跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/03 14:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏壬
研究生(外文):Po-Jen Huang
論文名稱:以捲送製程生產鈷錳氫氧化物達到高電流水分解
論文名稱(外文):Roll-to-Roll Synthesis of Cobalt Manganese Oxyhydroxide for High Current Electrolysis
指導教授:陳軍互
指導教授(外文):Chen, Chun-hu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:88
中文關鍵詞:AEM水分解系統大電流捲送製程大規模穩定度電解水
外文關鍵詞:AEM water splitting systemhigh currentcoiled productionlarge-scalestabilityelectrolysis of water
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
陰離子交換膜系統 (Anion Exchange Membrane, AEM) 是一項具有潛力的技術,可以透過電解水產生氫氣。相較於需要貴金屬粉體催化劑 (RuO2, Pt)的陽離子交換膜系統 (Proton Exchange Membrane, PEM),可以使用地球上豐富的過渡金屬作為陽極催化劑,且本實驗室發展出一套液相氧化還原沉積法,沉積出非晶相鈷錳氫氧化物薄膜 (Cobalt Manganese Oxyhydroxide, CMOH)。此方式可以快速、簡單在任何基板均勻沉積具有良好析氧反應 (Oxygen Evolution Reaction, OER)及附著力的薄膜催化劑,即可穩定應用於高電流AEM系統當中,並大規模製作催化劑。
ARD具有簡單製作的優點,可透過捲送製程 (Roll-to-Roll) 大量製作催化劑,其具有降低製造成本、快速、連續的優點。本研究經由捲送製程得到5公尺的CMOH進行表面觀察和電化學測試,發現在不同位置挑選的催化劑表面結構都是相同的,因此成功大量製作均勻的CMOH。經過電化學測試後,不同位置的CMOH也具有相同的催化效果。透過此方式可以普及水分解系統,並逐漸取代石化燃料。
為了工業應用必須提高AEM系統的產氫速度,因此需要提高系統電流。在高電流環境中,會有大量氣泡產生導致粉體催化劑脫落,因此需要高附著力的催化劑應付高電流環境。將CMOH附著力強的優點應用在高電流AEM系統當中,可在1安培的條件下穩定運作3小時,系統最高可以達到5安培的電流密度,依然可以穩定運作80分鐘。
Hydrogen production via water splitting method is achieved using anion exchange membrane (AEM) and proton exchange membrane system (PEM). Compared to AEM, PEM systems have disadvantages of using precious metal catalysts like RuO2, Pt, due to the acidic operation conditions. The Anion Exchange membrane (AEM) system can use abundant metal oxides as catalyst materials, which make the catalyst price cheaper and has a wide development direction.
To increase the rate of hydrogen production, the current density of AEM systems must be increased. However, a large amount of hydrogen and oxygen bubbles will be generated in high-current water splitting, and it will cause peeling off problems of powder form catalysts. Therefore, a catalyst with high adhesion to electrodes is required to achieve the long-term and high current operation in water splitting.
In our previous work, we developed liquid-phase redox deposition methods to quickly and easily deposit an uniform amorphous cobalt manganese oxide hydroxide (CMOH) film on substrates, and has a good oxygen evolution reaction (OER) electrocatalytic activity and adhesion. Herein, we conducted roll-to-toll approach to manufacture CMOH AEM devices, which can operate stably for 3 hours under the condition of 1 A current, and the system can reach up to 5 A (can stable up to 80 min). The CMOH was proved to be mass production possible through a roll-to-roll manufacturing realizing 5 meter length of CMOH catalyst on Ni foam. The surface structure and electrochemical performance of the entire roll-to-roll CMOH are nearly the same.
論文審定書 i
致謝 ii
摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 研究動機 1
1.1 研究動機 1
1.2 研究背景 1
1.2.1 產氫方式 2
1.2.2 電解水產氫方式 3
1.2.4 金屬氧化物催化劑 6
1.2.3 捲送製程方式 7
1.2.5 薄膜催化劑和粒子催化劑 8
1.2.6 析氧反應 (Oxygen Evolution Reaction, OER) 10
第二章、實驗樣品合成與鑑定方法 11
2.1 實驗藥品 11
2.2金屬氧化物沉積於基板 12
2.2.1 Nickel foam 泡沫鎳清潔 12
2.2.2 鈷錳氧化物薄膜合成 12
2.3 電化學測量 13
2.4 陰離子交換膜 (Anion Exchange Membrane, AEM)元件測試 13
2.5 排水集氣法測量氫氣產量 14
2.6 元件效率計算方式 14
2.7 捲送製程大規模製作元件 15
2.8 電化學活性表面積測試 16
2.9 HER催化劑製作 (CM) 16
第三章、實驗結果 17
3.1 捲送製成大規模製作CMOH測試 17
3.2 CMOH薄膜的鑑定 20
3.2.1表面鑑定 20
3.2.2 CMOH 薄膜之鈷、錳氧化價態鑑定 25
3.4 HER催化劑 CM 鑑定 30
3.5不同濃度 CMOH 催化活性 35
3.5.1 不同濃度CMOH在電化學和AEM系統催化活性 35
3.5.2活性位點和電阻測試 38
3.6 黏著劑對催化劑的影響 40
3.7 陰離子交換膜系統穩定度測試 42
3.7.1 在電流密度1安培下進行測試 42
3.7.2 在電流密度3安培下進行測試 44
3.7.3 測試陰離子交換膜系統電流極限 47
3.8 提升溫度增加AEM系統效率 50
3.9 流速對陰離子交換膜系統的影響 52
第四章、討論 55
4.1 薄膜生長液濃度影響 55
4.2 各濃度CMOH之活性優劣 55
4.3 氣泡對陰離子交換膜系統的影響 58
4.4 AEM系統大電流使用 59
4.5 提升AEM陰離子交換膜系統的效率 61
4.7效率量測方式 61
第五章 結論 63
參考文獻 64
附錄 71
第一章 實驗步驟 71
1.1 鐵錳氧化物 (Iron and manganese oxide hydroxide, FMOH)薄膜 71
1.2 銀鐵錳氧化物 (Sliver, Iron and manganese oxide hydroxide)薄膜 71
1.3 鈰鐵錳氧化物 (Cerium, Iron and manganese oxide hydroxide) 薄膜 72
1.4鈰銀鐵錳氧化物 (Cerium, Sliver, Iron and manganese oxide hydroxide)薄膜 73
第二章 實驗數據 74
2.1 摻雜多元金金屬以提升陰離子交換膜系統效率 74



圖目錄
圖 1-1 (a) 鹼性水分解, (b) AEM水分解, (c) PEM水分解, (d) SOEC水分解42 6
圖 2-1 AEM系統示意圖1 14
圖 2-2 捲送製程裝置示意圖 15
圖3-1 利用此捲送製程裝置進行大規模CMOH製作 17
圖3-2 透過捲送製程沉積5公尺的CMOH, 下方 (1)-(4) SEM圖為選擇5公尺樣品中的(1)-(4)位置進行外觀鑑定 18
圖3-3 在1M KOH 下進行三電極系統測試,(a) 選取圖3-2中的位置 (1)~(4) 進行活性測試,得到相近的催化活性, (b)對製程中有無震盪的樣品進行量測 19
圖 3-4 (a) 泡沫鎳, (b) CMOH-1x之SEM圖 22
22
圖 3-5 使用EDX-mapping進行元素分布的觀察,來觀察元素是否均勻分布 (a) CMOH-1x外觀;(b)EDX鈷元素分布圖;(c) EDX 錳元素分布圖 23
圖3-6 使用不同濃度的生長液進行CMOH沉積,對不同濃度CMOH進行SEM拍攝觀察表面型態 (a)泡沫鎳和, (b)CMOH -3x, (c)CMOH-5x, 和 (d)CMOH-7x , CMOH-1x在圖3-4 24
圖 3-7 CMOH-1x XPS光譜分析(a) Co 2p, (b) Mn 2p, (c) O 1s 26
圖 3-8 CMOH-3x之XPS光譜分析 (a) Co 2p, (b) Mn 2p, (c) O 1s 27
圖 3-9 CMOH-5x之XPS光譜分析(a) Co 2p, (b) Mn 2p, (c) O 1s 28
圖 3-10 CMOH-7x之 XPS光譜分析 (a) Co 2p, (b) Mn 2p, (c) O 1s 29
圖3-11 (a) CMOH外觀為金黃色, 透過 1000°C 高溫並在氫氣環境下還原為, (b) CM的外觀為金屬的銀灰色 32
圖3-13 CM之XANES鑑定,分別為 (a) 鈷, (b) 錳的氧化態鑑定;插圖為參考文獻 33
圖3-12 CM粉末進行XRD測量,可觀察到鈷、錳金屬的訊號 33
圖3-14 CM之EDX鑑定,確認是否有Co, Mn金屬 34
圖3-15 CM之XPS鑑定, Mn 2p 34
圖3-16在1 M KOH 25°C (a) 三電極系統中進行各濃度CMOH活性測量, (b) AEM系統中進行各濃度CMOH活性測量 36
圖3-17 0.1 M KOH 於25°C下 (a) 進行活性位點的測量,使用不同掃速的CV進行測量,並固定電極距離; (b) 進行CMOH阻抗結果 39
圖3-18 測試黏著劑對催化劑的影響 在1M KOH, 400 毫安培的條件下,(a)分別測試有無添加黏著劑的催化劑和CMOH的穩定度並在, (b) RDE的系統下對有無添加黏著劑的二氧化釕進行活性測試 41
圖3-19 在AEM系統當中使用1 M KOH 於25°C並在1安培中進行穩定度測試 (a) CMOH和二氧化釕的穩定度,(b), (c)為二氧化釕穩定度測試前後SEM圖 43
圖3-20 在AEM系統當中使用1 M KOH,在3 安培, 25°C下進行80分鐘穩定度測試 45
圖3-21 在AEM系統當中使用1 M KOH,在3安培, 25°C下進行80分鐘穩定度測試,(a) 測試前後鉑粉催化劑外觀和CMOH測試前;CMOH測試前後的SEM外觀觀察 (a)測試前, (b) 測試後 46
圖3-22 在AEM系統當中使用1 M KOH 25°C下進行不同電流密度的穩定度測試 (a)不同電流密度的測試結果,可以看到在5安培前系統可以穩定運作 (b), (c) CMOH在6安培電流密度測試前後的外觀,在測試後外觀轉變為黑色 48
圖3-23 經過6安培測試後的CMOH, 使用XRD鑑定 49
圖3-24 在AEM系統當中使用1 M KOH 進行升溫的效率測量,分別測試25-80°C,系統效率隨著溫度提升而增加 51
圖3-25 氣泡卡在泡沫鎳中的示意圖 53
圖3-26 在1M KOH, 25°C AEM系統中進行不同流速的試驗 54
圖 3-27 在1M KOH 25°C, 1安培下,測試穩定度並採用不同流速進行反應 54
圖4-1 薄膜厚度對電阻的影響示意圖 57
圖4-2 粉體催化劑和薄膜催化劑被氣泡影響 60
圖4-3 (a)標準曲線, (b) AEM系統量測氫氣產量 62
附錄圖2-1在1M KOH 25°C下AEM系統中測試,(a)鐵錳催化劑和,(b) 摻雜多元金屬的催化劑活性 75

表目錄
表2-1 不同濃度CMOH使用的莫耳數比 13
表3-1 ICP-MS檢測不同濃度CMOH的鈷和錳元素含量 21
表3-2 各濃度CMOH在 AEM系統中之能源轉換效率 37
表3-3 各濃度的CMOH之活性位點數值 38
表3-5 將圖3-22中CMOH不同溫度的LSV測量結果轉換為能源效率 51
表4-1 不同效率計算方式的結果 62
參考文獻
1.Liao, P.-C.; Jhang, R.-H.; Chiu, Y.-H.; Valinton, J. A. A.; Yeh, C.-H.; Ebajo, V. D.; Wang, C.-H.; Chen, C.-H., Rock Salt Oxide Hollow Spheres Achieving Durable Performance in Bifunctional Oxygen Energy Cells. ACS Appl. Energy Mater. 2021, 4, 3448-3459.
2.Maniyali, Y.; Almansoori, A.; Fowler, M.; Elkamel, A., Energy Hub Based on Nuclear Energy and Hydrogen Energy Storage. Ind. Eng. Chem. Res. 2013, 52, 7470-7481.
3.Angulo, A.; van der Linde, P.; Gardeniers, H.; Modestino, M.; Fernández Rivas, D., Influence of Bubbles on the Energy Conversion Efficiency of Electrochemical Reactors. Joule 2020, 4, 555-579.
4.Xu, D.; Stevens, M. B.; Cosby, M. R.; Oener, S. Z.; Smith, A. M.; Enman, L. J.; Ayers, K. E.; Capuano, C. B.; Renner, J. N.; Danilovic, N.; Li, Y.; Wang, H.; Zhang, Q.; Boettcher, S. W., Earth-Abundant Oxygen Electrocatalysts for Alkaline Anion-Exchange-Membrane Water Electrolysis: Effects of Catalyst Conductivity and Comparison with Performance in Three-Electrode Cells. ACS Catal. 2018, 9, 7-15.
5.Lan, W. J.; Kuo, C. C.; Chen, C. H., Hierarchical nanostructures with unique Y-shaped interconnection networks in manganese substituted cobalt oxides: the enhancement effect on electrochemical sensing performance. Chem. Commun. (Camb.) 2013, 49, 3025-7.
6.藍文婕(2014)。奈米結構之石墨烯-鈷錳金屬氧化物混成材料之合成及電化學催化應用。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/naumta. 國立中山大學, 高雄市, 2014.
7.楊長穎(2016)。大面積石墨烯-鈷錳氧化物薄膜在產氧反應上之應用。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/kahj59. 國立中山大學, 高雄市, 2016.
8.張仁懷(2018)。氧化還原反應法沉積非晶形鈷錳金屬氧化物薄膜於析氧反應上之應用。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/crtm3e
國立中山大學, 高雄市, 2018.
9.Jhang, R.-H.; Yang, C.-Y.; Shih, M.-C.; Ho, J.-Q.; Tsai, Y.-T.; Chen, C.-H., Redox-assisted multicomponent deposition of ultrathin amorphous metal oxides on arbitrary substrates: highly durable cobalt manganese oxyhydroxide for efficient oxygen evolution. J. Mater. Chem. A 2018, 6, 17915-17928.
10.施銘奇(2019)。合成多元金屬氧化物薄膜與不連續鈷錳氧化物薄膜提升電催化析氧反應之效率。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/zh8w5d. 國立中山大學, 高雄市, 2019.
11.Shih, M. C.; Jhang, R. H.; Tsai, Y. T.; Huang, C. W.; Hung, Y. J.; Liao, M. Y.; Huang, J.; Chen, C. H., Discontinuity-Enhanced Thin Film Electrocatalytic Oxygen Evolution. Small 2019, 15, e1903363.
12.賴佩妏(2020)。液相氧化還原法沉積超薄多元金屬薄膜。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/chk9mt. 國立中山大學, 高雄市, 2020.
13.Hsieh, P. Y.; Chiu, Y. H.; Lai, T. H.; Fang, M. J.; Wang, Y. T.; Hsu, Y. J., TiO2 Nanowire-Supported Sulfide Hybrid Photocatalysts for Durable Solar Hydrogen Production. ACS. Appl. Mater. Interfaces. 2019, 11, 3006-3015.
14.Li, J.; Li, D.; Gao, F.; Han, Y.; Yan, J.; Liu, S., Enabling Solar Hydrogen Production over Selenium: Surface State Passivation and Cocatalyst Decoration. ACS Sustain. Chem. Eng. 2021.
15.Yao, L.; Guijarro, N.; Boudoire, F.; Liu, Y.; Rahmanudin, A.; Wells, R. A.; Sekar, A.; Cho, H. H.; Yum, J. H.; Le Formal, F.; Sivula, K., Establishing Stability in Organic Semiconductor Photocathodes for Solar Hydrogen Production. J. Am. Chem. Soc. 2020, 142, 7795-7802.
16.Zhao, W.; Wang, S.; Feng, C.; Wu, H.; Zhang, L.; Zhang, J., Novel Cobalt-Doped Ni0.85Se Chalcogenides (Co xNi0.85- xSe) as High Active and Stable Electrocatalysts for Hydrogen Evolution Reaction in Electrolysis Water Splitting. ACS. Appl. Mater. Interfaces. 2018, 10, 40491-40499.
17.Bloor, L. G.; Molina, P. I.; Symes, M. D.; Cronin, L., Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ. J. Am. Chem. Soc. 2014, 136, 3304-11.
18.Chen, W.; Zhang, Y.; Chen, G.; Zhou, Y.; Xiang, X.; Ostrikov, K. K., Interface Coupling of Ni–Co Layered Double Hydroxide Nanowires and Cobalt-Based Zeolite Organic Frameworks for Efficient Overall Water Splitting. ACS Sustain. Chem. Eng. 2019, 7, 8255-8264.
19.Kim, J.; Kim, J.; Kim, H.; Ahn, S. H., Nanoporous Nickel Phosphide Cathode for a High-Performance Proton Exchange Membrane Water Electrolyzer. ACS. Appl. Mater. Interfaces. 2019, 11, 30774-30785.
20.Schröder, J.; Mints, V. A.; Bornet, A.; Berner, E.; Fathi Tovini, M.; Quinson, J.; Wiberg, G. K. H.; Bizzotto, F.; El-Sayed, H. A.; Arenz, M., The Gas Diffusion Electrode Setup as Straightforward Testing Device for Proton Exchange Membrane Water Electrolyzer Catalysts. JACS Au 2021, 1, 247-251.
21.Wang, L.; Zhou, Y.; Yang, Y.; Subramanian, A.; Kisslinger, K.; Zuo, X.; Chuang, Y.-C.; Yin, Y.; Nam, C.-Y.; Rafailovich, M. H., Suppression of Carbon Monoxide Poisoning in Proton Exchange Membrane Fuel Cells via Gold Nanoparticle/Titania Ultrathin Film Heterogeneous Catalysts. ACS Appl. Energy Mater. 2019, 2, 3479-3487.
22.Kou, T.; Wang, S.; Li, Y., Perspective on High-Rate Alkaline Water Splitting. ACS Mater. Lett. 2021, 3, 224-234.
23.Todoroki, N.; Wadayama, T., Heterolayered Ni-Fe Hydroxide/Oxide Nanostructures Generated on a Stainless-Steel Substrate for Efficient Alkaline Water Splitting. ACS. Appl. Mater. Interfaces. 2019, 11, 44161-44169.
24.You, B.; Sun, Y., Innovative Strategies for Electrocatalytic Water Splitting. Acc. Chem. Res. 2018, 51, 1571-1580.
25.Zhang, X.; Ye, L.; Li, H.; Chen, F.; Xie, K., Electrochemical Dehydrogenation of Ethane to Ethylene in a Solid Oxide Electrolyzer. ACS Catal. 2020, 10, 3505-3513.
26.Cho, A.; Ko, J.; Kim, B.-K.; Han, J. W., Electrocatalysts with Increased Activity for Coelectrolysis of Steam and Carbon Dioxide in Solid Oxide Electrolyzer Cells. ACS Catal. 2018, 9, 967-976.
27.Zheng, Y.; Wang, J.; Yu, B.; Zhang, W.; Chen, J.; Qiao, J.; Zhang, J., A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chem. Soc. Rev. 2017, 46, 1427-1463.
28.Cao, X.; Novitski, D.; Holdcroft, S., Visualization of Hydroxide Ion Formation upon Electrolytic Water Splitting in an Anion Exchange Membrane. ACS Mater. Lett. 2019, 1, 362-366.
29.Ham, K.; Hong, S.; Kang, S.; Cho, K.; Lee, J., Extensive Active-Site Formation in Trirutile CoSb2O6 by Oxygen Vacancy for Oxygen Evolution Reaction in Anion Exchange Membrane Water Splitting. ACS Energy Lett. 2021, 6, 364-370.
30.Wang, L.; Weissbach, T.; Reissner, R.; Ansar, A.; Gago, A. S.; Holdcroft, S.; Friedrich, K. A., High Performance Anion Exchange Membrane Electrolysis Using Plasma-Sprayed, Non-Precious-Metal Electrodes. ACS Appl. Energy Mater. 2019, 2, 7903-7912.
31.Dutta, A.; Samantara, A. K.; Dutta, S. K.; Jena, B. K.; Pradhan, N., Surface-Oxidized Dicobalt Phosphide Nanoneedles as a Nonprecious, Durable, and Efficient OER Catalyst. ACS Energy Lett. 2016, 1, 169-174.
32.Anantharaj, S.; Reddy, P. N.; Kundu, S., Core-Oxidized Amorphous Cobalt Phosphide Nanostructures: An Advanced and Highly Efficient Oxygen Evolution Catalyst. Inorg. Chem. 2017, 56, 1742-1756.
33.Karthick, K.; Anantharaj, S.; Ede, S. R.; Kundu, S., Nanosheets of Nickel Iron Hydroxy Carbonate Hydrate with Pronounced OER Activity under Alkaline and Near-Neutral Conditions. Inorg. Chem. 2019, 58, 1895-1904.
34.Zhang, Z.; Feng, C.; Li, X.; Liu, C.; Wang, D.; Si, R.; Yang, J.; Zhou, S.; Zeng, J., In-Situ Generated High-Valent Iron Single-Atom Catalyst for Efficient Oxygen Evolution. Nano. Lett. 2021, 21, 4795-4801.
35.Ruiz Esquius, J.; Algara-Siller, G.; Spanos, I.; Freakley, S. J.; Schlögl, R.; Hutchings, G. J., Preparation of Solid Solution and Layered IrOx–Ni(OH)2Oxygen Evolution Catalysts: Toward Optimizing Iridium Efficiency for OER. ACS Catal. 2020, 10, 14640-14648.
36.Song, F.; Busch, M. M.; Lassalle-Kaiser, B.; Hsu, C. S.; Petkucheva, E.; Bensimon, M.; Chen, H. M.; Corminboeuf, C.; Hu, X., An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction. ACS Cent Sci 2019, 5, 558-568.
37.Plate, P.; Hohn, C.; Bloeck, U.; Bogdanoff, P.; Fiechter, S.; Abdi, F. F.; van de Krol, R.; Bronneberg, A. C., On the Origin of the OER Activity of Ultrathin Manganese Oxide Films. ACS. Appl. Mater. Interfaces. 2021, 13, 2428-2436.
38.Song, F.; Hu, X., Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481-4.
39.Li, C.; Baek, J.-B., The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy 2021, 87.
40.Lee, W. H.; Han, M. H.; Lee, U.; Chae, K. H.; Kim, H.; Hwang, Y. J.; Min, B. K.; Choi, C. H.; Oh, H.-S., Oxygen Vacancies Induced NiFe-Hydroxide as a Scalable, Efficient, and Stable Electrode for Alkaline Overall Water Splitting. ACS Sustain. Chem. Eng. 2020, 8, 14071-14081.
41.Lee, J.; Jung, H.; Park, Y. S.; Woo, S.; Kwon, N.; Xing, Y.; Oh, S. H.; Choi, S. M.; Han, J. W.; Lim, B., Corrosion-engineered bimetallic oxide electrode as anode for high-efficiency anion exchange membrane water electrolyzer. Chem. Eng. J. 2021, 420.
42.Tong, W.; Forster, M.; Dionigi, F.; Dresp, S.; Sadeghi Erami, R.; Strasser, P.; Cowan, A. J.; Farràs, P., Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367-377.
43.McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F., Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977-87.
44.Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H., Co(3)O(4) nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-6.
45.Goswami, D.; Munera, J. C.; Pal, A.; Sadri, B.; Scarpetti, C.; Martinez, R. V., Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity. Nano. Lett. 2018, 18, 3616-3622.
46.Kellenberger, C. R.; Hess, S. C.; Schumacher, C. M.; Loepfe, M.; Nussbaumer, J. E.; Grass, R. N.; Stark, W. J., Roll-to-Roll Preparation of Mesoporous Membranes by Nanoparticle Template Removal. Ind. Eng. Chem. Res. 2014, 53, 9214-9220.
47.Oakes, L.; Hanken, T.; Carter, R.; Yates, W.; Pint, C. L., Roll-to-Roll Nanomanufacturing of Hybrid Nanostructures for Energy Storage Device Design. ACS. Appl. Mater. Interfaces. 2015, 7, 14201-10.
48.Kidambi, P. R.; Mariappan, D. D.; Dee, N. T.; Vyatskikh, A.; Zhang, S.; Karnik, R.; Hart, A. J., A Scalable Route to Nanoporous Large-Area Atomically Thin Graphene Membranes by Roll-to-Roll Chemical Vapor Deposition and Polymer Support Casting. ACS. Appl. Mater. Interfaces. 2018, 10, 10369-10378.
49.Devaguptapu, S. V.; Hwang, S.; Karakalos, S.; Zhao, S.; Gupta, S.; Su, D.; Xu, H.; Wu, G., Morphology Control of Carbon-Free Spinel NiCo2O4 Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media. ACS. Appl. Mater. Interfaces. 2017, 9, 44567-44578.
50.Lu, X.; Zhao, C., Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.
51.Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355.
52.Huang, Y.; Cheng, Y.; Zhang, J., A Review of High Density Solid Hydrogen Storage Materials by Pyrolysis for Promising Mobile Applications. Ind. Eng. Chem. Res. 2021, 60, 2737-2771.
53.Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N. A.; Li, Y.; Penner, R. M.; Schaak, R. E.; Weiss, P. S., Best Practices for Reporting Electrocatalytic Performance of Nanomaterials. ACS Nano 2018, 12, 9635-9638.
54.Spreitzer, D.; Schenk, J., Reduction of Iron Oxides with Hydrogen—A Review. Steel Res. Int. 2019, 90.
55.Sciortino, L.; Giannici, F.; Martorana, A.; Ruggirello, A. M.; Liveri, V. T.; Portale, G.; Casaletto, M. P.; Longo, A., Structural Characterization of Surfactant-Coated Bimetallic Cobalt/Nickel Nanoclusters by XPS, EXAFS, WAXS, and SAXS. J. Phys. Chem. C 2011, 115, 6360-6366.
56.Ling, C.; Shi, L.; Ouyang, Y.; Zeng, X. C.; Wang, J., Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting. Nano. Lett. 2017, 17, 5133-5139.
57.Qiu, B.; Han, A.; Jiang, D.; Wang, T.; Du, P., Cobalt Phosphide Nanowire Arrays on Conductive Substrate as an Efficient Bifunctional Catalyst for Overall Water Splitting. ACS Sustain. Chem. Eng. 2018, 7, 2360-2369.
58.Han, N.; Luo, S.; Deng, C.; Zhu, S.; Xu, Q.; Min, Y., Defect-Rich FeN0.023/Mo2C Heterostructure as a Highly Efficient Bifunctional Catalyst for Overall Water-Splitting. ACS. Appl. Mater. Interfaces. 2021, 13, 8306-8314.
59.Byrne, C.; Brennan, B.; McCoy, A. P.; Bogan, J.; Brady, A.; Hughes, G., In Situ XPS Chemical Analysis of MnSiO3 Copper Diffusion Barrier Layer Formation and Simultaneous Fabrication of Metal Oxide Semiconductor Electrical Test MOS Structures. ACS Appl. Mater. Interfaces 2016, 8, 2470-2477.
60.Mohandas, J. C.; Gnanamani, M. K.; Jacobs, G.; Ma, W.; Ji, Y.; Khalid, S.; Davis, B. H., Fischer–Tropsch Synthesis: Characterization and Reaction Testing of Cobalt Carbide. ACS Catal. 2011, 1, 1581-1588.
61.Manikandan, D.; Yadav, A. K.; Jha, S. N.; Bhattacharyya, D.; Boukhvalov, D. W.; Murugan, R., XANES, EXAFS, EPR, and First-Principles Modeling on Electronic Structure and Ferromagnetism in Mn Doped SnO2 Quantum Dots. J. Phys. Chem. C 2019, 123, 3067-3075.
62.Yu, L.; Zhu, Q.; Song, S.; McElhenny, B.; Wang, D.; Wu, C.; Qin, Z.; Bao, J.; Yu, Y.; Chen, S.; Ren, Z., Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.
63.Wang, Y.; Xie, C.; Zhang, Z.; Liu, D.; Chen, R.; Wang, S., In Situ Exfoliated, N-Doped, and Edge-Rich Ultrathin Layered Double Hydroxides Nanosheets for Oxygen Evolution Reaction. Adv. Funct. Mater. 2018, 28.
64.Yang, F.; Kim, M. J.; Brown, M.; Wiley, B. J., Alkaline Water Electrolysis at 25 A cm
−2
with a Microfibrous Flow‐through Electrode. Adv. Energy Mater. 2020, 10.
65.Razmjooei, F.; Morawietz, T.; Taghizadeh, E.; Hadjixenophontos, E.; Mues, L.; Gerle, M.; Wood, B. D.; Harms, C.; Gago, A. S.; Ansar, S. A.; Friedrich, K. A., Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer. Joule 2021.
66.Zuo, K.; Cai, J.; Liang, S.; Wu, S.; Zhang, C.; Liang, P.; Huang, X., A ten liter stacked microbial desalination cell packed with mixed ion-exchange resins for secondary effluent desalination. Environ. Sci. Technol. 2014, 48, 9917-24.
67.Liu, Y.; Zhou, J.; Hou, J.; Yang, Z.; Xu, T., Hyperbranched Polystyrene Copolymer Makes Superior Anion Exchange Membrane. ACS Appl. Energy Mater. 2018, 1, 76-82.
68.Cheng, X.; Wang, J.; Liao, Y.; Li, C.; Wei, Z., Enhanced Conductivity of Anion-Exchange Membrane by Incorporation of Quaternized Cellulose Nanocrystal. ACS. Appl. Mater. Interfaces. 2018, 10, 23774-23782.
69.Qian, G.; Chen, J.; Luo, L.; Yu, T.; Wang, Y.; Jiang, W.; Xu, Q.; Feng, S.; Yin, S., Industrially Promising Nanowire Heterostructure Catalyst for Enhancing Overall Water Splitting at Large Current Density. ACS Sustain. Chem. Eng. 2020, 8, 12063-12071.
70.Liu, D.; Fan, X.; Wang, X.; Hu, D.; Xue, C.; Liu, Y.; Wang, Y.; Zhu, X.; Guo, J.; Lin, H.; Li, Y.; Zhong, J.; Li, D.; Bu, X.; Feng, P.; Wu, T., Cooperativity by Multi-Metals Confined in Supertetrahedral Sulfide Nanoclusters To Enhance Electrocatalytic Hydrogen Evolution. Chem. Mater. 2018, 31, 553-559.
71.Abdullah, M. I.; Hameed, A.; Hu, T.; Zhang, N.; Ma, M., Crystalline Multi-Metal Nanosheets Array with Enriched Oxygen Vacancies as Efficient and Stable Bifunctional Electrocatalysts for Water Splitting. ACS Appl. Energy Mater. 2019, 2, 8919-8929.
72.Cai, W.; Yang, H.; Zhang, J.; Chen, H.-C.; Tao, H. B.; Gao, J.; Liu, S.; Liu, W.; Li, X.; Liu, B., Amorphous Multimetal Alloy Oxygen Evolving Catalysts. ACS Mater. Lett. 2020, 2, 624-632.
73.Zhang, X.; Marianov, A. N.; Jiang, Y.; Cazorla, C.; Chu, D., Hierarchically Constructed Silver Nanowire@Nickel–Iron Layered Double Hydroxide Nanostructures for Electrocatalytic Water Splitting. ACS Appl. Nano Mater. 2019, 3, 887-895.
74.Zhang, J.; Zhu, W.; Huang, T.; Zheng, C.; Pei, Y.; Shen, G.; Nie, Z.; Xiao, D.; Yin, Y.; Guiver, M. D., Recent Insights on Catalyst Layers for Anion Exchange Membrane Fuel Cells. Adv Sci (Weinh) 2021, e2100284.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊