參考文獻
1.Liao, P.-C.; Jhang, R.-H.; Chiu, Y.-H.; Valinton, J. A. A.; Yeh, C.-H.; Ebajo, V. D.; Wang, C.-H.; Chen, C.-H., Rock Salt Oxide Hollow Spheres Achieving Durable Performance in Bifunctional Oxygen Energy Cells. ACS Appl. Energy Mater. 2021, 4, 3448-3459.
2.Maniyali, Y.; Almansoori, A.; Fowler, M.; Elkamel, A., Energy Hub Based on Nuclear Energy and Hydrogen Energy Storage. Ind. Eng. Chem. Res. 2013, 52, 7470-7481.
3.Angulo, A.; van der Linde, P.; Gardeniers, H.; Modestino, M.; Fernández Rivas, D., Influence of Bubbles on the Energy Conversion Efficiency of Electrochemical Reactors. Joule 2020, 4, 555-579.
4.Xu, D.; Stevens, M. B.; Cosby, M. R.; Oener, S. Z.; Smith, A. M.; Enman, L. J.; Ayers, K. E.; Capuano, C. B.; Renner, J. N.; Danilovic, N.; Li, Y.; Wang, H.; Zhang, Q.; Boettcher, S. W., Earth-Abundant Oxygen Electrocatalysts for Alkaline Anion-Exchange-Membrane Water Electrolysis: Effects of Catalyst Conductivity and Comparison with Performance in Three-Electrode Cells. ACS Catal. 2018, 9, 7-15.
5.Lan, W. J.; Kuo, C. C.; Chen, C. H., Hierarchical nanostructures with unique Y-shaped interconnection networks in manganese substituted cobalt oxides: the enhancement effect on electrochemical sensing performance. Chem. Commun. (Camb.) 2013, 49, 3025-7.
6.藍文婕(2014)。奈米結構之石墨烯-鈷錳金屬氧化物混成材料之合成及電化學催化應用。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/naumta. 國立中山大學, 高雄市, 2014.7.楊長穎(2016)。大面積石墨烯-鈷錳氧化物薄膜在產氧反應上之應用。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/kahj59. 國立中山大學, 高雄市, 2016.8.張仁懷(2018)。氧化還原反應法沉積非晶形鈷錳金屬氧化物薄膜於析氧反應上之應用。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/crtm3e國立中山大學, 高雄市, 2018.
9.Jhang, R.-H.; Yang, C.-Y.; Shih, M.-C.; Ho, J.-Q.; Tsai, Y.-T.; Chen, C.-H., Redox-assisted multicomponent deposition of ultrathin amorphous metal oxides on arbitrary substrates: highly durable cobalt manganese oxyhydroxide for efficient oxygen evolution. J. Mater. Chem. A 2018, 6, 17915-17928.
10.施銘奇(2019)。合成多元金屬氧化物薄膜與不連續鈷錳氧化物薄膜提升電催化析氧反應之效率。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/zh8w5d. 國立中山大學, 高雄市, 2019.11.Shih, M. C.; Jhang, R. H.; Tsai, Y. T.; Huang, C. W.; Hung, Y. J.; Liao, M. Y.; Huang, J.; Chen, C. H., Discontinuity-Enhanced Thin Film Electrocatalytic Oxygen Evolution. Small 2019, 15, e1903363.
12.賴佩妏(2020)。液相氧化還原法沉積超薄多元金屬薄膜。國立中山大學化學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/chk9mt. 國立中山大學, 高雄市, 2020.13.Hsieh, P. Y.; Chiu, Y. H.; Lai, T. H.; Fang, M. J.; Wang, Y. T.; Hsu, Y. J., TiO2 Nanowire-Supported Sulfide Hybrid Photocatalysts for Durable Solar Hydrogen Production. ACS. Appl. Mater. Interfaces. 2019, 11, 3006-3015.
14.Li, J.; Li, D.; Gao, F.; Han, Y.; Yan, J.; Liu, S., Enabling Solar Hydrogen Production over Selenium: Surface State Passivation and Cocatalyst Decoration. ACS Sustain. Chem. Eng. 2021.
15.Yao, L.; Guijarro, N.; Boudoire, F.; Liu, Y.; Rahmanudin, A.; Wells, R. A.; Sekar, A.; Cho, H. H.; Yum, J. H.; Le Formal, F.; Sivula, K., Establishing Stability in Organic Semiconductor Photocathodes for Solar Hydrogen Production. J. Am. Chem. Soc. 2020, 142, 7795-7802.
16.Zhao, W.; Wang, S.; Feng, C.; Wu, H.; Zhang, L.; Zhang, J., Novel Cobalt-Doped Ni0.85Se Chalcogenides (Co xNi0.85- xSe) as High Active and Stable Electrocatalysts for Hydrogen Evolution Reaction in Electrolysis Water Splitting. ACS. Appl. Mater. Interfaces. 2018, 10, 40491-40499.
17.Bloor, L. G.; Molina, P. I.; Symes, M. D.; Cronin, L., Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ. J. Am. Chem. Soc. 2014, 136, 3304-11.
18.Chen, W.; Zhang, Y.; Chen, G.; Zhou, Y.; Xiang, X.; Ostrikov, K. K., Interface Coupling of Ni–Co Layered Double Hydroxide Nanowires and Cobalt-Based Zeolite Organic Frameworks for Efficient Overall Water Splitting. ACS Sustain. Chem. Eng. 2019, 7, 8255-8264.
19.Kim, J.; Kim, J.; Kim, H.; Ahn, S. H., Nanoporous Nickel Phosphide Cathode for a High-Performance Proton Exchange Membrane Water Electrolyzer. ACS. Appl. Mater. Interfaces. 2019, 11, 30774-30785.
20.Schröder, J.; Mints, V. A.; Bornet, A.; Berner, E.; Fathi Tovini, M.; Quinson, J.; Wiberg, G. K. H.; Bizzotto, F.; El-Sayed, H. A.; Arenz, M., The Gas Diffusion Electrode Setup as Straightforward Testing Device for Proton Exchange Membrane Water Electrolyzer Catalysts. JACS Au 2021, 1, 247-251.
21.Wang, L.; Zhou, Y.; Yang, Y.; Subramanian, A.; Kisslinger, K.; Zuo, X.; Chuang, Y.-C.; Yin, Y.; Nam, C.-Y.; Rafailovich, M. H., Suppression of Carbon Monoxide Poisoning in Proton Exchange Membrane Fuel Cells via Gold Nanoparticle/Titania Ultrathin Film Heterogeneous Catalysts. ACS Appl. Energy Mater. 2019, 2, 3479-3487.
22.Kou, T.; Wang, S.; Li, Y., Perspective on High-Rate Alkaline Water Splitting. ACS Mater. Lett. 2021, 3, 224-234.
23.Todoroki, N.; Wadayama, T., Heterolayered Ni-Fe Hydroxide/Oxide Nanostructures Generated on a Stainless-Steel Substrate for Efficient Alkaline Water Splitting. ACS. Appl. Mater. Interfaces. 2019, 11, 44161-44169.
24.You, B.; Sun, Y., Innovative Strategies for Electrocatalytic Water Splitting. Acc. Chem. Res. 2018, 51, 1571-1580.
25.Zhang, X.; Ye, L.; Li, H.; Chen, F.; Xie, K., Electrochemical Dehydrogenation of Ethane to Ethylene in a Solid Oxide Electrolyzer. ACS Catal. 2020, 10, 3505-3513.
26.Cho, A.; Ko, J.; Kim, B.-K.; Han, J. W., Electrocatalysts with Increased Activity for Coelectrolysis of Steam and Carbon Dioxide in Solid Oxide Electrolyzer Cells. ACS Catal. 2018, 9, 967-976.
27.Zheng, Y.; Wang, J.; Yu, B.; Zhang, W.; Chen, J.; Qiao, J.; Zhang, J., A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chem. Soc. Rev. 2017, 46, 1427-1463.
28.Cao, X.; Novitski, D.; Holdcroft, S., Visualization of Hydroxide Ion Formation upon Electrolytic Water Splitting in an Anion Exchange Membrane. ACS Mater. Lett. 2019, 1, 362-366.
29.Ham, K.; Hong, S.; Kang, S.; Cho, K.; Lee, J., Extensive Active-Site Formation in Trirutile CoSb2O6 by Oxygen Vacancy for Oxygen Evolution Reaction in Anion Exchange Membrane Water Splitting. ACS Energy Lett. 2021, 6, 364-370.
30.Wang, L.; Weissbach, T.; Reissner, R.; Ansar, A.; Gago, A. S.; Holdcroft, S.; Friedrich, K. A., High Performance Anion Exchange Membrane Electrolysis Using Plasma-Sprayed, Non-Precious-Metal Electrodes. ACS Appl. Energy Mater. 2019, 2, 7903-7912.
31.Dutta, A.; Samantara, A. K.; Dutta, S. K.; Jena, B. K.; Pradhan, N., Surface-Oxidized Dicobalt Phosphide Nanoneedles as a Nonprecious, Durable, and Efficient OER Catalyst. ACS Energy Lett. 2016, 1, 169-174.
32.Anantharaj, S.; Reddy, P. N.; Kundu, S., Core-Oxidized Amorphous Cobalt Phosphide Nanostructures: An Advanced and Highly Efficient Oxygen Evolution Catalyst. Inorg. Chem. 2017, 56, 1742-1756.
33.Karthick, K.; Anantharaj, S.; Ede, S. R.; Kundu, S., Nanosheets of Nickel Iron Hydroxy Carbonate Hydrate with Pronounced OER Activity under Alkaline and Near-Neutral Conditions. Inorg. Chem. 2019, 58, 1895-1904.
34.Zhang, Z.; Feng, C.; Li, X.; Liu, C.; Wang, D.; Si, R.; Yang, J.; Zhou, S.; Zeng, J., In-Situ Generated High-Valent Iron Single-Atom Catalyst for Efficient Oxygen Evolution. Nano. Lett. 2021, 21, 4795-4801.
35.Ruiz Esquius, J.; Algara-Siller, G.; Spanos, I.; Freakley, S. J.; Schlögl, R.; Hutchings, G. J., Preparation of Solid Solution and Layered IrOx–Ni(OH)2Oxygen Evolution Catalysts: Toward Optimizing Iridium Efficiency for OER. ACS Catal. 2020, 10, 14640-14648.
36.Song, F.; Busch, M. M.; Lassalle-Kaiser, B.; Hsu, C. S.; Petkucheva, E.; Bensimon, M.; Chen, H. M.; Corminboeuf, C.; Hu, X., An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction. ACS Cent Sci 2019, 5, 558-568.
37.Plate, P.; Hohn, C.; Bloeck, U.; Bogdanoff, P.; Fiechter, S.; Abdi, F. F.; van de Krol, R.; Bronneberg, A. C., On the Origin of the OER Activity of Ultrathin Manganese Oxide Films. ACS. Appl. Mater. Interfaces. 2021, 13, 2428-2436.
38.Song, F.; Hu, X., Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481-4.
39.Li, C.; Baek, J.-B., The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy 2021, 87.
40.Lee, W. H.; Han, M. H.; Lee, U.; Chae, K. H.; Kim, H.; Hwang, Y. J.; Min, B. K.; Choi, C. H.; Oh, H.-S., Oxygen Vacancies Induced NiFe-Hydroxide as a Scalable, Efficient, and Stable Electrode for Alkaline Overall Water Splitting. ACS Sustain. Chem. Eng. 2020, 8, 14071-14081.
41.Lee, J.; Jung, H.; Park, Y. S.; Woo, S.; Kwon, N.; Xing, Y.; Oh, S. H.; Choi, S. M.; Han, J. W.; Lim, B., Corrosion-engineered bimetallic oxide electrode as anode for high-efficiency anion exchange membrane water electrolyzer. Chem. Eng. J. 2021, 420.
42.Tong, W.; Forster, M.; Dionigi, F.; Dresp, S.; Sadeghi Erami, R.; Strasser, P.; Cowan, A. J.; Farràs, P., Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367-377.
43.McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F., Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977-87.
44.Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H., Co(3)O(4) nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-6.
45.Goswami, D.; Munera, J. C.; Pal, A.; Sadri, B.; Scarpetti, C.; Martinez, R. V., Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity. Nano. Lett. 2018, 18, 3616-3622.
46.Kellenberger, C. R.; Hess, S. C.; Schumacher, C. M.; Loepfe, M.; Nussbaumer, J. E.; Grass, R. N.; Stark, W. J., Roll-to-Roll Preparation of Mesoporous Membranes by Nanoparticle Template Removal. Ind. Eng. Chem. Res. 2014, 53, 9214-9220.
47.Oakes, L.; Hanken, T.; Carter, R.; Yates, W.; Pint, C. L., Roll-to-Roll Nanomanufacturing of Hybrid Nanostructures for Energy Storage Device Design. ACS. Appl. Mater. Interfaces. 2015, 7, 14201-10.
48.Kidambi, P. R.; Mariappan, D. D.; Dee, N. T.; Vyatskikh, A.; Zhang, S.; Karnik, R.; Hart, A. J., A Scalable Route to Nanoporous Large-Area Atomically Thin Graphene Membranes by Roll-to-Roll Chemical Vapor Deposition and Polymer Support Casting. ACS. Appl. Mater. Interfaces. 2018, 10, 10369-10378.
49.Devaguptapu, S. V.; Hwang, S.; Karakalos, S.; Zhao, S.; Gupta, S.; Su, D.; Xu, H.; Wu, G., Morphology Control of Carbon-Free Spinel NiCo2O4 Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media. ACS. Appl. Mater. Interfaces. 2017, 9, 44567-44578.
50.Lu, X.; Zhao, C., Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.
51.Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355.
52.Huang, Y.; Cheng, Y.; Zhang, J., A Review of High Density Solid Hydrogen Storage Materials by Pyrolysis for Promising Mobile Applications. Ind. Eng. Chem. Res. 2021, 60, 2737-2771.
53.Voiry, D.; Chhowalla, M.; Gogotsi, Y.; Kotov, N. A.; Li, Y.; Penner, R. M.; Schaak, R. E.; Weiss, P. S., Best Practices for Reporting Electrocatalytic Performance of Nanomaterials. ACS Nano 2018, 12, 9635-9638.
54.Spreitzer, D.; Schenk, J., Reduction of Iron Oxides with Hydrogen—A Review. Steel Res. Int. 2019, 90.
55.Sciortino, L.; Giannici, F.; Martorana, A.; Ruggirello, A. M.; Liveri, V. T.; Portale, G.; Casaletto, M. P.; Longo, A., Structural Characterization of Surfactant-Coated Bimetallic Cobalt/Nickel Nanoclusters by XPS, EXAFS, WAXS, and SAXS. J. Phys. Chem. C 2011, 115, 6360-6366.
56.Ling, C.; Shi, L.; Ouyang, Y.; Zeng, X. C.; Wang, J., Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting. Nano. Lett. 2017, 17, 5133-5139.
57.Qiu, B.; Han, A.; Jiang, D.; Wang, T.; Du, P., Cobalt Phosphide Nanowire Arrays on Conductive Substrate as an Efficient Bifunctional Catalyst for Overall Water Splitting. ACS Sustain. Chem. Eng. 2018, 7, 2360-2369.
58.Han, N.; Luo, S.; Deng, C.; Zhu, S.; Xu, Q.; Min, Y., Defect-Rich FeN0.023/Mo2C Heterostructure as a Highly Efficient Bifunctional Catalyst for Overall Water-Splitting. ACS. Appl. Mater. Interfaces. 2021, 13, 8306-8314.
59.Byrne, C.; Brennan, B.; McCoy, A. P.; Bogan, J.; Brady, A.; Hughes, G., In Situ XPS Chemical Analysis of MnSiO3 Copper Diffusion Barrier Layer Formation and Simultaneous Fabrication of Metal Oxide Semiconductor Electrical Test MOS Structures. ACS Appl. Mater. Interfaces 2016, 8, 2470-2477.
60.Mohandas, J. C.; Gnanamani, M. K.; Jacobs, G.; Ma, W.; Ji, Y.; Khalid, S.; Davis, B. H., Fischer–Tropsch Synthesis: Characterization and Reaction Testing of Cobalt Carbide. ACS Catal. 2011, 1, 1581-1588.
61.Manikandan, D.; Yadav, A. K.; Jha, S. N.; Bhattacharyya, D.; Boukhvalov, D. W.; Murugan, R., XANES, EXAFS, EPR, and First-Principles Modeling on Electronic Structure and Ferromagnetism in Mn Doped SnO2 Quantum Dots. J. Phys. Chem. C 2019, 123, 3067-3075.
62.Yu, L.; Zhu, Q.; Song, S.; McElhenny, B.; Wang, D.; Wu, C.; Qin, Z.; Bao, J.; Yu, Y.; Chen, S.; Ren, Z., Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.
63.Wang, Y.; Xie, C.; Zhang, Z.; Liu, D.; Chen, R.; Wang, S., In Situ Exfoliated, N-Doped, and Edge-Rich Ultrathin Layered Double Hydroxides Nanosheets for Oxygen Evolution Reaction. Adv. Funct. Mater. 2018, 28.
64.Yang, F.; Kim, M. J.; Brown, M.; Wiley, B. J., Alkaline Water Electrolysis at 25 A cm
−2
with a Microfibrous Flow‐through Electrode. Adv. Energy Mater. 2020, 10.
65.Razmjooei, F.; Morawietz, T.; Taghizadeh, E.; Hadjixenophontos, E.; Mues, L.; Gerle, M.; Wood, B. D.; Harms, C.; Gago, A. S.; Ansar, S. A.; Friedrich, K. A., Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer. Joule 2021.
66.Zuo, K.; Cai, J.; Liang, S.; Wu, S.; Zhang, C.; Liang, P.; Huang, X., A ten liter stacked microbial desalination cell packed with mixed ion-exchange resins for secondary effluent desalination. Environ. Sci. Technol. 2014, 48, 9917-24.
67.Liu, Y.; Zhou, J.; Hou, J.; Yang, Z.; Xu, T., Hyperbranched Polystyrene Copolymer Makes Superior Anion Exchange Membrane. ACS Appl. Energy Mater. 2018, 1, 76-82.
68.Cheng, X.; Wang, J.; Liao, Y.; Li, C.; Wei, Z., Enhanced Conductivity of Anion-Exchange Membrane by Incorporation of Quaternized Cellulose Nanocrystal. ACS. Appl. Mater. Interfaces. 2018, 10, 23774-23782.
69.Qian, G.; Chen, J.; Luo, L.; Yu, T.; Wang, Y.; Jiang, W.; Xu, Q.; Feng, S.; Yin, S., Industrially Promising Nanowire Heterostructure Catalyst for Enhancing Overall Water Splitting at Large Current Density. ACS Sustain. Chem. Eng. 2020, 8, 12063-12071.
70.Liu, D.; Fan, X.; Wang, X.; Hu, D.; Xue, C.; Liu, Y.; Wang, Y.; Zhu, X.; Guo, J.; Lin, H.; Li, Y.; Zhong, J.; Li, D.; Bu, X.; Feng, P.; Wu, T., Cooperativity by Multi-Metals Confined in Supertetrahedral Sulfide Nanoclusters To Enhance Electrocatalytic Hydrogen Evolution. Chem. Mater. 2018, 31, 553-559.
71.Abdullah, M. I.; Hameed, A.; Hu, T.; Zhang, N.; Ma, M., Crystalline Multi-Metal Nanosheets Array with Enriched Oxygen Vacancies as Efficient and Stable Bifunctional Electrocatalysts for Water Splitting. ACS Appl. Energy Mater. 2019, 2, 8919-8929.
72.Cai, W.; Yang, H.; Zhang, J.; Chen, H.-C.; Tao, H. B.; Gao, J.; Liu, S.; Liu, W.; Li, X.; Liu, B., Amorphous Multimetal Alloy Oxygen Evolving Catalysts. ACS Mater. Lett. 2020, 2, 624-632.
73.Zhang, X.; Marianov, A. N.; Jiang, Y.; Cazorla, C.; Chu, D., Hierarchically Constructed Silver Nanowire@Nickel–Iron Layered Double Hydroxide Nanostructures for Electrocatalytic Water Splitting. ACS Appl. Nano Mater. 2019, 3, 887-895.
74.Zhang, J.; Zhu, W.; Huang, T.; Zheng, C.; Pei, Y.; Shen, G.; Nie, Z.; Xiao, D.; Yin, Y.; Guiver, M. D., Recent Insights on Catalyst Layers for Anion Exchange Membrane Fuel Cells. Adv Sci (Weinh) 2021, e2100284.