[1] Chang, Y.-C., G. Y. Chen, R. S. Tseng, L. R. Centurioni, and P. C. Chu, (2013), Observed near-surface flows under all tropical cyclone intensity levels using drifters in the northwestern Pacific, Journal of Geophysical Research: Oceans, 118, 2367-2377.
[2] Chang, Y. C., P. C. Chu, L. R. Centurioni and R. S. Tseng, (2014), Observed near-surface currents under four super typhoons, Journal of Marine Systems, 139, 311-319.
[3] Chang, Y. C., R. S. Tseng, P. C. Chu, J. M. Chen, and L. R. Centurioni, (2016), Observed strong currents under global tropical cyclones, Journal of Marine Systems, 159, 33-40.
[4] Chaigneau, A., A. Gizolme, and C. Grados, (2008), Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns, Progress in Oceanography, 79(2-4), 106-119.
[5] Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, (2007), Global observations of large oceanic eddies, Geophysical Research Letters, 34(15).
[6] Chelton, D. B., M. G. Schlax, and R. M. Samelson, (2011), Global observations of nonlinear mesoscale eddies, Progress in Oceanography, 91, 167–216.
[7] Chen, G. Y., C. L. Wu, and Y. H. Wang, (2014), Interface depth used in a two-layer model of nonlinear internal waves, Journal of oceanography, 70(4), 329-342.
[8] Cheng, Y. H., C. R. Ho, Q. Zheng, and N. J. Kuo, (2014), Statistical characteristics of mesoscale eddies in the North Pacific derived from satellite altimetry, Remote Sensing, 6(6), 5164-5183.
[9] Dong, C., F. Nencioli, Y. Liu, and J. C. McWilliams, (2011), An automated approach to detect oceanic eddies from satellite remotely sensed sea surface temperature data, IEEE Geoscience and Remote Sensing Letters, 8(6), 1055-1059.
[10] Geisler, J. E., (1970), Linear theory of the response of a two-layer ocean to a moving hurricane, Geophysical and Astrophysical Fluid Dynamics, 1(1-2), 249-272.
[11] Hu, J., H. Kawamura, (2004), Detection of cyclonic eddy generated by looping tropical cyclone in the northern South China Sea: a case study, Acta oceanologica sinica, 23(2), 213-224.
[12] Jaimes, B. and L. K. Shay, (2009), Mixed layer cooling in mesoscale oceanic eddies during hurricanes Katrina and Rita, Monthly Weather Review, 137(12), 4188-4207.
[13] Jaimes, B., and L. K. Shay, (2010), Near-inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies, Journal of physical oceanography, 40(6), 1320-1337.
[14] Jochum, M., G. Danabasoglu, M. Holland, Y. O. Kwon and W. G. Large, (2008), Ocean viscosity and climate, Journal of Geophysical Research: Oceans, 113(C6).
[15] Kara, A. B., P. A. Rochford, and H. E. Hurlburt, (2000), An optimal definition for ocean mixed layer depth, Journal of Geophysical Research: Oceans, 105(C7), 16803-16821.
[16] Lian, Z., B. Sun, Z. Wei, Y. Wang, and X. Wang, (2019), Comparison of eight detection algorithms for the quantification and characterization of mesoscale eddies in the South China Sea. Journal of Atmospheric and Oceanic Technology, 36(7), 1361-1380.
[17] Lin, I.I., C.C. Wu, K.A. Emanuel, I.H. Lee, C.R. Wu, I.F. Pun, (2005), The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Monthly, Weather Review, 133 (9), 2635-2649.
[18] Lin, I. I., I. F. Pun, and C. C. Wu, (2009), Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Monthly Weather Review, 137(11), 3744-3757.
[19] Lin, I. I., (2012), Typhoon‐induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean, Journal of Geophysical Research: Oceans, 117(C3).
[20] Liu, S. S., L. Sun, Q. Wu, and Y. J. Yang, (2017), The responses of cyclonic and anticyclonic eddies to typhoon forcing: The vertical temperature‐salinity structure changes associated with the horizontal convergence/divergence, Journal of Geophysical Research: Oceans, 122(6), 4974-4989.
[21] Lu, Z., G. Wang, and X. Shang, (2016), Response of a preexisting cyclonic ocean eddy to a typhoon. Journal of Physical Oceanography, 46(8), 2403-2410.
[22] Ma, Z., J. Fei, X. Huang, and X. Cheng, (2018), Modulating effects of mesoscale oceanic eddies on sea surface temperature response to tropical cyclones over the western North Pacific, Journal of Geophysical Research: Atmospheres, 123, 367-379.
[23] Mason, E., Pascual, A., and J. C. McWilliams, (2014), A new sea surface height–based code for oceanic mesoscale eddy tracking, Journal of Atmospheric and Oceanic Technology, 31(5), 1181-1188.
[24] Nencioli, F., C. Dong, T. Dickey, L. Washburn, and J. C. McWilliams, (2010), A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight, Journal of Atmospheric and Oceanic Technology, 27(3), 564-579.
[25] Ning, J., Q. Xu, H. Zhang, T. Wang, and K. Fan, (2019), Impact of cyclonic ocean eddies on upper ocean thermodynamic response to typhoon Soudelor, Remote Sensing, 11(8), 938.
[26] Pei, Y., R. H. Zhang, and D. Chen, (2019), Roles of different physical processes in upper ocean responses to Typhoon Rammasun (2008)-induced wind forcing, Science China Earth Sciences, 62(4).
[27] Price, J. F., (1981), Upper ocean response to a hurricane, Journal of Physical Oceanography, 11(2), 153-175.
[28] Qiu, B. and S. Chen, (2005), Eddy induced heat transport in the subtropical North Pacific from Argo, TMI and altimetry measurements, Journal of Physical Oceanography, 35, 458–473, doi:10.1175/JPO2696.1.
[29] Shay, L. K., (2019), Upper ocean structure: Responses to strong atmospheric forcing events, Encyclopedia of Ocean Sciences. Elsevier, 86-96.
[30] Sun, L., Y. X. Li, Y. J. Yang, Q. Wu, X. T. Chen, Q. Y. Li, and T. Xian, (2014), Effects of super typhoons on cyclonic ocean eddies in the western North Pacific: A satellite data‐based evaluation between 2000 and 2008, Journal of Geophysical Research: Oceans, 119(9), 5585-5598.
[31] Uhlhorn, E. W., and L. K. Shay, (2012), Loop current mixed layer energy response to Hurricane Lili (2002), Part I: Observations, Journal of Physical Oceanography, 42(3), 400-419.
[32] Wada, A., K. Sato, N. Usui, and Y. Kawai, (2009), Comment on" Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang" by Z.-W. Zheng, C.-R. Ho, and N.-J. Kuo. Geophysical Research Letters, 36(9).
[33] Wang, G., J. Su, and P. C. Chu, (2003), Mesoscale eddies in the South China Sea observed with altimeter data, Geophysical Research Letters, 30(21).
[34] Waseda, T., H. Mitsudera, B. Taguchi, and Y. Yoshikawa, (2003), On the eddy‐Kuroshio interaction: Meander formation process, Journal of Geophysical Research: Oceans, 108(C7).
[35] Yu, F., Q. Yang, G. Chen, and Q. Li, (2019), The response of cyclonic eddies to typhoons based on satellite remote sensing data for 2001–2014 from the South China Sea, Oceanologia, 61(2), 265-275.
[36] Zhang, H., H. He, W. Z. Zhang, and D. Tian., (2021), Upper ocean response to tropical cyclones: a review, Geoscience Letters, 8(1), 1-12.
[37] Zheng, Z. W., C. R. Ho, and N. J. Kuo, (2008), Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang, Geophysical Research Letters, 35(20).
[38] Zheng, Z. W., Ho, C. R., Zheng, Q., Lo, Y. T., Kuo, N. J., and G. Gopalakrishnan, (2010), Effects of preexisting cyclonic eddies on upper ocean responses to Category 5 typhoons in the western North Pacific, Journal of Geophysical Research: Oceans, 115(C9).
[39] Zhou, L., D. Chen, X. Lei, W. Wang, G. Wang,, and G. Han, (2018), Progress and perspective on interactions between ocean and typhoon, Chinese Science Bulletin, 64(1), 60-72.
[40] 楊元建、冼桃、孫亮、傅云飛、荀尚培,(2012),〈連續颱風對海表溫度海表高度的影響〉,《海洋学报》,34(1),71-78。
[41] 董昌明,(2015),《海洋渦旋探測與分析》,ISBN 978-7-03-046078-3。
[42] 鄭宇昕、何宗儒,(2013),〈應用衛星測高偵測臺灣西南海域渦漩〉,《航測及遙測學刊》,17(4),287-293。
[43] 鄭宇昕,(2014),〈近黑潮流域渦漩性質與動力特徵之研究〉,《博士論文》,國立臺灣海洋大學海洋環境資訊系。[44] 鄭宜婷,(2017),〈全球超級颱風所引起的中尺度氣旋渦〉,《碩士論文》,國立中山大學海洋科學系。