跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/14 22:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳育麒
研究生(外文):Yu-Chi Chen
論文名稱:溫軋延對多相中錳鋼拉伸性質及顯微組織的影響
論文名稱(外文):Effect of warm rolling on the tensile properties and micro-structure of a multi-phase medium Mn steel
指導教授:張志溥
指導教授(外文):Chang,Chih-Pu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:247
中文關鍵詞:先進高強度鋼溫軋延中錳鋼變形誘發變韌鐵變形雙晶
外文關鍵詞:Advanced high strength steelsWarm rollingMedium Mn steelDeformation-induced bainiteDeformation twin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗研究溫軋延對中錳鋼進行預變形後之拉伸性質與顯微組織影響,在溫度250 ℃,軋延應變率約為0.4 s-1條件下,進行不同的溫軋延量,觀測顯微結構發現在溫軋延量為20%時,變形雙晶會出現在零星的沃斯田鐵晶粒內。溫軋延量增加至30%時,變形雙晶的數量增加,且開始有變形誘發變韌鐵生成。在溫軋延量增加至50%時,觀測到最多的變形誘發變韌鐵。拉伸性質方面,隨著溫軋延量的增加,降伏強度與抗拉強度均上升,伸長量則是下降。以50%軋延量且軋延應變率約為0.4 s-1固定條件下,在325~400 ℃溫度區間進行溫軋延,發現在大約350 ℃的溫度範圍內,有最多的變形誘發變韌鐵,而當溫度大於350 ℃時,變形誘發變韌鐵生成數量會開始下降,且沃斯田鐵晶粒內的變形雙晶數量增加。實驗發現在375 ℃進行軋延時,顯微結構中有較多的變形雙晶與少量的變形誘發變韌鐵,而大量的變形雙晶使材料強化,具有1540 MPa之抗拉強度、36.4%之伸長量以及強延積56.1GPa。
In this research, tensile properties and microstructures of a medium-manganese steel after warm rolling have been studied. Different rolling reductions were carried out at 250 ℃ at a rolling strain rate of about 0.4 s-1. The microstructure found after 20% rolling reduction consisted of some deformation twins in austenite grains. When the rolling reduction was increased to 30 %, the amount of deformation twin also in-creased, and deformation-induced bainite began to be found. The largest amount of deformation-induced bainite was observed when rolling reduction was increased to 50 %. In terms of tensile properties, as the rolling reduction increased, both the yield strength and tensile strength were increased, while the elongation was decreased. For 50 % rolling reduction, warm rolling was carried out in the temperature range be-tween 325 and 400 ℃. It was found that the highest amount of deformation-induced bainite was found when rolling at 350 ℃. When the rolling temperature was higher than 350 ℃, the amount of deformation-induced bainite began to decline, and the amount of deformation twin was increased. When rolling at 375 ℃ there were many deformation twins and a small amount of deformation-induced bainite. A tensile strength of 1,540 MPa and elongation of 36.4% were obtained when rolling at 375 ℃, which gives a PSE (product of strength and elongation) of 56.1 GPa%.
論文審定書 i
中文摘要 ii
Abstract iii
圖目錄 vii
表目錄 xxvii
一、前言 1
二、文獻回顧 2
2-1先進高強度鋼(Advanced High Strength Steels, AHSS) 2
2-1-1 TRIP(Transformation induced plasticity)鋼 3
2-1-2 中錳鋼 3
2-1-3中錳鋼添加Al和Si 8
2-2沃斯田鐵的穩定性 13
2-2-1 合金元素對沃斯田鐵穩定性的影響 14
2-2-2 晶粒尺寸對沃斯田鐵穩定性的影響 15
2-2-3 晶粒形狀對沃斯田鐵穩定性的影響 15
2-2-4 溫度對沃斯田鐵穩定性的影響 17
2-3 變韌鐵 18
2-3-1 變韌鐵的相變化機制 19
2-3-2 變韌鐵的成核和成長 20
2-3-3 變韌鐵的形貌 22
2-3-4 沃斯田鐵在高溫進行預變形對變韌鐵相變化的影響 24
2-3-5 變形誘發變韌鐵(Deformation Induced Bainite, DIB) 28
2-4 TRIP效應 45
2-4-1不連續TRIP效應 46
2-4-2應變率對TRIP效應的影響 48
2-4-3沃斯田鐵的預變形(pre-deformation)對TRIP效應的影響 54
2-4-4 溫度對TRIP效應的影響 56
2-5 TWIP效應 65
2-5-1晶粒尺寸對TWIP效應的影響 66
2-5-2應變率對TWIP效應的影響 67
2-5-3 變形雙晶對材料的強化 68
三、研究目的 70
四、實驗方法 71
4-1 實驗材料 71
4-2 實驗步驟 72
4-3 軋延應變率計算 76
4-4 表面處理 79
4-5 顯微組織觀察 79
4-6 背向散射電子繞射(Electron Backscattered Scattered Diffraction, EBSD) 80
4-7 拉伸試驗 80
4-8 X-ray繞射(X-ray diffraction, XRD)相分率的分析。 82
五、實驗結果 83
5-1 顯微結構觀測 83
5-1-1未經溫軋延試片顯微結構 83
5-1-2 S20試片顯微結構 87
5-1-3 S30試片顯微結構 97
5-1-4 S50試片顯微結構 108
5-1-5 T325試片顯微結構 120
5-1-6 T350試片顯微結構 131
5-1-7 T375試片顯微結構 143
5-1-8 T400試片顯微結構 153
5-2相分率 164
5-3晶粒尺寸 167
5-4機械性質 168
5-4-1 未溫軋延試片機械性質 168
5-4-2 S20試片機械性質 170
5-4-3 S30試片機械性質 172
5-4-4 S50試片機械性質 174
5-4-5 T325試片機械性質 176
5-4-6 T350試片機械性質 178
5-4-7 T375試片機械性質 180
5-4-8 T400試片機械性質 182
六、討論 184
6-1不同溫軋延量對顯微結構的影響 184
6-2不同溫軋延溫度對顯微結構的影響 199
6-3應變率對溫加工變形顯微組織的影響 204
6-4溫軋延顯微結構對機械性質的影響 205
七、 結論 211
八、參考文獻 212
八、 附錄 218
[1]E. BiLLur and T. Altan, "Three generations of advanced high-strength steels for automotive applications Part III", Stamping Journal (2014) 12-13.
[2]Y. K. Lee and J. Han, "Current opinion in medium manganese steel", Materials Science and Technology 31 (2015) 843-856.
[3]潘致融, "沃斯田鐵尺寸與體積分率對次微米TRIP鋼材機械性質的影響", 碩士論文, 材料與光電科學學系, 國立中山大學, 2017.
[4]R. Miller, "Ultrafine-grained microstructures and mechanical properties of alloy steels ", Metallurgical and Materials Transactions 3 (1972) 905-912.
[5]H. Luo, J. Shi, C. Wang, W. Cao, X. Sun, and H. Dong, "Experimental and nu-merical analysis on formation of stable austenite during the intercritical an-nealing of 5Mn steel", Acta Materialia 59 (2011) 4002-4014.
[6]J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, and W. Cao, "Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite", Scripta Materialia 63 (2010) 815-818.
[7]D. W. Suh, S. J. Park, T. H. Lee, C. S. Oh, and S. J. Kim, "Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, man-ganese transformation-induced-plasticity steel", Metallurgical and Materials Transactions 41 (2010) 397.
[8]H. Takechi, "Transformation hardening of steel sheet for automotive applica-tions", JOM 60 (2008) 22-26.
[9]D. W. Suh and S. J. Kim, "Medium Mn transformation-induced plasticity steels: recent progress and challenges", Scripta Materialia 126 (2017) 63-67.
[10]林祐任, "多相中錳鋼中肥粒鐵與沃斯田鐵之應變行為分析", 碩士論文, 材料與光電科學學系, 國立中山大學, 2018.
[11]S. Lee, S. J. Lee, S. S. Kumar, K. Lee, and B. De Cooman, "Localized defor-mation in multiphase, ultra-fine-grained 6 Pct Mn transformation-induced plasticity steel", Metallurgical and Materials Transactions 42 (2011) 3638-3651.
[12]B. Sun, F. Fazeli, C. Scott, N. Brodusch, R. Gauvin, and S. Yue, "The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels", Acta Materialia 148 (2018) 249-262.
[13]I. Tamura, "Deformation-induced martensitic transformation and transfor-mation-induced plasticity in steels", Metal Science 16 (1982) 245-253.
[14]S. Chatterjee, "Transformations in TRIP-assisted steels: microstructure and properties", Doctoral dissertation, University of Cambridge, 2006.
[15]G. Krauss and A. Marder, "The morphology of martensite in iron alloys", Metallurgical Transactions 2 (1971) 2343.
[16]K. Ishida, "Calculation of the effect of alloying elements on the Ms tempera-ture in steels", Journal of Alloys and Compounds 220 (1995) 126-131.
[17]Y. Sakuma, O. Matsumura, and H. Takechi, "Mechanical properties and re-tained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions", Metallurgical Transactions 22 (1991) 489-498.
[18]E. Jimenez Melero et al., "The effect of aluminium and phosphorus on the sta-bility of individual austenite grains in TRIP steels", Acta Materialia 57 (2009) 533-543.
[19]Z. Cai, H. Ding, R. Misra, and Z. Ying, "Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content", Acta Materialia 84 (2015) 229-236.
[20]J. Wang and S. Van Der Zwaag, "Stabilization mechanisms of retained austen-ite in transformation-induced plasticity steel", Metallurgical and Materials Transactions 32 (2001) 1527-1539.
[21]X. Xiong, B. Chen, M. Huang, J. Wang, and L. Wang, "The effect of morphol-ogy on the stability of retained austenite in a quenched and partitioned steel", Scripta Materialia 68 (2013) 321-324.
[22]K.I. Sugimoto, M. Misu, M. Kobayashi, and H. Shirasawa, "Effects of second phase morphology on retained austenite morphology and tensile properties in a TRIP-aided dual-phase steel sheet", ISIJ international 33 (1993) 775-782.
[23]J. Talonen and H. Hänninen, "Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels", Acta materialia 55 (2007) 6108-6118.
[24]H. K. D. H. Bhadeshia, Bainite in steels: theory and practice, Third ed., CRC Press, England, 2019.
[25]H. K. D. H. Bhadeshia, Interpretation of the Microstructure of Steels, Univer-sity of Cambridge, England, 2008.
[26]H. Bhadeshia and A. Waugh, "Bainite: An atom-probe study of the incomplete reaction phenomenon", Acta Metallurgica 30 (1982) 775-784.
[27]B. De Cooman, "Structure-properties relationship in TRIP steels containing carbide-free bainite", Current Opinion in Solid State and Materials Science 8 (2004) 285-303.
[28]R. Larn and J. Yang, "The effect of compressive deformation of austenite on the bainitic ferrite transformation in Fe-Mn-Si-C steels", Materials Science and Engineering 278 (2000) 278-291.
[29]H. CY and H. WH, "Mechanical stabilization of austenite against bainitic re-action in Fe-Mn-Si-C bainitic steel", Materials transactions, JIM 37 (1996) 579-585.
[30]R. Freiwillig, J. Kudrman, and P. Chráska, "Bainite transformation in de-formed austenite", Metallurgical Transactions 7 (1976) 1091-1097.
[31]K. Fujiwara, S. Okaguchi, and H. Ohtani, "Effect of hot deformation on bainite structure in low carbon steels", ISIJ international 35 (1995) 1006-1012.
[32]J. Min and J. Lin, "Effect of thermo-mechanical process on the microstructure and secondary-deformation behavior of 22MnB5 steels", Journal of Materials Processing Technology 213 (2013) 818-825.
[33]K. I. Sugimoto, M. Kobayashi, and S. I. Hashimoto, "Ductility and strain-induced transformation in a high-strength transformation-induced plas-ticity-aided dual-phase steel", Metallurgical Transactions 23 (1992) 3085-3091.
[34]J. Wang, Q. Yang, X. Wang, Y. Zhao, and L. Wang, "A phenomenon of strain induced bainitic transformation and its effect on strength enhancement in a lightweight transformation-induced-plasticity steel", Materials Science and Engineering 751 (2019) 340-350.
[35]彭子庭, "低應變速率下拉伸溫度對中錳鋼之拉伸性質與顯微組織的影響", 碩士論文, 材料與光電科學學系, 國立中山大學, 2017.
[36]邱夢婷, "拉伸溫度對多相中錳鋼拉伸性質及顯微組織的影響", 碩士論文, 材料與光電科學學系, 國立中山大學, 2017.
[37]林泓邦, "應變量和拉伸溫度對多相中錳鋼拉伸性質及顯微組織的影響", 碩士論文, 材料與光電科學學系, 國立中山大學, 2018.
[38]詹侑誠, "先進高強度鋼中應變誘發變韌鐵相變化組織演化之研究", 碩士論文, 材料與光電科學學系, 國立中山大學, 2020.
[39]陳俊銘, "先進高強度中應變誘發變韌鐵相變化初期之組織研究", 碩士論文, 材料科學與光電學系, 國立中山大學, 2020.
[40]Z. Li, H. Ding, and Z. Cai, "Mechanical properties and austenite stability in hot-rolled 0.2 C-1.6/3.2Al-6Mn-Fe TRIP steel", Materials Science and Engi-neering 639 (2015) 559-566.
[41]J. Talonen, H. Hänninen, P. Nenonen, and G. Pape, "Effect of strain rate on the strain-induced γ→α′-martensite transformation and mechanical properties of austenitic stainless steels", Metallurgical and materials transactions 36 (2005) 421-432.
[42]S. Lee, Y. Estrin, and B. C. De Cooman, "Effect of the strain rate on the TRIP-TWIP transition in austenitic Fe-12Mn-0.6C TWIP steel", Metallurgical and materials transactions 45 (2014) 717-730.
[43]M. Cai, W. Zhu, N. Stanford, L. Pan, Q. Chao, and P. D. Hodgson, "Depend-ence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy", Materials Science and Engineering 653 (2016) 35-42.
[44]K. Tsuzaki, S. I. Fukasaku, Y. Tomota, and T. Maki, "Effect of prior defor-mation of austenite on the γ→ε martensitic transformation in Fe-Mn alloys", Materials Transactions, JIM (1991) 222-228.
[45]Z. Li, R. Misra, H. Ding, H. Li, and Z. Cai, "The significant impact of pre-strain on the structure-mechanical properties relationship in cold-rolled medium manganese TRIP steel", Materials Science and Engineering 712 (2018) 206-213.
[46]I. Tamura, "Deformation-induced martensitic transformation and transfor-mation-induced plasticity in steels", Metal Science 16 (1982) 245-253.
[47]L. Luo, W. Li, L. Wang, S. Zhou, and X. Jin, "Tensile behaviors and defor-mation mechanism of a medium Mn-TRIP steel at different temperatures", Materials Science and Engineering 682 (2017) 698-703.
[48]K. Renard and P. Jacques, "On the relationship between work hardening and twinning rate in TWIP steels", Materials Science and Engineering 542 (2012) 8-14.
[49]H. Yang, Z. Zhang, and Z. Zhang, "Comparison of work hardening and defor-mation twinning evolution in Fe-22Mn-0.6C-(1.5Al) twinning-induced plas-ticity steels", Scripta Materialia (2013) 992-995.
[50]Y. K. Lee, "Microstructural evolution during plastic deformation of twin-ning-induced plasticity steels", Scripta Materialia 66 (2012) 1002-1006.
[51]S. Curtze and V. T. Kuokkala, "Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate", Acta mate-rialia 58 (2010) 5129-5141.
[52]R. Ueji, "Tensile properties and twinning behavior of high manganese austen-itic steel with fine-grained structure", Scripta Materialia 59 (2008) 963-966.
[53]I. Gutierrez Urrutia, S. Zaefferer, and D. Raabe, "The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel", Materials Science and Engineering 527 (2010) 3552-3560.
[54]R. G. Xiong, R. Y. Fu, S. Yu, L. Qian, X. C. Wei, and L. Lin, "Tensile proper-ties of TWIP steel at high strain rate", Journal of Iron and Steel Research, In-ternational 16 (2009) 18-21.
[55]L. Remy, "The interaction between slip and twinning systems and the influ-ence of twinning on the mechanical behavior of fcc metals and alloys", Met-allurgical Transactions 12 (1981) 387-408.
[56]G.E. Dieter, D.J. Bacon, Mechanical metallurgy, McGraw-hill, New York, 1976, pp. 633-634.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊