跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江函霖
研究生(外文):Han-Lin Chiang
論文名稱:利用自動偵測法統計熱帶氣旋引發冷渦之特性
論文名稱(外文):Using Automated Detection to Characterize the Cyclonic Eddies Induced by Tropical Cyclones
指導教授:曾若玄曾若玄引用關係
指導教授(外文):Tseng,Ruo-Shan
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋科學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:98
中文關鍵詞:熱帶氣旋行進速度自動偵測法冷渦海表高度變異量
外文關鍵詞:tropical cyclonetranslation speedautomated detectioncyclonic eddysea level anomaly
相關次數:
  • 被引用被引用:0
  • 點閱點閱:24
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究主要內容為針對西北太平洋2010至2019十年間的熱帶氣旋,沿軌跡自動偵測受其影響的冷渦,並統計特性差異及其與熱帶氣旋參數之關係。本研究採用的自動偵測法為結合Okubo-Weiss及幾何流場的概念,設計成沿熱帶氣旋軌跡於七級風半徑內偵測冷渦,並透過熱帶氣旋經過前的海表狀態區分為新生成或被增強冷渦。利用雙層海水介面深度、混合層厚度、溫度剖面曲線頂點之定義計算上層海水厚度,代入Geisler (1970)公式,得出在西北太平洋的第一斜壓模相位速度皆小於3.3 m/s,且統計十年熱帶氣旋行進速度,3 m/s以下的數量約佔48%,因此本研究定義慢行進速度為3 m/s以下。由不同行進速度引發的冷渦數量與熱帶氣旋數量比例發現,慢行進速度較其他速度影響更多冷渦,且使冷渦海表高度變異量 (Sea Level Anomaly, SLA)顯著變化,而颱風等級影響冷渦SLA平均變化量較超級颱風來得多。全體的新生成冷渦SLA日變化量多於總變化量,被增強冷渦則是相反的結果,可能因為兩種冷渦結構完整度的差異,導致受到熱帶氣旋影響的24小時內新生成冷渦SLA變化較大;而預先存在的冷渦因海水狀態不穩定,因此熱帶氣旋較易挾帶下層冷水使被增強冷渦持續增強。雖然熱帶氣旋轉彎/打轉代表行進較慢,卻未必使冷渦SLA變化較多,根據本篇結果,轉彎處的新生成及被增強冷渦的平均SLA總變化量較平均日變化量多,說明在轉彎/打轉軌跡附近的冷渦皆受到熱帶氣旋影響而持續加深。
The purpose of research is to automatically detect the cyclonic eddies (CE) affected by the tropical cyclones (TC) in the Northwestern Pacific Ocean from 2010 to 2019, and characterize statistics and their relation with parameters of TC. The automated detection method is the concept of combining Okubo-Weiss and geometric flow field, being designed to detect CEs along the TC track within the radius of the 17 m/s wind, and distinguish them into generated (GCE) or inteisified (ICE) based on the sea level anomaly (SLA) before the TC comes. Next, using the definitions of the interface depth of the two-layer seawater, the thickness of the mixed layer, and the top of the temperature profile to calculate the thickness of the upper layer, and substituting it into the formula of Geisler (1970). In Northwestern Pacific, all the phase speeds of the first baroclinic mode are less than 3.3 m/s. Moreover, the percentage of TC Translation speed (Uh)below 3 m/s is about 48%, so the range of slow Uh is 3 m/s or less. Based on the ratios of CEs to TCs in various Uh, more GCE and ICE are significantly affected at slow Uh. The daily SLA variation of all GCEs are greater than the total variation, while the ICEs have the opposite result. The reason may be the difference in the structure of the GCE and ICE, resulting in a large SLA change of GCE within 24 hours under the influence of the TC. The pre-existing CE represents the unstable state of the seawater, so the TC is more likely to entrain cold waters at lower layer to strengthen ICE. Specifically, the average of total SLA variation of the GCEs and ICEs around the TC turning track are greater than the average of daily SLA variation, indicating that the CE near the turning/looping trajectory will keep deepening after TC passes.
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖次 vii
表次 xi
第一章 前言 1
1.1 文獻回顧 1
1.2 研究動機與目的 6
第二章 研究方法 7
2.1 資料來源 7
2.2 渦漩自動偵測法簡介 10
2.3 本研究參考方法 12
2.3.1 免閥值渦漩自動偵測法 12
2.3.2 沿熱帶氣旋軌跡偵測冷渦之步驟 18
2.3.3 熱帶氣旋行進速度快慢的標準 22
第三章 受熱帶氣旋影響之冷渦特性 23
3.1 不同上層海水厚度得出之第一斜壓模相位速度 23
3.2 十年間西北太平洋熱帶氣旋概述 28
3.3 偵測冷渦之結果 31
3.3.1 冷渦數量 31
3.3.2 行進速度及中心氣壓與冷渦強度之關係 35
3.3.3 冷渦強度變化 45
3.3.4 轉彎或打轉軌跡熱帶氣旋引發之冷渦 50
3.3.5 熱帶氣旋軌跡左右側之冷渦 70
第四章 討論 73
4.1 年際與季節差異 73
4.2 冷渦的羅氏培數 75
第五章 結語與未來展望 78
第六章 參考文獻 81
[1] Chang, Y.-C., G. Y. Chen, R. S. Tseng, L. R. Centurioni, and P. C. Chu, (2013), Observed near-surface flows under all tropical cyclone intensity levels using drifters in the northwestern Pacific, Journal of Geophysical Research: Oceans, 118, 2367-2377.
[2] Chang, Y. C., P. C. Chu, L. R. Centurioni and R. S. Tseng, (2014), Observed near-surface currents under four super typhoons, Journal of Marine Systems, 139, 311-319.
[3] Chang, Y. C., R. S. Tseng, P. C. Chu, J. M. Chen, and L. R. Centurioni, (2016), Observed strong currents under global tropical cyclones, Journal of Marine Systems, 159, 33-40.
[4] Chaigneau, A., A. Gizolme, and C. Grados, (2008), Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns, Progress in Oceanography, 79(2-4), 106-119.
[5] Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, (2007), Global observations of large oceanic eddies, Geophysical Research Letters, 34(15).
[6] Chelton, D. B., M. G. Schlax, and R. M. Samelson, (2011), Global observations of nonlinear mesoscale eddies, Progress in Oceanography, 91, 167–216.
[7] Chen, G. Y., C. L. Wu, and Y. H. Wang, (2014), Interface depth used in a two-layer model of nonlinear internal waves, Journal of oceanography, 70(4), 329-342.
[8] Cheng, Y. H., C. R. Ho, Q. Zheng, and N. J. Kuo, (2014), Statistical characteristics of mesoscale eddies in the North Pacific derived from satellite altimetry, Remote Sensing, 6(6), 5164-5183.
[9] Dong, C., F. Nencioli, Y. Liu, and J. C. McWilliams, (2011), An automated approach to detect oceanic eddies from satellite remotely sensed sea surface temperature data, IEEE Geoscience and Remote Sensing Letters, 8(6), 1055-1059.
[10] Geisler, J. E., (1970), Linear theory of the response of a two-layer ocean to a moving hurricane, Geophysical and Astrophysical Fluid Dynamics, 1(1-2), 249-272.
[11] Hu, J., H. Kawamura, (2004), Detection of cyclonic eddy generated by looping tropical cyclone in the northern South China Sea: a case study, Acta oceanologica sinica, 23(2), 213-224.
[12] Jaimes, B. and L. K. Shay, (2009), Mixed layer cooling in mesoscale oceanic eddies during hurricanes Katrina and Rita, Monthly Weather Review, 137(12), 4188-4207.
[13] Jaimes, B., and L. K. Shay, (2010), Near-inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies, Journal of physical oceanography, 40(6), 1320-1337.
[14] Jochum, M., G. Danabasoglu, M. Holland, Y. O. Kwon and W. G. Large, (2008), Ocean viscosity and climate, Journal of Geophysical Research: Oceans, 113(C6).
[15] Kara, A. B., P. A. Rochford, and H. E. Hurlburt, (2000), An optimal definition for ocean mixed layer depth, Journal of Geophysical Research: Oceans, 105(C7), 16803-16821.
[16] Lian, Z., B. Sun, Z. Wei, Y. Wang, and X. Wang, (2019), Comparison of eight detection algorithms for the quantification and characterization of mesoscale eddies in the South China Sea. Journal of Atmospheric and Oceanic Technology, 36(7), 1361-1380.
[17] Lin, I.I., C.C. Wu, K.A. Emanuel, I.H. Lee, C.R. Wu, I.F. Pun, (2005), The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Monthly, Weather Review, 133 (9), 2635-2649.
[18] Lin, I. I., I. F. Pun, and C. C. Wu, (2009), Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Monthly Weather Review, 137(11), 3744-3757.
[19] Lin, I. I., (2012), Typhoon‐induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean, Journal of Geophysical Research: Oceans, 117(C3).
[20] Liu, S. S., L. Sun, Q. Wu, and Y. J. Yang, (2017), The responses of cyclonic and anticyclonic eddies to typhoon forcing: The vertical temperature‐salinity structure changes associated with the horizontal convergence/divergence, Journal of Geophysical Research: Oceans, 122(6), 4974-4989.
[21] Lu, Z., G. Wang, and X. Shang, (2016), Response of a preexisting cyclonic ocean eddy to a typhoon. Journal of Physical Oceanography, 46(8), 2403-2410.
[22] Ma, Z., J. Fei, X. Huang, and X. Cheng, (2018), Modulating effects of mesoscale oceanic eddies on sea surface temperature response to tropical cyclones over the western North Pacific, Journal of Geophysical Research: Atmospheres, 123, 367-379.
[23] Mason, E., Pascual, A., and J. C. McWilliams, (2014), A new sea surface height–based code for oceanic mesoscale eddy tracking, Journal of Atmospheric and Oceanic Technology, 31(5), 1181-1188.
[24] Nencioli, F., C. Dong, T. Dickey, L. Washburn, and J. C. McWilliams, (2010), A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight, Journal of Atmospheric and Oceanic Technology, 27(3), 564-579.
[25] Ning, J., Q. Xu, H. Zhang, T. Wang, and K. Fan, (2019), Impact of cyclonic ocean eddies on upper ocean thermodynamic response to typhoon Soudelor, Remote Sensing, 11(8), 938.
[26] Pei, Y., R. H. Zhang, and D. Chen, (2019), Roles of different physical processes in upper ocean responses to Typhoon Rammasun (2008)-induced wind forcing, Science China Earth Sciences, 62(4).
[27] Price, J. F., (1981), Upper ocean response to a hurricane, Journal of Physical Oceanography, 11(2), 153-175.
[28] Qiu, B. and S. Chen, (2005), Eddy induced heat transport in the subtropical North Pacific from Argo, TMI and altimetry measurements, Journal of Physical Oceanography, 35, 458–473, doi:10.1175/JPO2696.1.
[29] Shay, L. K., (2019), Upper ocean structure: Responses to strong atmospheric forcing events, Encyclopedia of Ocean Sciences. Elsevier, 86-96.
[30] Sun, L., Y. X. Li, Y. J. Yang, Q. Wu, X. T. Chen, Q. Y. Li, and T. Xian, (2014), Effects of super typhoons on cyclonic ocean eddies in the western North Pacific: A satellite data‐based evaluation between 2000 and 2008, Journal of Geophysical Research: Oceans, 119(9), 5585-5598.
[31] Uhlhorn, E. W., and L. K. Shay, (2012), Loop current mixed layer energy response to Hurricane Lili (2002), Part I: Observations, Journal of Physical Oceanography, 42(3), 400-419.
[32] Wada, A., K. Sato, N. Usui, and Y. Kawai, (2009), Comment on" Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang" by Z.-W. Zheng, C.-R. Ho, and N.-J. Kuo. Geophysical Research Letters, 36(9).
[33] Wang, G., J. Su, and P. C. Chu, (2003), Mesoscale eddies in the South China Sea observed with altimeter data, Geophysical Research Letters, 30(21).
[34] Waseda, T., H. Mitsudera, B. Taguchi, and Y. Yoshikawa, (2003), On the eddy‐Kuroshio interaction: Meander formation process, Journal of Geophysical Research: Oceans, 108(C7).
[35] Yu, F., Q. Yang, G. Chen, and Q. Li, (2019), The response of cyclonic eddies to typhoons based on satellite remote sensing data for 2001–2014 from the South China Sea, Oceanologia, 61(2), 265-275.
[36] Zhang, H., H. He, W. Z. Zhang, and D. Tian., (2021), Upper ocean response to tropical cyclones: a review, Geoscience Letters, 8(1), 1-12.
[37] Zheng, Z. W., C. R. Ho, and N. J. Kuo, (2008), Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang, Geophysical Research Letters, 35(20).
[38] Zheng, Z. W., Ho, C. R., Zheng, Q., Lo, Y. T., Kuo, N. J., and G. Gopalakrishnan, (2010), Effects of preexisting cyclonic eddies on upper ocean responses to Category 5 typhoons in the western North Pacific, Journal of Geophysical Research: Oceans, 115(C9).
[39] Zhou, L., D. Chen, X. Lei, W. Wang, G. Wang,, and G. Han, (2018), Progress and perspective on interactions between ocean and typhoon, Chinese Science Bulletin, 64(1), 60-72.
[40] 楊元建、冼桃、孫亮、傅云飛、荀尚培,(2012),〈連續颱風對海表溫度海表高度的影響〉,《海洋学报》,34(1),71-78。
[41] 董昌明,(2015),《海洋渦旋探測與分析》,ISBN 978-7-03-046078-3。
[42] 鄭宇昕、何宗儒,(2013),〈應用衛星測高偵測臺灣西南海域渦漩〉,《航測及遙測學刊》,17(4),287-293。
[43] 鄭宇昕,(2014),〈近黑潮流域渦漩性質與動力特徵之研究〉,《博士論文》,國立臺灣海洋大學海洋環境資訊系。
[44] 鄭宜婷,(2017),〈全球超級颱風所引起的中尺度氣旋渦〉,《碩士論文》,國立中山大學海洋科學系。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top