跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 23:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃淑敏
研究生(外文):Shu-Min Huang
論文名稱:微型化矽光子陀螺晶片設計與封裝技術開發
論文名稱(外文):Design and package technique investigations for miniaturized silicon photonics gyroscope chip
指導教授:洪勇智
指導教授(外文):Hung , Yung - Jr
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:113
中文關鍵詞:矽光子干涉式光纖陀螺儀邊緣光耦合器光纖陣列光積體化技術
外文關鍵詞:Silicon photonicsinterferometric fiber optics gyroscopeedge couplerFiber arrayphotonic integration technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文致力於研究干涉式矽光子陀螺儀驅動晶片的設計與封裝,傳統干涉式光纖陀螺儀系統體積龐大且由多個獨立的元件組成,我們將各個外部元件整合在矽光子晶片上減少了光纖陀螺儀系統的大小。在矽光子晶片設計上加入以下設計:(1)模態濾波器設計避免矽光子陀螺儀晶片的波導中存在高階模態,(2)光延遲相位波導路徑減少水平邊緣耦合器耦光時的反射形成建設性干涉,(3)串接多級極化濾波器達到高極化消光比,(4)將相位調變器設計成彎曲波浪狀,使得總元件長度縮減為1.3 mm。
在量測中,我們使用透鏡單模光纖、高數值孔徑光纖(ultra-high numerical aperture, UHNA)以及具模態轉換光纖(fiber with spot size converter)三種不同規格的陣列光纎作為晶片測試媒介,並利用UV膠將光纖與晶片水平側邊緣耦合器封裝整合成一體,此為本實驗室首次嘗試,封裝後兩個端口的開放迴路光路損耗值分別為12.6與12 dB,與封裝前相比僅多了1~2 dB。我們使用半導體寬頻譜光源(superluminescent diode, SLD)作為光源,成功驅動光纖陀螺儀系統並且測得比例因子為0.61308 μV‧s/deg,主要受限於較高的整體系統光路損失。
此次實驗驗證了使用矽光子邊緣耦合器進行光纖耦光封裝的挑戰,相較於實驗室過去使用光柵耦合器進行光纖陣列封裝來的困難許多,寬頻譜操作的邊緣耦合器對於寬頻譜光源並沒有比較好的耦合效率,反而造成光纖與晶片接觸面積小影響封裝穩定性等負面影響,未來將回到光柵耦合器的方案繼續往下優化。
In this thesis, we focus on the design and packaging of silicon photonics (SiPh) based interferometric fiber optics gyroscope (IFOG) driver chips. Traditional IFOG system consists of multiple discrete components that leads to a bulky element. We integrate most of the passive and active components on the same silicon photonics chip to reduce the size of overall IFOG system. The SiPh IFOG driver chip consists of the following unique designs: (1) optical mode filter to avoid the existence of higher-order optical mode propagating on SiPh chip; (2) optical delayed waveguides to reduce the impact of facet reflection from edge coupler; (3) multistage polarization filter to achieve high polarization extinction ratio; (4) curved phase modulator to reduce the device footprint to 1.3 mm in length.
We utilized three different fibers for optical interfacing with SiPh chip: lensed single mode fiber, ultra-high numerical aperture fiber, and fiber with spot size converter. Ultraviolet glue was employed to attach the optical fiber with the SiPh chip – the first experiment conducted at NSYSU. The overall optical loss after passing the SiPh chip and outputting at two edge couplers are 12.6 and 12 dB, respectively, which is about 1~2 dB higher than the loss before fiber attachment. Experiments revealed a scale factor of 0.61308 μV/deg from our packaged SiPh IFOG module using superluminescent diode as the light source. The lesson we learned from this work is the difficulty of optical fiber attachment onto the edge of SiPh chip to access the optical edge coupler with very tight interface area. We would prefer to use grating coupler instead of edge coupler for future research.
中文審定書 i
致謝 ii
摘要 iii
Abstract iv
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1-1 研究背景 1
1-2 矽光子技術 3
1-2.1光積體化技術 3
1-2.2 微型化矽光子陀螺儀晶片 5
1-3 研究動機 7
第二章 基礎理論與文獻回顧 8
2-1 SOI平台上的波導類型及特性 8
2-1.1 條形波導(Strip Waveguide) 8
2-1.2 脊形波導(Rib or Slab Waveguide) 9
2-2光纖陀螺儀基本原理 10
2-2矽光子陀螺儀研究成果 16
第三章 模擬方法與晶片設計 20
3-1數值模擬方法 20
3-1.1 有限差分特徵模態法Finite Difference Eigenmode Method 20
3-2.2 有限時域差分法Finite Different Time Domain Method 22
3-2.3 計算熱與電的特性 24
3-2.4計算光主動元件的折射率與損耗 26
3-2陀螺儀驅動晶片設計 29
3-2.1 耦光元件 30
3-2.1 彎曲設計的電光相位調變器(Bend Phase Modulator , Bend PM) 35
3-2.2 高消光比分極化濾波器(Polarization Beam Splitter , PBS) 39
3-2.4 延遲光相位的波導路徑 40
3-2.5 模態濾波設計 41
4-1 矽光子晶片的後製程 45
4-1.1 晶圓切割機切割 46
4-1.2 矽光子晶片基板薄化 47
4-1.3 固晶封裝機 49
4-2 矽光子晶片與陀螺量測系統 51
4-2.1 矽光子晶片光纖量測系統 51
4-2.2 陀螺儀量測系統 53
4-3標準及特殊光纖特性 55
4-3.1 單一端口輸出之光纖 55
4-3.2 多端口輸出之陣列光纖 56
4-3 矽光子晶片的耦光 60
4-3.1 水平側邊耦光元件光損耗(Edge coupler) 60
4-3.2多晶矽光柵耦合器設計 62
4-4 矽光子晶片與光纖的封裝 64
4-4.1封裝前晶片的PCB的製程 64
4-4.2晶片與光纖的封裝 65
4-5陀螺儀晶片感測 70
4-5.1 晶片各式元件特性測試 70
4-5.2 矽光子陀螺儀晶片測試 73
4-5.3 陀螺儀晶片感測性能量測 76
第五章 結論與未來工作 79
5-1 結論 79
5-2 未來工作 81
5-2.1 陀螺儀晶片輸入/輸出光損耗的優化 81
5-2.2 相位偏移器取代相位調變器 81
參考文獻 83
附錄 87
參考文獻
[1]https://www.marketresearchfuture.com/reports/gyroscope-market-8536
[2]S. Zhang, C. Zhang, X. Pan, and N. Song, “High-performance fully differential photodiode amplifier for miniature fiber-optic gyroscopes, ” Opt. Express, vol. 27, pp. 2125-2141, 2019.
[3]https://ic.tweakimg.net/ext/i.dsp/1109883395.png
[4]https://www.materialsnet.com.tw/DocView.aspx?id=7935
[5]https://www.materialsnet.com.tw/DocView.aspx?id=7935
[6] Nicola Pavarelli, Jun Sun Lee, Marc Rensing, Cormac Eason, Peter A. O’Brien, "Optical and Electronic Packaging Processes for Silicon Photonic Systems, " IEEE Jurnal Of Lightwave Technology, vol. 33, no. 5, pp. 991-997 1, 2015
[7] . Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express. vol. 10, pp. 853–864, 2002.
[8]K. S. Yee “Numerical silution of initial boundary value problems involving Maxwell''s equations in isotropic media,” IEEE Trans. Antennas Propagat, vol. AP-14, pp. 302-307, 1966.
[9]M. Nedeljkovic, R. Soref, & G. Z. Mashanovich, “Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon Over the 1–14- μm Infrared Wavelength Range,” IEEE Photonics Journal, vol. 3, no. 6, pp. 1171-1180, 2011.
[10]X. Mu, S. Wu, L. Cheng, H. Fu, “Edge Couplers in Silicon Photonic Integrated Circuits: A Review,” Appl. Sci. vol. 10, pp. 1538, 2020.
[11]Zii Wang, Jintang Shang, “Modeling and Simulation of Low-Cost Composite Fiber-to-Chip Edge Coupler for Photonics and MEMS Packging Applications,” IEEE Electron Devices Technology and Manufacturing Conference Proceedings of Technical Papers, ” pp. 45 , 2020.
[12]B. Ben Bakir, A. Vazquez de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedel,“Low-Loss (1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 22 , 2010.
[13]https://www.phix.com/our-offering/spot-size-converter-fiber-arrays/?fbclid=IwAR0MevYChMOAks1Zyjx5qJ5Ek0BzJ2Fk7Y8XC0PfvO7SLxb1G73sYMS6a3k
[14]https://www.gtsaz.com/equipment/dicing-saw-dad320.php?fbclid=IwAR15D1MtmodWa-L_Jp5YGXNQ4hZcpQy_F5Ddkz34CrSrW7w5AcB7y98pUwU
[17]H. C. Chang, & C. P. Yu, “Yee-mesh-based finite difference eigenmode analysis algorithms for optical waveguides and photonic crystals,” In Integrated Photonics Research Optical Society of America, p. IFE4, 2004.
[16]Manuel Mendez-Astudillo, Masaki Okamota, Yoshiaki Ito, And Tomohiro Kita,“Compact thermo-optic MZI switch in siliconon-insulator using direct carrier injection,” Opt. Express, vol. 27, pp. 899-906 , 2019.
[18] M. Jacques, A. Samani, E. El-Fiky, D. Patel, Z. Xing, & D. V. Plant, D, “Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform,” Optics express, vol. 27, no. 8, p. 10456-10471, 2019.
[19]J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, & D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Optics Express, vol. 16, no. 20, p. 15304-15311, 2008.
[20] J. Van Campenhout, W. M. Green, S. Assefa, & Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Optics Letters, vol. 35, no. 7, p. 1013-1015, 2010.
[21] Q. Fang, J. F. Song, T.-Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, & D. L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technology Letters, vol. 23, no. 8, p. 525-527, 2011.
[22] M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, & G. N. Nielson, “Adiabatic thermo-optic Mach–Zehnder switch,” Optics letters, vol. 38, no. 5, p. 733-735, 2013.
[23] N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, & C. Galland, “Efficient, compact and low loss thermo-optic phase shifter in silicon,” Optics express, vol. 22, no. 9, p. 10487-10493, 2014.
[24] D. Patel, V. Veerasubramanian, S. Ghosh, W. Shi, A. Samani, Q. Zhong, & D. V. Plant, “A 4× 4 fully non-blocking switch on SOI based on interferometric thermo-optic phase shifters,” IEEE Optical Interconnects Conference, vol. 19, no. 19, pp. 104-105 , 2014
[25] M. Mendez-Astudillo, M. Okamoto, Y. Ito, & T. Kita, “Compact thermo-optic MZI switch in silicon-on-insulator using direct carrier injection,” Optics express, vol. 27, no. 2, p. 899-906, 2019.
[25] A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. V. Thourhout, & W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,”IEEE International Conference on Group IV Photonics. 10th, pp. 83-84, 2013.
[34] F. J. Song, Q. Fang, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, & D. L. Kwong, “High efficiency optical switches with Heater-on-Slab (HoS) structures,” IEEE Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, pp. 1-3 , 2011.
[39] Ming-Yang Jung, “High polarization beam splitter on SOI platform,” Department of Photonics National Sun Yat-sen University Master Thesis, 2019.
[40]Yin-Hsuan Lee, “Optical input/output interface for silicon photonics gyroscope driver chip,” Department of Photonics National Sun Yat-sen University Master Thesis, 2020.
[41] Song-Jyun Ke, “Development of low-insertion-loss and high-efficiency silicon micro-heaters,” Department of Photonics National Sun Yat-sen University Master Thesis, 2020.
電子全文 電子全文(網際網路公開日期:20250120)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊