appl. Energy Mater. 2020, 3, 7619-7628.
44.Song, H. J.; Yoon, H.; Ju, B.; Lee, D.-Y.; Kim, D.-W., Electrocatalytic Selective Oxygen Evolution of Carbon-Coated Na2Co1–xFexP2O7 Nanoparticles for Alkaline Seawater Electrolysis. ACS Catal. 2020, 10, 702-709.
45.You, B.; Jiang, N.; Sheng, M.; Bhushan, M. W.; Sun, Y., Hierarchically Porous Urchin-Like Ni2P Superstructures Supported on Nickel Foam as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catal. 2016, 6, 714-721.
46.Jung, S.; McCrory, C. C. L.; Ferrer, I. M.; Peters, J. C.; Jaramillo, T. F., Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. J. Mater. Chem. A 2016, 4, 3068-3076.
47.Teng, X.; Wang, J.; Ji, L.; Lv, Y.; Chen, Z., Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting. Nanoscale 2018, 10, 9276-9285.
48.Li, Y.; Huang, B.; Sun, Y.; Luo, M.; Yang, Y.; Qin, Y.; Wang, L.; Li, C.; Lv, F.; Zhang, W.; Guo, S., Multimetal Borides Nanochains as Efficient Electrocatalysts for Overall Water Splitting. Small 2019, 15, 1804212.
49.Han, N.; Zhao, F.; Li, Y., Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation. J. Mater. Chem. A 2015, 3, 16348-16353.
50.Gao, T.; Jin, Z.; Liao, M.; Xiao, J.; Yuan, H.; Xiao, D., A trimetallic V–Co–Fe oxide nanoparticle as an efficient and stable electrocatalyst for oxygen evolution reaction. J. Mater. Chem. A 2015, 3, 17763-17770.
51.Yang, Y.; Lin, Z.; Gao, S.; Su, J.; Lun, Z.; Xia, G.; Chen, J.; Zhang, R.; Chen, Q., Tuning Electronic Structures of Nonprecious Ternary Alloys Encapsulated in Graphene Layers for Optimizing Overall Water Splitting Activity. ACS Catal. 2017, 7, 469-479.
52.Lu, Z.; Wang, H.; Kong, D.; Yan, K.; Hsu, P.-C.; Zheng, G.; Yao, H.; Liang, Z.; Sun, X.; Cui, Y., Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 2014, 5, 4345.
53.Feng, C.; Faheem, M. B.; Fu, J.; Xiao, Y.; Li, C.; Li, Y., Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives. ACS Catal. 2020, 10, 4019-4047.
54.Sun, Z.; Cao, X.; Tian, M.; Zeng, K.; Jiang, Y.; Rummeli, M. H.; Strasser, P.; Yang, R., Synergized Multimetal Oxides with Amorphous/Crystalline Heterostructure as Efficient Electrocatalysts for Lithium–Oxygen Batteries. Adv. Energy Mater. 2021, 11, 2100110.
55.Bates, M. K.; Jia, Q.; Doan, H.; Liang, W.; Mukerjee, S., Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction. ACS Catal. 2016, 6, 155-161.
56.Dong, C.; Han, L.; Zhang, C.; Zhang, Z., Scalable Dealloying Route to Mesoporous Ternary CoNiFe Layered Double Hydroxides for Efficient Oxygen Evolution. ACS Sustainable Chem. Eng. 2018, 6, 16096-16104.
57.Wu, Z.; Wang, X.; Huang, J.; Gao, F., A Co-doped Ni–Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting. J. Mater. Chem. A 2018, 6, 167-178.
58.Pickrahn, K. L.; Park, S. W.; Gorlin, Y.; Lee, H.-B.-R.; Jaramillo, T. F.; Bent, S. F., Active MnOx Electrocatalysts Prepared by Atomic Layer Deposition for Oxygen Evolution and Oxygen Reduction Reactions. Adv. Energy Mater. 2012, 2, 1269-1277.
59.Mondschein, J. S.; Callejas, J. F.; Read, C. G.; Chen, J. Y. C.; Holder, C. F.; Badding, C. K.; Schaak, R. E., Crystalline Cobalt Oxide Films for Sustained Electrocatalytic Oxygen Evolution under Strongly Acidic Conditions. Chem. Mater. 2017, 29, 950-957.
60.Xie, R.; Hu, X.; Shi, Y.; Nie, Z.; Zhang, N.; Traversa, E.; Yu, Y.; Yang, N., Enhanced Oxygen Evolution Activity of CoO–La0.7Sr0.3MnO3−δ Heterostructured Thin Film. ACS Appl. Energy Mater. 2020, 3, 7988-7996.
61.Noori, Y. J.; Thomas, S.; Ramadan, S.; Smith, D. E.; Greenacre, V. K.; Abdelazim, N.; Han, Y.; Beanland, R.; Hector, A. L.; Klein, N.; Reid, G.; Bartlett, P. N.; Kees de Groot, C. H., Large-Area Electrodeposition of Few-Layer MoS2 on Graphene for 2D Material Heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 49786-49794.
62.Zhang, W.; Wu, Y.; Qi, J.; Chen, M.; Cao, R., A Thin NiFe Hydroxide Film Formed by Stepwise Electrodeposition Strategy with Significantly Improved Catalytic Water Oxidation Efficiency. Adv. Energy Mater. 2017, 7, 1602547.
63.Smith, R. D.; Prévot, M. S.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P., Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 2013, 135, 11580-6.
64.Lu, X.; Zhao, C., Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.
65.Akamatsu, K.; Nakano, S.-i.; Kimura, K.; Takashima, Y.; Tsuruoka, T.; Nawafune, H.; Sato, Y.; Murai, J.; Yanagimoto, H., Controlling Interfacial Ion-Transport Kinetics Using Polyelectrolyte Membranes for Additive- and Effluent-free, High-Performance Electrodeposition. ACS Appl. Mater. Interfaces 2021, 13, 13896-13906.
66.Gu, J.; Hsu, C.-S.; Bai, L.; Chen, H. M.; Hu, X., Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091-1094.
67.Kumar, N.; Naveen, K.; Kumar, M.; Nagaiah, T. C.; Sakla, R.; Ghosh, A.; Siruguri, V.; Sadhukhan, S.; Kanungo, S.; Paul, A. K., Multifunctionality Exploration of Ca2FeRuO6: An Efficient Trifunctional Electrocatalyst toward OER/ORR/HER and Photocatalyst for Water Splitting. ACS Appl. Energy Mater. 2021, 4, 1323-1334.
68.Zhou, Z.; Zhang, Y.; Wang, Z.; Wei, W.; Tang, W.; Shi, J.; Xiong, R., Electronic structure studies of the spinel CoFe2O4 by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2008, 254, 6972-6975.
69.Dong, R.; Du, H.; Sun, Y.; Huang, K.; Li, W.; Geng, B., Selective Reduction–Oxidation Strategy to the Conductivity-Enhancing Ag-Decorated Co-Based 2D Hydroxides as Efficient Electrocatalyst in Oxygen Evolution Reaction. ACS Sustainable Chem. Eng. 2018, 6, 13420-13426.
70.Huang, Y.-C.; Wu, S.-H.; Hsiao, C.-H.; Lee, A.-T.; Huang, M. H., Mild Synthesis of Size-Tunable CeO2 Octahedra for Band Gap Variation. Chem. Mater. 2020, 32, 2631-2638.
71.Chen, J.; Zheng, F.; Zhang, S.-J.; Fisher, A.; Zhou, Y.; Wang, Z.; Li, Y.; Xu, B.-B.; Li, J.-T.; Sun, S.-G., Interfacial Interaction between FeOOH and Ni–Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis. ACS Catal. 2018, 8, 11342-11351.
72.Meyer, Q.; Zeng, Y.; Zhao, C., Electrochemical impedance spectroscopy of catalyst and carbon degradations in proton exchange membrane fuel cells. J. Power Sources 2019, 437, 226922.
73.Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W., Cobalt–Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. J. Am. Chem. Soc. 2015, 137, 3638-3648.
74.Abe, H.; Murakami, A.; Tsunekawa, S.; Okada, T.; Wakabayashi, T.; Yoshida, M.; Nakayama, M., Selective Catalyst for Oxygen Evolution in Neutral Brine Electrolysis: An Oxygen-Deficient Manganese Oxide Film. ACS Catal. 2021, 11, 6390-6397.
75.Abdallah, M.; Al-jahdaly, B.; Salem, M.; Fawzy, A.; Fattah, A., Pitting Corrosion of Nickel Alloys and Stainless Steel in Chloride Solutions and its Inhibition Using Some Inorganic Compounds. J. Mater. Environ. Sci. 2017, 8, 2599-2607.
76.Kuang, Y.; Kenney, M. J.; Meng, Y.; Hung, W.-H.; Liu, Y.; Huang, J. E.; Prasanna, R.; Li, P.; Li, Y.; Wang, L.; Lin, M.-C.; McGehee, M. D.; Sun, X.; Dai, H., Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl Acad. Sci. USA 2019, 116, 6624.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊