跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 18:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇郁芬
研究生(外文):Yu-Fen Su
論文名稱:臺灣海峽、臺灣近岸及西南大陸坡沉積物中重金屬之分布特性
論文名稱(外文):Trace metal concentrations in sediments collected from the Taiwan Strait and near-shore and continental slope off Taiwan
指導教授:簡國童
指導教授(外文):Jiann,Kuo-Tung
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋科學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:107
中文關鍵詞:表層沉積物重金屬濃度金屬/鋁比值沉積物的來源臺灣海峽和臺灣近岸沉積物
外文關鍵詞:surface sedimentstrace metals concentrationmetals/Al ratiossediments sourcesTaiwan Strait sediments and near-shore sediments of Taiwan
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
沉積物中的重金屬濃度常被當作是人為活動的指標,在前人文獻中也利用金屬/鋁比值作為人為活動的影響和不同沉積物來源的訊號。在本研究中比較了2004年臺灣西岸、2006年臺灣海峽、2015年環臺灣近岸及2008年、2009年、2010年和2016年臺灣西南海域之表層沉積物的重金屬濃度(鋁、鐵、錳、鎘、銅、鎳、鉛、鋅),並將金屬濃度對鋁濃度標準化(金屬/鋁比值),加上細顆粒百分比的數據,討論臺灣附近表層沉積物中重金屬濃度與金屬/鋁比值之空間和時間的分布差異,且以金屬/鋁比值做為分辨沉積物來源的訊號。此外也利用2009年和2017年的高屏溪沉積物、2008年和2009年高屏峽谷之沉積物收集器樣品,與2004年、2005年、2006年和2008年於高屏峽谷和2015年九龍江口採集之岩心樣品做為不同時間、不同來源輸出的結果做討論。
研究結果顯示表層沉積物中重金屬濃度在空間分布上主要受粒徑主導,細顆粒百分比高的沉積物會有較高的濃度,例如高屏峽谷;細顆粒百分比低則會有較低的重金屬濃度,例如臺灣灘。除了細顆粒百分比外,沉積物來源的不同和人為作用也會影響沉積物中的重金屬濃度和金屬/鋁比值。根據本研究中的近岸沉積物和樣本較多的西南海域之沉積物金屬/鋁比值,發現人為活動造成的高金屬/鋁比值只在近岸沉積物中出現,離岸較遠的沉積物則幾乎看不到此結果,表示人為作用對沉積物重金屬濃度的影響範圍僅限於近岸沉積物;在本研究中可以利用金屬/鋁比值的差異將臺灣海峽中的沉積物分為臺灣灘、東海大陸棚和海峽中央,且為不同的來源。臺灣西岸之表層沉積物、高屏峽谷岩心之金屬/鋁比值的結果和海峽中央沉積物相近,表示海峽沉積物的主要來源可能為臺灣河川,臺灣灘和東海大陸棚的沉積物則為其他來源。此外在臺灣西南海域中也發現北緯22.5度以南與北緯22.5度以北之表層沉積物的Cu/Al有明顯差異,推測可能是高屏溪輸出之沉積物有較高的Cu/Al導致。
在時空分布上,推斷沉積物中重金屬濃度和金屬/鋁比值的變化同樣是受到來源的影響。臺灣西南海域表層沉積物相較於岩心底層之未受人為活動影響的沉積物有較高的Ni/Al和Pb/Al,推測即為人為活動導致。除了人為影響以外,颱風等單一事件造成大量顆粒輸送也會改變河川輸出的物質。比較2009年5月和11月的西南海域表層沉積物可以看到2009年8月的莫拉克颱風經過前後對金屬/鋁比值的影響,結果發現沒有顯著的差異,推測可能是因為顆粒從河川被輸送出來後受到各種物理作用造成顆粒被分散,或是此次強降雨後輸出的物質之化學特性與該處原本的沉積物相同;而在2008年佈放於高屏峽谷的沉積物收集器中卻看到颱風經過後,顆粒上的Fe/Al、Cu/Al和Ni/Al都有些微的增加,認為可能是強降雨導致河口的沉積物也被沖刷出來導致,且因為高屏峽谷直接接收了從高屏溪輸出的大部分物質,所以比較容易看出颱風對輸出物質的影響。
Past studies have shown that trace metal concentrations in sediments can be used as tracers for human activities, and metal/Al (M/Al) ratios being used to identify different sediment sources. This research compared trace metal (Al, Fe, Mn, Cd, Cu, Ni, Pb, Zn) concentrations, M/Al ratios and fine-grain percentages in surface sediments collected from the Taiwan Strait in 2006, and near-shore regions off Taiwan in 2004 and 2015, respectively. More extensive sampling was conducted on southwestern continental slope off Taiwan in 2008, 2009, 2010 and 2016. These results were used to asses spatial and temporal distributions of sediment trace metal concentrations around Taiwan. Besides, the M/Al ratios were used as tracers of different sources of sediments. Additionally, this study also obtained Gaoping river sediments collected in 2009 and 2017, sediment traps T6, T7 and T9, which were deployed in the Gaoping Canyon in 2008 and 2009, and sediments cores collected in the Gaoping Canyon and Jiulong River mouth, as potential end-member material as sediment sources.
Results showed that the spatial variability of trace metal concentrations were largely affected by grain size of sediments, with sediments having higher fine-grain percentages in sediments would have higher metal concentrations, such as in the Gaoping Canyon, while sediments with lower fine-grain percentages would have lower metal concentrations, such as those from the Taiwan Shoal. In addition to grain size, human activities and different sediments sources also affect metal concentrations and M/Al ratios in sediments. In near-shore sediments, spotty locations where higher M/Al ratios found were due to human activities. But in offshore sediments, there was rarely high value of M/Al found, indicating that human activities were not significant in offshore sediments. In this study, differences in M/Al ratios allowed for dividing the Taiwan Strait sediments into three regions that had different sediments sources: Taiwan Shoal, continental shelf of East China Sea and the other parts of Taiwan Strait. M/Al ratios of Taiwan Strait sediments were similar to sediments collected from western coastal Taiwan and the Gaoping Canyon, indicating that sediments from the Taiwan Strait may be transported from Taiwan rivers. Furthermore, in southwestern Taiwan where sediments collected from south of 22.5 °N and north of 22.5 °N had different Cu/Al, implying that higher Cu/Al ratios in sediments from the Gaoping River compared with other regions.
For temporal variability, sediment trace metal concentrations and M/Al ratios were also affected by sediments sources. For instance, modern surface sediments had higher Ni/Al and Pb/Al than those in the 1950s from sediment cores, and the higher M/Al ratios are speculated to be resulted from human activities. Comparing trace metal concentrations and M/Al ratios in surface sediments collected in offshore southwestern Taiwan in May and November 2009, results indicated that there were no significant differences between surface sediments collected before and after typhoon Morak in 2009, which may be attributed to various physical processes (e.g. currents) that caused particles to disperse to other places. But in sediment traps deployed in the Gaoping Canyon in 2008, Fe/Al, Cu/Al and Ni/Al ratios in particles collected after passage of typhoons had higher values, probably due to sediments that had high M/Al ratios near river mouth being flushed out by stronger runoff. Therefore, because the Gaoping Canyon received most of materials delivered from the Gaoping River, it was easier to distinguish the impact of sediments M/Al ratios from typhoons that influence sediment transport.
論文審定書 i
致謝 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 ix
第一章、前言 1
第二章、材料與方法 8
2.1 研究材料和研究區域 8
2.2 採樣方法 14
2.3 樣本的處理與分析 15
2.3.1 表層沉積物消化與重金屬濃度分析 15
2.3.2 粒徑分析 16
第三章、結果與討論 17
3.1 臺灣近岸、西南海域和臺灣海峽表層沉積物細顆粒百分比、重金屬濃度和金屬/鋁比值之空間分布 17
3.1.1 臺灣近岸、西南海域和臺灣海峽表層沉積物中細顆粒百分比之變化 17
3.1.2 臺灣近岸、西南海域和臺灣海峽表層沉積物中重金屬濃度和金屬/鋁比值的分布 18
3.1.3 臺灣西南海域表層沉積物之重金屬濃度和金屬/鋁比值的分布 39
3.1.4 臺灣近岸表層沉積物中重金屬濃度和金屬/鋁比值的分布差異 52
3.1.5 小結 60
3.2 臺灣西南海域表層沉積物金屬/鋁比值之時空變化 61
3.2.1 臺灣西南海域不同年間的表層沉積物金屬/鋁比值的變化 61
3.2.2 高屏溪輸出的沉積物金屬/鋁比值的時空變化 62
3.2.3 比較單一事件(颱風)對於輸出的沉積物之金屬/鋁比值的影響 64
3.2.4 與前人研究中的結果比較高屏外海沉積物中金屬/鋁比值的變化 69
3.2.5 小結 74
第四章、結論 75
參考文獻 78
中文部分 78
英文部分 78
附錄 82
附錄一 本研究使用之表層沉積物採樣位置 82
附錄二 林慧玲老師提供之岩心採樣位置 92
中文部分
劉坤章,1999。從沉積物粒徑的分布來看高屏溪口近岸海域的沉積物傳輸。國立中山大學海洋地質及化學研究所碩士論文。共99頁。
吳政臻,2006。南海北部沉降顆粒及沉積物中鉛-210與質量通量之比較。國立中山大學海洋地質及化學研究所碩士論文。共64頁。
吳哲宇,2010。臺灣西南海域沉積物重金屬的歷史變化及物種的分佈。國立中山大學海洋地質及化學研究所碩士論文。共111頁。
高明雄,2011。應用觀測水文資料分析沿高屏峽谷流場受地形改變之影響。國立中山大學海下科技暨應用海洋物理研究所碩士論文。共69頁。
經濟部中央地質調查所網站(https://www.moeacgs.gov.tw/)

英文部分
Anderson, R.H. and Kravitz, M.J., 2010. Evaluation of geochemical associations as a screening tool for identifying anthropogenic trace metal contamination. Environmental Monitoring and Assessment, 167: 631–641.
Benoit, G. and Rozan, T.F., 1999. The influence of size distribution on the particle concentration effect and trace metal partitioning in rivers. Geochimica et Cosmochimica Acta, 63: 113–127.
Boggs, J.S., Wang, W.C., Lewis, F.S. and Chen, J.C., 1979. Sediment properties and water characteristics of the Taiwan shelf and slope. Acta oceanographica Taiwanica, 10: 10-49.
Bryan, G.W. and Langston, W.J., 1992. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environmental Pollution, 76: 89-131.
Chen, C.-T. and Kandasamy, S., 2008. Evaluation of elemental enrichments in surface sediments off southwestern Taiwan. Environmental Geology, 54: 1333–1346.
Chen, J., Ma, J., Xu, K., Liu, Y., Cao, W., Wei, T., Zhao, B. and Chen, Z., 2016. Provenance discrimination of the clay sediment in the western Taiwan Strait and its implication for coastal current variability during the late-Holocene. The Holocene, 27: 110 –121.
Clark, P.U. and Mix, A.C., 2002. Ice sheets and sea level of the Last Glacial Maximum. Quaternary Science Reviews, 21: 1-7.
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.-L., Willett, S.D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C.P., Lague, D. and Lin, J.-C., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426: 648-651.
Daskalakis, K.D. and O’Connor, T.P., 1995. Normalization and elemental sediment contamination in the coastal United States. Environmental Science & Technology, 29: 470-477.
Dassenakis, M., Andrianos, H., Depiazi, G., Konstantas, A., Karabela, M., Sakellari, A. and Scoullos, M., 2003. The use of various methods for the study of metal pollution in marine sediments, the case of Euvoikos Gulf, Greece. Applied Geochemistry, 18: 781–794.
Gao, X., Zhou, F., Lui, H.-K., Lou, J.-Y., Chen, C.-T.A. and Zhuang, W., 2015. Trace metals in surface sediments of the Taiwan Strait:geochemical characteristics and environmental indication. Environmental Science and Pollution Research, 23: 10494–10503.
Holland, K.T. and Elmore, P.A., 2008. A review of heterogeneous sediments in coastal environments. Earth-Science Reviews, 89: 116–134.
Horng, C.-S. and Huh, C.-A., 2011. Magnetic properties as tracers for source-to-sink dispersal of sediments: A case study in the Taiwan Strait. Earth and Planetary Science Letters, 309: 141–152.
Horowitz, A.J., 1985. A primer on trace metal-sediment chemistry. United States Geological Survey Water-Supply Paper, 2277.
Huh, C.-A., Chen, W., Hsu, F.-H., Su, C.-C., Chiu, J.-K., Lin, S., Liu, C.-S. and Huang, B.-J., 2011. Modern(<100years) sedimentation in the Taiwan Strait: Rates and source-to-sink pathways elucidated from radionuclides and particle size distribution. Continental Shelf Research, 31: 47-63.
Huh, C.-A., Lin, H.-L., Lin, S. and Huang, Y.-W., 2009. Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: A tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems, 76: 405–416.
Hung, J.-J. and Hsu, C.-L., 2004. Present state and historical changes of trace metal pollution in Kaoping coastal sediments, southwestern Taiwan. Marine Pollution Bulletin, 49: 986–998.
Ip, C.C.M., Li, X.-D., Zhang, G., Wai, O.W.H. and Li, Y.-S., 2007. Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environmental Pollution, 147: 311-323.
Jan, S., Tseng, Y.-H. and Dietrich, D.E., 2010. Sources of Water in the Taiwan Strait. Journal of Oceanography, 66: 211-221.
Jan, S., Wang, J., Chern, C.-S. and Chao, S.-Y., 2002. Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems, 35: 249–268.
Jiann, K.-T., Wen, L.-S. and Wei, C.-L., 2014. Spatial and temporal distribution of trace metals (Cd, Cu, Ni, Pb, and Zn) in coastal waters off the west coast of Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 25: 121-135.
Kao, S.-J., Jan, S., Hsu, S.-C., Lee, T.-Y. and Dai, M., 2008. Sediment budget in the Taiwan Strait with high fluvial sediment inputs from mountainous rivers: New observations and synthesis. Terrestrial, Atmospheric and Oceanic Sciences, 19: 525-546.
Kao, S.-J., Lee, T.-Y. and Milliman, J.D., 2005. Calculating highly fluctuated suspended sediment fluxes from mountainous rivers in Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 16: 653-675.
Kao, S.-J., Shiah, F.-K., Wang, C.-H. and Liu, K.-K., 2006. Efficient trapping of organic carbon in sediments on the continental margin with high fluvial sediment input off southwestern Taiwan. Continental Shelf Research, 26: 2520–2537.
Lee, C.-L., Fang, M.-D. and Hsieh, M.-T., 1998. Characterization and distribution of metals in surficial sediments in southwestern Taiwan. Marine Pollution Bulletin, 36: 464-471.
Lim, D.I., Jung, H.S., Choi, J.Y., Yang, S. and Ahn, K.S., 2006. Geochemical compositions of river and shelf sediments in the Yellow Sea: Grain-size normalization and sediment provenance. Continental Shelf Research, 26: 15–24.
Liu, J.P., Liu, C.S., Xu, K.H., Milliman, J.D., Chiu, J.K., Kao, S.J. and Lin, S.W., 2008. Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 256: 65-76.
Liu, J.P., Xu, K.H., Li, A.C., Milliman, J.D., Velozzi, D.M., Xiao, S.B. and Yang, Z.S., 2007. Flux and fate of Yangtze River sedimentdelivered to the East China Sea. Geomorpholog, 85: 208–224.
Liu, J.T., Wang, Y.-H., Yang, R.J., Hsu, R.T., Kao, S.-J., Lin, H.-L. and Kuo, F.H., 2012. Cyclone-induced hyperpycnal turbidity currents in a submarine canyon. Journal of Geophysical Research, 117: 1-12.
Martin, S. and Griswold, W., 2009. Human Health Effects of Heavy Metals. Environmental Science and Technology Briefs for Citizens(15): 1-6.
Meade, R.H., 1996. River-sediment inputs to major deltas. In: J.D. Milliman and B.U. Haq (Editors), Sea-Level Rise and Coastal Subsidence. Springer, Dordrecht, pp. 63-85.
Milliman, J.D. and Syvitski, J.P.M., 1992. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology, 100: 525-544.
Saulnier, I. and Mucci, A., 2000. Trace metal remobilization following the resuspension of estuarine sediments: Saguenay Fjord, Canada. Applied Geochemistry 15: 191-210.
Schropp, S.J., Lewis, F.G., Windom, H.L., Ryan, J.D., Calder, F.D. and Burney, L.C., 1990. Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference Element. Estuaries, 13: 227-235.
Shine, J.P., Ika, R.V. and Ford, T.E., 1995. Multivariate statistical examination of spatial and temporal patterns of heavy metal contamination in New Bedford Harbor marine sediments. Environmental Science & Technology, 29: 1781-1788.
Sholkovitz, E.R., 1978. The flocculation of dissolved Fe, Mn, Al, Cu, NI, Co and Cd during estuarine mixing. Earth and Planetary Science Letters, 41: 77-86.
Singh, M., Ansari, A.A., Müller, G. and Singh, I.B., 1997. Heavy metals in freshly deposited sediments of the Gomati River (a tributary of the Ganga River): effects of human activities. Environmental Geology, 29: 246-252.
Singh, R., Gautam, N., Mishra, A. and Gupta, R., 2011. Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43(3): 248-253.
Turekian, K.K. and Wedepohl, K.H., 1961. Distribution of the elements in some major units of the Earth''s crust. Geological Society of America Bulletin, 72: 175-192.
Warren, L.A. and Haack, E.A., 2001. Biogeochemical controls on metal behaviour infreshwater environments. Earth-Science Reviews 54: 261–320.
Wedepohl, K.H., 1995. The composition of the continental crus. Geochimica et Cosmochimica Acta, 59: 1217-1232.
Wong, G.T.F. and Moy, C.S., 1984. Cesium-137, metals and organic carbon in the sediments of the James River estuary, Virginia. Estuarine, Coastal and Shelf Science, 18: 37-49.
Xu, K., Milliman, J.D., Li, A., Liu, J.P., Kao, S.-J. and Wan, S., 2009. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea. Continental Shelf Research, 29: 2240–2256.
Zhai, B., Liu, Z., Wang, X., Bai, F., Wang, L., Chen, Z. and Zhang, X., 2020. Assessment of heavy metal contamination in surface sediments in the western Taiwan Strait. Marine Pollution Bulletin, 150: 111492.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top