跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 06:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾郁升
研究生(外文):Yu-Sheng Tseng
論文名稱:以系統動力學評估臺灣再生能源發展與私人電動運具之減碳效益
論文名稱(外文):Using System Dynamics to Evaluate Carbon Reduction Benefits of Renewable Energy Development and Private Electric Vehicles in Taiwan
指導教授:張揚祺張揚祺引用關係
指導教授(外文):Chang, Yang-chi
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋環境及工程學系研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:188
中文關鍵詞:私人運具再生能源系統動力學電動車電力結構碳排放
外文關鍵詞:Private VehiclesRenewable EnergySystem DynamicsElectric VehiclesEnergy StructureCarbon Emissions
相關次數:
  • 被引用被引用:5
  • 點閱點閱:499
  • 評分評分:
  • 下載下載:132
  • 收藏至我的研究室書目清單書目收藏:1
私人運具是許多人生活中不可或缺的一部份,而車輛的使用帶來了二氧化碳的排放,為此各國政府實施諸多政策以期降低車輛帶來的碳排放,這些政策的其中之一便是推廣替代燃料車輛,而替代燃料車輛中最成功的莫過於電動車。使用電動車並不會直接消耗化石能源,因此可有效降低城市空氣污染,然而世界上許多的電力來源仍是來自於化石能源,使用這些電力的電動車,能否改善交通運輸帶來的碳排放,是現今推廣電動車時各界爭論不休的議題。
本研究以汽油及電動汽車與機車等車輛,以及再生能源對車輛碳排放帶來的影響進行研究,並使用系統動力學做為主要研究方法,在蒐集相關文獻與資料後,透過系統思考觀念,繪製出涵蓋人口、電動車、電力需求、燃油車與電力結構的因果回饋圖,並以因果回饋圖做為藍圖,結合蒐集的數據,建構出可模擬未來車輛與電力系統之動態變化的系統動力學量化模型,並設計出禁售燃油車、持續新增再生能源以及改善燃油車油耗共三個政策方案,透過模型進行情境模擬與政策分析,並觀察其減碳效益,以供未來決策者做為參考依據。
本研究發現若將三個政策擇一執行,持續新增再生能源能夠降低最多碳排放,而改善燃油車油耗的政策,比禁售燃油車有著更低的車輛碳排放;若將三個政策擇二執行,禁售燃油車並改善燃油車油耗的政策組合,能使車輛碳排放達成《溫室氣體減量及管理法》之目標,而持續增加再生能源並改善燃油車油耗的政策組合,則有著執行兩個政策的情境中最低的車輛與電力綜合碳排放;而同時實施三個政策方案則會有最佳減碳效果。
Private transport is an integral part of many people''s lives, but the use of vehicles causes a problem of carbon dioxide emissions. So public sectors have endeavored to implement policies for reduction of vehicle carbon emissions. One of which is the promotion of alternative fuel vehicles, and among them the most successful alternative is electric vehicle. The use of electric vehicle does not consume fossil fuel directly, so it can effectively reduce air pollution. However, many primary sources of electricity are fossil fuels. Whether the use of electric vehicles under the current energy scheme will improve carbon emissions remains debatable.
After relevant literature reviews and data collections, the study apply the system thinking to build a causal loop diagram, which includes population, electric and fuel vehicles, power demand, and the energy structure. Base on the causal loop diagram and data, we build a system dynamic model to simulate future variations of vehicles and electric systems. Several scenarios constituted by the three policies, including phase-out of fuel vehicles, increase of renewable energy, and improvement of fuel efficiency, were simulated by the SD model. The results of scenario analyses show the efficiencies of carbon reduction for various policies, which can support future decision-making.
Among the three single policies, increase of renewable energy will have the maximum reduction of carbon emissions, which is a better policy compared to phase-out of fuel vehicles. Under the scenarios of combining two single policies, phase-out of fuel vehicles and improvement of fuel efficiency will achieve the goal of the Greenhouse Gas Reduction and Management Act in 2050. Meanwhile, two-policy scenario with increase of renewable energy and improvement of fuel efficiency will have the overall lowest carbon emissions of private vehicles and power system. Eventually, implementing three policies simultaneously will certainly have the best effect of carbon reduction.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
第一章、前言 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究流程 4
1.4 研究範圍與限制 6
第二章、文獻回顧 7
2.1 電動車的機遇與挑戰 7
2.2 臺灣電力情勢 14
2.3 溫室氣體帶來的影響 20
2.4 系統動力學與其應用 27
第三章、模型建置 30
3.1 系統動力學建模流程 30
3.1.1. 因果回饋圖 32
3.1.2. 線流圖 34
3.2 資料蒐集 36
3.2.1. 人口概況 36
3.2.2. 車輛概況 38
3.2.3. 電力概況 45
3.2.4. 二氧化碳排放 51
3.3 系統動力學模型建置 54
3.3.1. 因果回饋圖 54
3.3.2. 線流圖 58
3.3.3. 創新擴散曲線 59
3.3.4. 車輛數量子系統 62
3.3.5. 車輛碳排放子系統 66
3.3.6. 電力結構子系統 69
3.3.7. 電力碳排放子系統 73
3.3.8. 政策目標子系統 76
3.3.9. 線流圖小結 79
第四章、結果與討論 80
4.1 模型檢驗 80
4.1.1. 單位一致性測試 82
4.1.2. 行為再造測試 83
4.2 情境模擬與分析 88
4.2.1. 零方案 90
4.2.2. 單一情境模擬與分析 93
4.2.3. 多重情境模擬與分析 102
4.2.4. 情境模擬綜合分析 109
第五章、結論與建議 115
5.1 結論 115
5.2 建議 118
參考文獻 119
中文文獻 119
英文文獻 124
附錄 148
中文文獻
Yung-Jen Chen,Jiao Wang.(2020)。全球暖化下臺灣海平面上升和暴潮衝擊分析。臺北市:Greenpeace 綠色和平。
內政部(2013)。人口政策白皮書:少子女化、高齡化及移民。臺北市:內政部。
王奕陽、吳玗恂、梁曉昀、林承恩、劉恒(2021)。「油電平權?」:2020全臺電動機車銷售趨勢與政策。取自:https://rsprc.ntu.edu.tw/zh-tw/m01-3/en-trans/open-energy/1552-37-0225-open.html(Sep. 28, 2021)
交通部公路總局(2021)。交通部公路總局統計查詢網。取自https://stat.thb.gov.tw/hb01/webMain.aspx?sys=100&funid=defjsp
交通部統計處(2019a)。交通部統計處107年自用小客車使用狀況調查報告調查。臺北市:交通部。
交通部統計處(2019b)。交通部統計處107年機車使用狀況調查報告調查。臺北市:交通部。
交通部統計處(2020)。109年民眾日常使用運具狀況調查摘要分析。臺北市:交通部。
行政院(2017)。行政院第3581次院會決議。取自https://www.ey.gov.tw/Page/4EC2394BE4EE9DD0/f449f839-6e2f-4677-b87b-06948c781b87
行政院環保署(2016)。溫室氣體排放量盤查登錄作業指引。取自https://ghgregistry.epa.gov.tw/Tool/tools.aspx?Type=1
行政院環保署(2017)。環境保護統計名詞定義。臺北市:行政院環境保護署統計室。
行政院環保署(2019)。溫室氣體排放係數管理表6.0.4版。取自https://ghgregistry.epa.gov.tw/Tool/tools.aspx?Type=1
行政院環保署(2020)。我國國家溫室氣體排放清冊報告。臺北市:行政院環境保護署。
吳少鈞(2019)。以系統動力學探討土地利用變遷與交通運具選擇對於二氧化碳排放之影響-以高雄市為例。國立中山大學海洋環境及工程學系研究所碩士論文,高雄市。取自https://hdl.handle.net/11296/6wmj5s
吳佳龍(2012)。影響台灣地區汽車銷售量因素之探討。東海大學管理碩士在職專班碩士論文,臺中市。取自https://hdl.handle.net/11296/rguy85
吳欣穎(2009)。科技產品生命週期之預測模型比較。國立交通大學管理科學系所碩士論文,新竹市。取自https://hdl.handle.net/11296/4vmy9g
李良山(2007)。應用系統動力學軟體探討牡蠣在潟湖中對生態環境的影響。國立中山大學海洋環境及工程學系研究所碩士論文,高雄市。取自https://hdl.handle.net/11296/b4kjd5
李欣哲(2018)。再生能源發展策略之決策支援模式建構。國立臺北大學自然資源與環境管理研究所博士論文,新北市。取自https://hdl.handle.net/11296/63rbpa
李崇睿、龍世俊、吳治達(2013)。乾淨空氣何處尋?空氣污染暴險之人口及地理不均等分佈。人口學刊,(47),1-33。
車輛耗能研究網站(2021)。電動車能源效率標示。取自 https://auto.itri.org.tw/energy_efficiency_mark_ecar.aspx
林昱廷(2010)。以平均壽命與醫療支出評估台灣地區懸浮微粒減量效益。國立臺北科技大學環境規劃與管理研究所碩士論文,臺北市。取自https://hdl.handle.net/11296/wr2jsy
林薏茹(2017年12月21日)。賴揆:2019年紅害減半、2040年新售汽車全面電動化。鉅亨網。取自https://news.cnyes.com/news/id/3995818
凌士恩(2016)。以系統思考探討潛水產業與海洋環境之永續經營-以墾丁為例。國立中山大學海洋環境及工程學系研究所碩士論文,高雄市。取自https://hdl.handle.net/11296/j88h5u
國家發展委員會(2020)。中華民國人口推估(2020至2070年)。臺北市:國家發展委員會。
屠益民、張良政(2010)。系統動力學理論與應用。臺北市:智勝文化。
張宇辰(2016)。運用系統動態學進行碳稅課徵對太陽光電系統建置與發電成本之評估研究。國立清華大學工業工程與工程管理學系碩士論文,臺北市。取自https://hdl.handle.net/11296/4kgz5h
許晃雄、周佳、陳維婷、羅敏輝、李明安、洪志誠、鄒治華、盧孟明、洪致文、陳正達、鄭兆尊(2017)。臺灣氣候變遷科學報告2017-物理現象與機制(總摘要)。新北市:國家災害防救科技中心。
許添本(2001)。永續運輸目標下都會區最適運具比例研究。國立臺灣大學土木工程學研究所碩士論文,臺北市。取自https://hdl.handle.net/11296/u8s3e3
陳文賓(2011)。以系統動態學為基之澎湖低碳島綠色運輸政策規劃效益評估研究。國立臺北科技大學工業工程與管理研究所碩士論文,臺北市。取自https://hdl.handle.net/11296/q73hvw
陳志寬(2010)。應用系統動態模式STELLA模擬台灣交通運輸部門溫室氣體與空氣污染物之整合減量效益。國立臺北科技大學環境工程與管理研究所碩士論文,臺北市。取自https://hdl.handle.net/11296/5rf63a
陳俊朋(2005)。科技預測模型之檢測:廣泛的羅吉斯模型、費雪模型、以及甘伯茲模型之比較。國立交通大學管理科學系所碩士論文,新竹市。取自http://140.113.39.130/cdrfb3/record/nctu/#GT009231535
楊明勳(2000)。都會交通管理策略對空氣品質的影響研究。淡江大學水資源及環境工程學系碩士論文,新北市。取自https://hdl.handle.net/11296/4bakda
楊朝仲、張良政、葉欣誠、陳昶憲、葉昭憲(2006)。系統動力學思維與應用。臺北市:五南。
楊雅珊(2016)。以系統動態學觀點探討影響國中生網路成癮程度之因素。中華大學科技管理學系碩士論文,新竹市。取自https://hdl.handle.net/11296/j97q58
楊漢儒(2014)。以簡化式生命週期評估與系統動態學建構產品碳足跡減量效益研究。臺北科技大學工業工程與管理系碩士論文,臺北市。取自https://hdl.handle.net/11296/23y49b
溫室氣體排放量盤查登錄管理辦法(民國105年1月5日)。
溫室氣體減量及管理法(民國104年7月1日)。
經濟部(2018年8月27日)。天然氣生產或進口事業自備儲槽容量【公告】。臺北市:經濟部能源局。取自:https://www.moeaboe.gov.tw/ECW/populace/Law/Content.aspx?menu_id=1029
經濟部能源局(2020a)。2019年我國燃料燃燒二氧化碳排放統計與分析。臺北市:經濟部能源局。
經濟部能源局(2020b)。能源轉型白皮書。臺北市:經濟部能源局。
經濟部能源局(2021a)。108/109年度全國電力資源供需報告。臺北市:經濟部能源局。
經濟部能源局(2021b)。能源供給(按能源別)及國內能源消費(按部門別)。臺北市:經濟部能源局。
經濟部能源局(2021c)。能源統計月報。取自https://www.moeaboe.gov.tw/ECW/populace/web_book/Webreports.aspx?book=M_CH&menu_id=142
經濟部能源局(2021d)。能源統計資料查詢系統。取自https://www.esist.org.tw/Database
經濟部能源局(2021e)。離岸風電區塊開發選商規劃草案說明會議。臺北市:經濟部能源局。
葉致璋(2016)。汽車特性對汽車銷售量的影響。國立交通大學運輸與物流管理學系碩士論文,新竹市。取自https://hdl.handle.net/11296/cn6d2r
臺中市政府警察局秘書室(2019年6月10日)。電動輔助自行車、電動自行車、電動機車、普通輕型電動機車如何區分?酒後駕駛電動機車、電動自行車及電動輔助自行車有無違規?取自https://www.police.taichung.gov.tw/ch/home.jsp?id=57&parentpath=0,5&mcustomize=faq_view.jsp&dataserno=201712010088&t=FAQ&mserno=201710290002
臺灣電力公司(2021a)。歷史與發展。取自 https://www.taipower.com.tw/tc/page.aspx?mid=33
臺灣電力公司(2021b)。電力小辭典。取自https://www.taipower.com.tw/tc/page.aspx?mid=91
臺灣電力公司(2021c)。空氣污染因應。取自https://csr.taipower.com.tw/tc/mover05.aspx
劉欽瑜(2000)。永續運輸目標下都會區最適運具比例研究。國立臺灣大學土木工程學研究所碩士論文,臺北市。取自https://hdl.handle.net/11296/u8s3e3
蘇世顥、陳郁涵、楊憶婷、徐理寰、郭鴻基 (2017)。氣候變遷下台灣颱風豪雨之變化與機制探討。大氣科學,45(4),305-331。
蘇源昌、蔡志賢、洪珮瑜、蘇淳太、陳冠男、林昱勳、張齡云、曾佩如、朱珮芸、傅強、蕭為元(2020)。交通空污排放量推估與空污熱點分析。臺北市:交通部運輸研究所。
英文文獻
Abbas, K. A., & Bell, M. G. (1994). System dynamics applicability to transportation modeling. Transportation Research Part A: Policy and Practice, 28(5), 373-390.
Abdul-Manan, A. F. (2015). Uncertainty and differences in GHG emissions between electric and conventional gasoline vehicles with implications for transport policy making. Energy Policy, 87, 1-7.
Adamantiades, A., & Kessides, I. (2009). Nuclear power for sustainable development: current status and future prospects. Energy Policy, 37(12), 5149-5166.
Ahn, S. J., Kim, L., & Kwon, O. (2018). Korea''s social dynamics towards power supply and air pollution caused by electric vehicle diffusion. Journal of Cleaner Production, 205, 1042-1068.
Ajanovic, A., & Haas, R. (2016). Dissemination of electric vehicles in urban areas: Major factors for success. Energy, 115, 1451-1458.
Alimujiang, A., & Jiang, P. (2020). Synergy and co-benefits of reducing CO2 and air pollutant emissions by promoting electric vehicles—a case of Shanghai. Energy for Sustainable Development, 55, 181-189.
Aslam, T., & Ng, A. H. C. (2016). Combining system dynamics and multi-objective optimization with design space reduction. Industrial Management & Data Systems.
Aslani, A., Helo, P., & Naaranoja, M. (2014). Role of renewable energy policies in energy dependency in Finland: System dynamics approach. Applied energy, 113, 758-765.
Ateweberhan, M., & McClanahan, T. R. (2010). Relationship between historical sea-surface temperature variability and climate change-induced coral mortality in the western Indian Ocean. Marine Pollution Bulletin, 60(7), 964-970.
Baptista, P. C., Silva, C. M., Lopes, J. P., Soares, F. J., & Almeida, P. R. (2013). Evaluation of the benefits of the introduction of electricity powered vehicles in an island. Energy Conversion and Management, 76, 541-553.
Baran, R., & Legey, L. F. L. (2013). The introduction of electric vehicles in Brazil: Impacts on oil and electricity consumption. Technological Forecasting and Social Change, 80(5), 907-917.
Bastida-Molina, P., Hurtado-Pérez, E., Peñalvo-López, E., & Moros-Gómez, M. C. (2020). Assessing transport emissions reduction while increasing electric vehicles and renewable generation levels. Transportation Research Part D: Transport and Environment, 88, 102560.
Bayat, R., Ashrafi, K., Motlagh, M. S., Hassanvand, M. S., Daroudi, R., Fink, G., & Künzli, N. (2019). Health impact and related cost of ambient air pollution in Tehran. Environmental research, 176, 108547.
Beck, M. W., Losada, I. J., Menéndez, P., Reguero, B. G., Díaz-Simal, P., & Fernández, F. (2018). The global flood protection savings provided by coral reefs. Nature communications, 9(1), 1-9.
Beirão, G., & Cabral, J. S. (2007). Understanding attitudes towards public transport and private car: A qualitative study. Transport policy, 14(6), 478-489.
Bickert, S., Kampker, A., & Greger, D. (2015). Developments of CO2-emissions and costs for small electric and combustion engine vehicles in Germany. Transportation Research Part D: Transport and Environment, 36, 138-151.
Bielecki, J. (2002). Energy security: is the wolf at the door?. The quarterly review of economics and finance, 42(2), 235-250.
Box, G. E., & Draper, N. R. (1987). Empirical model-building and response surfaces. John Wiley & Sons.
Brady, J., & O’Mahony, M. (2011). Travel to work in Dublin. The potential impacts of electric vehicles on climate change and urban air quality. Transportation Research Part D: Transport and Environment, 16(2), 188-193.
Bu, X., Xie, Z., Liu, J., Wei, L., Wang, X., Chen, M., & Ren, H. (2021). Global PM2. 5-attributable health burden from 1990 to 2017: Estimates from the Global Burden of disease study 2017. Environmental Research, 197, 111123.
Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M., & McCorkle, D. C. (2010). Ocean warming slows coral growth in the central Red Sea. Science, 329(5989), 322-325.
Carroll, P., Caulfield, B., & Ahern, A. (2019). Measuring the potential emission reductions from a shift towards public transport. Transportation Research Part D: Transport and Environment, 73, 338-351.
Chang, H. L., & Lai, C. Y. (2015). Using travel socialization and underlying motivations to better understand motorcycle usage in Taiwan. Accident Analysis & Prevention, 79, 212-220.
Chatfield, C. (1995). Model uncertainty, data mining and statistical inference. Journal of the Royal Statistical Society: Series A (Statistics in Society), 158(3), 419-444.
Chen, F., Lu, S. M., Tseng, K. T., Lee, S. C., & Wang, E. (2010). Assessment of renewable energy reserves in Taiwan. Renewable and sustainable energy reviews, 14(9), 2511-2528.
Chen, H., Cong, T. N., Yang, W., Tan, C., Li, Y., & Ding, Y. (2009). Progress in electrical energy storage system: A critical review. Progress in natural science, 19(3), 291-312.
Chen, X., Shao, S., Tian, Z., Xie, Z., & Yin, P. (2017). Impacts of air pollution and its spatial spillover effect on public health based on China''s big data sample. Journal of Cleaner Production, 142, 915-925.
Cherp, A., & Jewell, J. (2014). The concept of energy security: Beyond the four As. Energy policy, 75, 415-421.
Choi, W., & Song, H. H. (2018). Well-to-wheel greenhouse gas emissions of battery electric vehicles in countries dependent on the import of fuels through maritime transportation: A South Korean case study. Applied energy, 230, 135-147.
Choma, E. F., Evans, J. S., Hammitt, J. K., Gómez-Ibáñez, J. A., & Spengler, J. D. (2020). Assessing the health impacts of electric vehicles through air pollution in the United States. Environment International, 144, 106015.
Chuang, M. T., Chang, S. Y., Hsiao, T. C., Lu, Y. R., & Yang, T. Y. (2019). Analyzing major renewable energy sources and power stability in Taiwan by 2030. Energy Policy, 125, 293-306.
Curtis, L., Rea, W., Smith-Willis, P., Fenyves, E., & Pan, Y. (2006). Adverse health effects of outdoor air pollutants. Environment international, 32(6), 815-830.
Dargay, J., & Gately, D. (1999). Income''s effect on car and vehicle ownership, worldwide: 1960–2015. Transportation Research Part A: Policy and Practice, 33(2), 101-138.
Dargay, J., Gately, D., & Sommer, M. (2007). Vehicle ownership and income growth, worldwide: 1960-2030. The energy journal, 28(4).
Desjardins, J. (2018). The rising speed of technological adoption. Visual Capitalist, 14.
Dhirasasna, N., & Sahin, O. (2021). A system dynamics model for renewable energy technology adoption of the hotel sector. Renewable Energy, 163, 1994-2007.
Dilley, M., Chen, R., Deichmann, A., Lerner-Lam, A., Arnold, M. (2005). Natural Disaster Hotspots: A Global Risk Analysis. Washington, DC: World Bank.
Dominković, D. F., Bačeković, I., Pedersen, A. S., & Krajačić, G. (2018). The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition. Renewable and Sustainable Energy Reviews, 82, 1823-1838.
Dosio, A., Mentaschi, L., Fischer, E. M., Wyser, K. (2018). Extreme heat waves under 1.5 C and 2 C global warming. Environmental Research Letters, 13(5), 054006.
Doucette, R. T., & McCulloch, M. D. (2011). Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries. Energy Policy, 39(2), 803-811.
Ellaway, A., Macintyre, S., Hiscock, R., & Kearns, A. (2003). In the driving seat: psychosocial benefits from private motor vehicle transport compared to public transport. Transportation Research Part F: Traffic Psychology and Behaviour, 6(3), 217-231.
Eneizan, B. M., Abd Wahab, K., & Obaid, T. F. (2016). Effects of green marketing strategies on sales volume of green cars. Singaporean Journal of Business, Economics and Management Studies, 51(3814), 1-14.
EPA (Environmental Protection Agency) (2021a). Climate Change Indicators: Coastal Flooding. Retrieved from https://www.epa.gov/climate-indicators/climate-change-indicators-coastal-flooding
EPA (Environmental Protection Agency). (2021b). All-Electric Vehicles. Retrieved from https://www.fueleconomy.gov/feg/evtech.shtml
Eriksson, L., Garvill, J., & Nordlund, A. M. (2008). Acceptability of single and combined transport policy measures: The importance of environmental and policy specific beliefs. Transportation Research Part A: Policy and Practice, 42(8), 1117-1128.
EUR-Lex (2021). EUR-Lex - 32019R0631. Retrieved from https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32019R0631
Eyre, B. D., Andersson, A. J., & Cyronak, T. (2014). Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nature Climate Change, 4(11), 969-976.
Fabry, V. J., Seibel, B. A., Feely, R. A., & Orr, J. C. (2008). Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science, 65(3), 414-432.
Fang, D., Wang, Q. G., Li, H., Yu, Y., Lu, Y., & Qian, X. (2016). Mortality effects assessment of ambient PM2. 5 pollution in the 74 leading cities of China. Science of the Total Environment, 569, 1545-1552.
Faridi, S., Shamsipour, M., Krzyzanowski, M., Künzli, N., Amini, H., Azimi, F., ... & Naddafi, K. (2018). Long-term trends and health impact of PM2. 5 and O3 in Tehran, Iran, 2006–2015. Environment international, 114, 37-49.
Ferrero, E., Alessandrini, S., & Balanzino, A. (2016). Impact of the electric vehicles on the air pollution from a highway. Applied energy, 169, 450-459.
Flämig, H., Lunkeit, S., Rosenberger, K., & Wolff, J. (2020). Enlarging the scale of BEVs through environmental zoning to reduce GHG emissions: A case study for the city of Hamburg. Research in Transportation Business & Management, 36, 100418.
Frangoul, A. (2021, March 2). Volvo says it will be ‘fully electric’ by 2030 and move car sales online. CNBC, Retrieved from https://www.cnbc.com/2021/03/02/volvo-says-it-will-be-fully-electric-by-2030-move-car-sales-online.html.
Frieler, K., Meinshausen, M., Golly, A., Mengel, M., Lebek, K., Donner, S. D., & Hoegh-Guldberg, O. (2013). Limiting global warming to 2 C is unlikely to save most coral reefs. Nature Climate Change, 3(2), 165-170.
Fuel Economy (2021). Retrieved from https://www.fueleconomy.gov/
Gan, Y., Lu, Z., Cai, H., Wang, M., He, X., & Przesmitzki, S. (2020). Future private car stock in China: current growth pattern and effects of car sales restriction. Mitigation and Adaptation Strategies for Global Change, 25(3), 289-306.
Gao, M., Beig, G., Song, S., Zhang, H., Hu, J., Ying, Q., ... & McElroy, M. B. (2018). The impact of power generation emissions on ambient PM2.5 pollution and human health in China and India. Environment international, 121, 250-259.
Gardner, B., & Abraham, C. (2007). What drives car use? A grounded theory analysis of commuters’ reasons for driving. Transportation Research Part F: Traffic Psychology and Behaviour, 10(3), 187-200.
Gärling, T., & Schuitema, G. (2007). Travel demand management targeting reduced private car use: effectiveness, public acceptability and political feasibility. Journal of social issues, 63(1), 139-153.
Gately, C. K., Hutyra, L. R., Peterson, S., & Wing, I. S. (2017). Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data. Environmental pollution, 229, 496-504.
Gay, D., Rogers, T., & Shirley, R. (2018). Small island developing states and their suitability for electric vehicles and vehicle-to-grid services. Utilities Policy, 55, 69-78.
Geroski, P. A. (2000). Models of technology diffusion. Research policy, 29(4-5), 603-625.
Guttikunda, S. K., & Jawahar, P. (2014). Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmospheric Environment, 92, 449-460.
Hafezi, M., Stewart, R. A., Sahin, O., Giffin, A. L., & Mackey, B. (2021). Evaluating coral reef ecosystem services outcomes from climate change adaptation strategies using integrative system dynamics. Journal of Environmental Management, 285, 112082.
Hagen, J. X., Pardo, C., & Valente, J. B. (2016). Motivations for motorcycle use for Urban travel in Latin America: A qualitative study. Transport Policy, 49, 93-104.
Halton, C. (2021). Diffusion of Innovations Theory. Investopedia. Retrieved from https://www.investopedia.com/terms/d/diffusion-of-innovations-theory.asp
Han, J., & Hayashi, Y. (2008). A system dynamics model of CO2 mitigation in China’s inter-city passenger transport. Transportation Research Part D: Transport and Environment, 13(5), 298-305.
Hassan, S. T., Baloch, M. A., & Tarar, Z. H. (2020). Is nuclear energy a better alternative for mitigating CO2 emissions in BRICS countries? An empirical analysis. Nuclear Engineering and Technology, 52(12), 2969-2974.
Hasunuma, H., Ishimaru, Y., Yoda, Y., & Shima, M. (2014). Decline of ambient air pollution levels due to measures to control automobile emissions and effects on the prevalence of respiratory and allergic disorders among children in Japan. Environmental research, 131, 111-118.
He, K., Huo, H., Zhang, Q., He, D., An, F., Wang, M., & Walsh, M. P. (2005). Oil consumption and CO2 emissions in China''s road transport: current status, future trends, and policy implications. Energy policy, 33(12), 1499-1507.
Hendriks, I. E., Duarte, C. M., & Álvarez, M. (2010). Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuarine, Coastal and Shelf Science, 86(2), 157-164.
Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world''s coral reefs. Marine and freshwater research, 50(8), 839-866.
Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B., & Kaufman, J. D. (2013). Long-term air pollution exposure and cardio-respiratory mortality: a review. Environmental health, 12(1), 1-16.
Hoffmann, B., Moebus, S., Mohlenkamp, S., Stang, A., Lehmann, N., Dragano, N., ... & Jockel, K. H. (2007). Residential exposure to traffic is associated with coronary atherosclerosis. Circulation, 116(5), 489-496.
Hofmann, J., Guan, D., Chalvatzis, K., & Huo, H. (2016). Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China. Applied energy, 184, 995-1003.
Holdway, A. R., Williams, A. R., Inderwildi, O. R., & King, D. A. (2010). Indirect emissions from electric vehicles: emissions from electricity generation. Energy & Environmental Science, 3(12), 1825-1832.
Holzworth, D. P., Huth, N. I., & deVoil, P. G. (2011). Simple software processes and tests improve the reliability and usefulness of a model. Environmental modelling & software, 26(4), 510-516.
Huo, H., & Wang, M. (2012). Modeling future vehicle sales and stock in China. Energy Policy, 43, 17-29.
Hwang, J. J. (2010). Sustainable transport strategy for promoting zero-emission electric scooters in Taiwan. Renewable and Sustainable Energy Reviews, 14(5), 1390-1399.
icct (2021). Global ICE phase-out map: Passenger vehicles. Retrieved from https://theicct.org/ldv-ice-global-phase-out-map
IEA (2019). Transport sector CO2 emissions by mode in the Sustainable Development Scenario, 2000-2030. Retrieved May 21, 2021, from https://www.iea.org/data-and-statistics/charts/transport-sector-co2-emissions-by-mode-in-the-sustainable-development-scenario-2000-2030
IEA (2020a). Global CO2 emissions by sector, 2018. IEA, Paris https://www.iea.org/data-and-statistics/charts/global-co2-emissions-by-sector-2018
IEA (2020b). Key World Energy Statistics 2020. IEA, Paris https://www.iea.org/reports/key-world-energy-statistics-2020
Jacobson, M. Z. (2009). Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science, 2(2), 148-173.
Janssen, N. A., Hoek, G., Simic-Lawson, M., Fischer, P., Van Bree, L., Ten Brink, H., ... & Cassee, F. R. (2011). Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2. 5. Environmental health perspectives, 119(12), 1691-1699.
Kan, H., Chen, B., & Hong, C. (2009). Health impact of outdoor air pollution in China: current knowledge and future research needs. Environmental health perspectives, 117(5), A187-A187.
Kan, H., Chen, R., & Tong, S. (2012). Ambient air pollution, climate change, and population health in China. Environment international, 42, 10-19.
Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities'' ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric environment, 120, 475-483.
Kaur, R. R., & Luthra, A. (2018). Population growth, urbanization and electricity-Challenges and initiatives in the state of Punjab, India. Energy strategy reviews, 21, 50-61.
Ke, W., Zhang, S., He, X., Wu, Y., & Hao, J. (2017). Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress. Applied Energy, 188, 367-377.
Kenneth R. Lang (2010). 2. Global Warming: Heating by the greenhouse effect. Retrieved from https://ase.tufts.edu/cosmos/view_chapter.asp?id=21&page=1
Kiriyama, E., & Kajikawa, Y. (2014). A multilayered analysis of energy security research and the energy supply process. Applied Energy, 123, 415-423.
Knobloch, F., Hanssen, S. V., Lam, A., Pollitt, H., Salas, P., Chewpreecha, U, Huijbregts, M. A., & Mercure, J. F. (2020). Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nature sustainability, 3(6), 437-447.
Ko, E., Hwang, Y. K., & Kim, E. Y. (2013). Green marketing''functions in building corporate image in the retail setting. Journal of Business Research, 66(10), 1709-1715.
Ko, L., Wang, J. C., Chen, C. Y., & Tsai, H. Y. (2015). Evaluation of the development potential of rooftop solar photovoltaic in Taiwan. Renewable Energy, 76, 582-595.
Kontogiannis, T. (2021). A qualitative model of patterns of resilience and vulnerability in responding to a pandemic outbreak with system dynamics. Safety Science, 134, 105077.
Koźlak, A., & Wach, D. (2018). Causes of traffic congestion in urban areas. Case of Poland. In SHS Web of Conferences (Vol. 57, p. 01019). EDP Sciences.
Kumar, R., Das, S. K., Nayak, S., & Paswan, M. (2021). Sustainable energy security of India based on energy supply. Materials Today: Proceedings.
Kung, C. C., & McCarl, B. A. (2020). The potential role of renewable electricity generation in Taiwan. Energy Policy, 138, 111227.
Künzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger, P., ... & Sommer, H. (2000). Public-health impact of outdoor and traffic-related air pollution: a European assessment. The Lancet, 356(9232), 795-801.
Kurdgelashvili, L., Shih, C. H., Yang, F., & Garg, M. (2019). An empirical analysis of county-level residential PV adoption in California. Technological Forecasting and Social Change, 139, 321-333.
Laden, F., Neas, L. M., Dockery, D. W., & Schwartz, J. (2000). Association of fine particulate matter from different sources with daily mortality in six US cities. Environmental health perspectives, 108(10), 941-947.
Lampert, A. (2020, November 17). Quebec to ban sale of new gasoline-powered cars from 2035. REUTERS, Retrieved from https://www.reuters.com/article/us-autos-canada-emissions-idUSKBN27W289.
Lazzeroni, P., Cirimele, V., & Canova, A. (2020). Economic and environmental sustainability of Dynamic Wireless Power Transfer for electric vehicles supporting reduction of local air pollutant emissions. Renewable and Sustainable Energy Reviews, 110537.
Lee, H. C., & Chang, C. T. (2018). Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renewable and Sustainable Energy Reviews, 92, 883-896.
Lee, S., Kim, M., & Lee, J. (2017). Analyzing the impact of nuclear power on CO2 emissions. Sustainability, 9(8), 1428.
Leggat, W. P., Camp, E. F., Suggett, D. J., Heron, S. F., Fordyce, A. J., Gardner, S., ... & Ainsworth, T. D. (2019). Rapid coral decay is associated with marine heatwave mortality events on reefs. Current Biology, 29(16), 2723-2730.
Li, L., Wang, Z., & Wang, Q. (2020). Do policy mix characteristics matter for electric vehicle adoption? A survey-based exploration. Transportation Research Part D: Transport and Environment, 87, 102488.
Li, N., Chen, J. P., Tsai, I. C., He, Q., Chi, S. Y., Lin, Y. C., & Fu, T. M. (2016). Potential impacts of electric vehicles on air quality in Taiwan. Science of the total environment, 566, 919-928.
Lin, C. H., Tung, C. M., & Huang, C. T. (2006). Elucidating the industrial cluster effect from a system dynamics perspective. Technovation, 26(4), 473-482.
Linda, S. T. E. G. (2003). Can public transport compete with the private car?. IATSS research, 27(2), 27-35.
Lindsey, R. (2021).Climate Change: Global Sea Level. Retrieved from https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level
Liu, C., & Lin, Z. (2017). How uncertain is the future of electric vehicle market: Results from Monte Carlo simulations using a nested logit model. International Journal of Sustainable Transportation, 11(4), 237-247.
Liu, D., & Xiao, B. (2018). Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model. Energy Policy, 120, 8-23.
Liu, J., Cai, W., Zhu, S., & Dai, F. (2020). Impacts of vehicle emission from a major road on spatiotemporal variations of neighborhood particulate pollution—A case study in a university campus. Sustainable Cities and Society, 53, 101917.
Liu, X., Ma, S., Tian, J., Jia, N., & Li, G. (2015). A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing. Energy Policy, 85, 253-270.
Lott, M. C., Pye, S., & Dodds, P. E. (2017). Quantifying the co-impacts of energy sector decarbonisation on outdoor air pollution in the United Kingdom. Energy Policy, 101, 42-51.
Lu, I. J., Lewis, C., & Lin, S. J. (2009). The forecast of motor vehicle, energy demand and CO2 emission from Taiwan''s road transportation sector. Energy policy, 37(8), 2952-2961.
Lueken, R., Klima, K., Griffin, W. M., & Apt, J. (2016). The climate and health effects of a USA switch from coal to gas electricity generation. Energy, 109, 1160-1166.
Luo, Y., Mou, Y., Wang, Z., Su, Z., & Qin, Y. (2020). Scenario-based planning for a dynamic tourism system with carbon footprint analysis: A case study of Xingwen Global Geopark, China. Journal of Cleaner Production, 254, 119999.
Marquet, O., & Miralles-Guasch, C. (2016). City of Motorcycles. On how objective and subjective factors are behind the rise of two-wheeled mobility in Barcelona. Transport policy, 52, 37-45.
Martins, N. R., & da Graça, G. C. (2018). Impact of PM2. 5 in indoor urban environments: A review. Sustainable Cities and Society, 42, 259-275.
Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. T. ., ... &Waterfield (eds.) .(2018): Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty Geneva, Switzerland.
McCarthy, M. P., Best, M. J., & Betts, R. A. (2010). Climate change in cities due to global warming and urban effects. Geophysical research letters, 37(9).
McGrath, R. (2013). The pace of technology adoption is speeding up. Harvard Business Review, 25.
Mohnen, P., & Röller, L. H. (2005). Complementarities in innovation policy. European economic review, 49(6), 1431-1450.
Moro, A., & Lonza, L. (2018). Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transportation Research Part D: Transport and Environment, 64, 5-14.
Muellner, N., Arnold, N., Gufler, K., Kromp, W., Renneberg, W., & Liebert, W. (2021). Nuclear energy-The solution to climate change?. Energy Policy, 155, 112363.
Mufson, S. (2021, January 29). General Motors to eliminate gasoline and diesel light-duty cars and SUVs by 2035. The Washington Post, Retrieved from https://www.washingtonpost.com/climate-environment/2021/01/28/general-motors-electric/.
Myhre, G., Alterskjær, K., Stjern, C. W., Hodnebrog, Ø., Marelle, L., Samset, B. H., ... & Stohl, A. (2019). Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific reports, 9(1), 1-10.
Nalini, S. P., Brent, A. C., Musango, J. K., & Francois, v. G. (2020). Using a system dynamics modelling process to determine the impact of eCar, eBus and eTruck market penetration on carbon emissions in south africa. Energies, 13(3), 575.
Naseri, M. B., & Elliott, G. (2013). The diffusion of online shopping in Australia: Comparing the Bass, Logistic and Gompertz growth models. Journal of Marketing Analytics, 1(1), 49-60.
Nassar, I. A., Hossam, K., & Abdella, M. M. (2019). Economic and environmental benefits of increasing the renewable energy sources in the power system. Energy Reports, 5, 1082-1088.
Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding--a global assessment. PloS one, 10(3), e0118571-e0118571.
Nguyen-Phuoc, D. Q., Currie, G., De Gruyter, C., & Young, W. (2018). Congestion relief and public transport: An enhanced method using disaggregate mode shift evidence. Case Studies on Transport Policy, 6(4), 518-528.
Nieto, M., Lopéz, F., & Cruz, F. (1998). Performance analysis of technology using the S curve model: the case of digital signal processing (DSP) technologies. Technovation, 18(6-7), 439-457.
Niu, D. X., Song, Z. Y., & Xiao, X. L. (2017). Electric power substitution for coal in China: Status quo and SWOT analysis. Renewable and Sustainable Energy Reviews, 70, 610-622.
Norsk elbilforening. (n.d.). Norwegian EV policy. Retrieved May 27, 2021, from https://elbil.no/english/norwegian-ev-policy/
Onn, C. C., Mohd, N. S., Yuen, C. W., Loo, S. C., Koting, S., Abd Rashid, A. F., ... & Yusoff, S. (2018). Greenhouse gas emissions associated with electric vehicle charging: The impact of electricity generation mix in a developing country. Transportation Research Part D: Transport and Environment, 64, 15-22.
Oxford Languages. (n.d.). Word of the Year 2019. Retrieved 2021, from https://languages.oup.com/word-of-the-year/2019/
Oxford Learner’s Dictionaries. (n.d.). climate emergency. Retrieved 2021, from https://www.oxfordlearnersdictionaries.com/definition/english/climate-emergency
Ozdemir, A., Koc, I. M., & Sumer, B. (2020). Comparative study on Well-to-Wheels emissions between fully electric and conventional automobiles in Istanbul. Transportation Research Part D: Transport and Environment, 87, 102508.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., ... & van Ypserle, J. P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Switzerlan, p. 4.
Pan, S., Roy, A., Choi, Y., Eslami, E., Thomas, S., Jiang, X., & Gao, H. O. (2019). Potential impacts of electric vehicles on air quality and health endpoints in the Greater Houston Area in 2040. Atmospheric Environment, 207, 38-51.
Patankar, A. M., & Trivedi, P. L. (2011). Monetary burden of health impacts of air pollution in Mumbai, India: implications for public health policy. Public health, 125(3), 157-164.
Plaisance, L., Caley, M. J., Brainard, R. E., & Knowlton, N. (2011). The diversity of coral reefs: what are we missing?. PloS one, 6(10), e25026.
Plumer, B., & Cowan, J. (2020, September 23). California Plans to Ban Sales of New Gas-Powered Cars in 15 Years. The New York Times, Retrieved from https://www.nytimes.com/2020/09/23/climate/california-ban-gas-cars.html.
Pope III, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the air & waste management association, 56(6), 709-742.
Posada, J. O. G., Abdalla, A. H., Oseghale, C. I., & Hall, P. J. (2016). Multiple regression analysis in the development of NiFe cells as energy storage solutions for intermittent power sources such as wind or solar. international journal of hydrogen energy, 41(37), 16330-16337.
Prăvălie, R., & Bandoc, G. (2018). Nuclear energy: between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications. Journal of environmental management, 209, 81-92.
Pui, D. Y., Chen, S. C., & Zuo, Z. (2014). PM2. 5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology, 13, 1-26.
Qiao, Q., Zhao, F., Liu, Z., Jiang, S., & Hao, H. (2017). Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China. Applied Energy, 204, 1399-1411.
Ramanathan, R. (2000). Link between population and number of vehicles: Evidence from Indian cities. Cities, 17(4), 263-269.
Rao, K. U., & Kishore, V. V. N. (2010). A review of technology diffusion models with special reference to renewable energy technologies. Renewable and sustainable energy reviews, 14(3), 1070-1078.
Raugei, M., Hutchinson, A., & Morrey, D. (2018). Can electric vehicles significantly reduce our dependence on non-renewable energy? Scenarios of compact vehicles in the UK as a case in point. Journal of Cleaner Production, 201, 1043-1051.
Richard Betts MBE (2021, March 16). Met Office: Atmospheric CO2 now hitting 50% higher than pre-industrial levels. Retrieved from https://www.carbonbrief.org/met-office-atmospheric-co2-now-hitting-50-higher-than-pre-industrial-levels.
Riley, K. (2002). Motor vehicles in China: the impact of demographic and economic changes. Population and Environment, 23(5), 479-494.
Saidi, K., & Omri, A. (2020). Reducing CO2 emissions in OECD countries: Do renewable and nuclear energy matter?. Progress in Nuclear Energy, 126, 103425.
Santamouris, M., Cartalis, C., Synnefa, A., & Kolokotsa, D. (2015). On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy and Buildings, 98, 119-124..
Shafiei, E., Thorkelsson, H., Ásgeirsson, E. I., Davidsdottir, B., Raberto, M., & Stefansson, H. (2012). An agent-based modeling approach to predict the evolution of market share of electric vehicles: A case study from Iceland. Technological Forecasting and Social Change, 79(9), 1638-1653.
Sharma, R. D., Jain, S., & Singh, K. (2011). Growth rate of Motor Vehicles in India-Impact of Demographic and Economic Development. Journal of Economic & Social Studies (JECOSS), 1(2).
Shepherd, S., Bonsall, P., & Harrison, G. (2012). Factors affecting future demand for electric vehicles: A model based study. Transport Policy, 20, 62-74.
Sims, R. E., Rogner, H. H., & Gregory, K. (2003). Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy policy, 31(13), 1315-1326.
Smith, W. J. (2010). Can EV (electric vehicles) address Ireland’s CO2 emissions from transport?. Energy, 35(12), 4514-4521.
Soltani-Sobh, A., Heaslip, K., Stevanovic, A., Bosworth, R., & Radivojevic, D. (2017). Analysis of the electric vehicles adoption over the United States. Transportation research procedia, 22, 203-212.
Soylu, S. (2007). Estimation of Turkish road transport emissions. Energy Policy, 35(8), 4088-4094.
Spalding, M., Burke, L., Wood, S. A., Ashpole, J., Hutchison, J., & Zu Ermgassen, P. (2017). Mapping the global value and distribution of coral reef tourism. Marine Policy, 82, 104-113.
Statista (2021). U.S. vehicle scrappage rate between 2009 and 2019. Retrieved from https://www.statista.com/statistics/738684/us-vehicle-scrappage-rate/
Sterman, J. (2000). Business dynamics. McGraw-Hill, Inc..
Stocker, T. (Ed.). (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press.
Tan, Y., Jiao, L., Shuai, C., & Shen, L. (2018). A system dynamics model for simulating urban sustainability performance: A China case study. Journal of cleaner production, 199, 1107-1115.
Taylor, M. (2021, February 15). Jaguar To Turn All Electric By 2025, Land Rover EVs Start In 2024. Forbes, Retrieved from https://www.forbes.com/sites/michaeltaylor/2021/02/15/jaguar-to-turn-all-electric-by-2025-land-rover-evs-start-in-2024/.
Teh, L. S., Teh, L. C., & Sumaila, U. R. (2013). A global estimate of the number of coral reef fishers. PLoS One, 8(6), e65397.
Thomas, C. S. (2012). How green are electric vehicles?. International journal of hydrogen energy, 37(7), 6053-6062.
Thomas, C. S. (2012). US marginal electricity grid mixes and EV greenhouse gas emissions. International journal of hydrogen energy, 37(24), 19231-19240.
Tran, P. T., Nguyen, T., & Balasubramanian, R. (2020). Personal exposure to airborne particles in transport micro-environments and potential health impacts: A tale of two cities. Sustainable Cities and Society, 63, 102470.
U. Haque, P.F. Da Silva, G. Devoli, J. Pilz, B. Zhao, A. Khaloua, W. Wilopo, P. Andersen, P. Lu, J. Lee, T. Yamamoto, D. Keellings, J.H. Wu, G.E. Glass.(2019).The human cost of global warming: deadly landslides and their triggers (1995–2014). Science of the Total Environment, 682, 673-684.
Vafa-Arani, H., Jahani, S., Dashti, H., Heydari, J., & Moazen, S. (2014). A system dynamics modeling for urban air pollution: A case study of Tehran, Iran. Transportation Research Part D: Transport and Environment, 31, 21-36.
Van der Kam, M. J., Meelen, A. A. H., Van Sark, W. G. J. H. M., & Alkemade, F. (2018). Diffusion of solar photovoltaic systems and electric vehicles among Dutch consumers: Implications for the energy transition. Energy research & social science, 46, 68-85.
van Zalk, J., & Behrens, P. (2018). The spatial extent of renewable and non-renewable power generation: A review and meta-analysis of power densities and their application in the US. Energy Policy, 123, 83-91.
Varga, B. O. (2013). Electric vehicles, primary energy sources and CO2 emissions: Romanian case study. Energy, 49, 61-70.
Wainer, H., & Thissen, D. (1987). Estimating ability with the wrong model. Journal of Educational Statistics, 12(4), 339-368.
Wang, L., Yu, Y., Huang, K., Zhang, Z., & Li, X. (2020). The inharmonious mechanism of CO2, NOx, SO2, and PM2. 5 electric vehicle emission reductions in Northern China. Journal of Environmental Management, 274, 111236.
Wang, X., Jiang, D., & Lang, X. (2017). Future extreme climate changes linked to global warming intensity. Science Bulletin, 62(24), 1673-1680.
Winzer, C. (2012). Conceptualizing energy security. Energy policy, 46, 36-48.
Wismer, S., Tebbett, S. B., Streit, R. P., & Bellwood, D. R. (2019). Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Science of the Total Environment, 650, 1487-1498.
Wittmann, A. C., & Pörtner, H. O. (2013). Sensitivities of extant animal taxa to ocean acidification. Nature Climate Change, 3(11), 995-1001.
Wu, T., Zhao, H., & Ou, X. (2014). Vehicle ownership analysis based on GDP per capita in China: 1963–2050. Sustainability, 6(8), 4877-4899.
Wu, Y. H., Liu, C. H., Hung, M. L., Liu, T. Y., & Masui, T. (2019). Sectoral energy efficiency improvements in Taiwan: Evaluations using a hybrid of top-down and bottom-up models. Energy Policy, 132, 1241-1255.
Wu, Y., Yang, Z., Lin, B., Liu, H., Wang, R., Zhou, B., & Hao, J. (2012). Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China. Energy Policy, 48, 537-550.
Xin, Y., Shao, S., Wang, Z., Xu, Z., & Li, H. (2021). COVID-2019 Lockdown in Beijing: A Rare Opportunity to Analyze the Contribution Rate of Road Traffic to Air Pollutants. Sustainable Cities and Society, 102989.
Xing, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2. 5 on the human respiratory system. Journal of thoracic disease, 8(1), E69.
Yan, S. (2018). The economic and environmental impacts of tax incentives for battery electric vehicles in Europe. Energy Policy, 123, 53-63.
Yang, C. Y., Chang, C. C., Chuang, H. Y., Tsai, S. S., Wu, T. N., & Ho, C. K. (2004). Relationship between air pollution and daily mortality in a subtropical city: Taipei, Taiwan. Environment international, 30(4), 519-523.
Yang, J., & Zhang, B. (2018). Air pollution and healthcare expenditure: Implication for the benefit of air pollution control in China. Environment international, 120, 443-455.
Yang, W., Zhou, H., Liu, J., Dai, S., Ma, Z., & Liu, Y. (2015, September). Market evolution modeling for electric vehicles based on system dynamics and multi-agents. In 2015 International Symposium on Smart Electric Distribution Systems and Technologies (EDST) (pp. 133-138). IEEE.
Yang, X., Lin, W., Gong, R., Zhu, M., & Springer, C. (2021). Transport decarbonization in big cities: An integrated environmental co-benefit analysis of vehicles purchases quota-limit and new energy vehicles promotion policy in Beijing. Sustainable Cities and Society, 102976.
Yong, J. Y., Ramachandaramurthy, V. K., Tan, K. M., & Mithulananthan, N. (2015). A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renewable and Sustainable Energy Reviews, 49, 365-385.
You, C. A., & Xu, X. C. (2010). Coal combustion and its pollution control in China. Energy, 35(11), 4467-4472.
Yuan, X., & Cai, Y. (2021). Forecasting the development trend of low emission vehicle technologies: Based on patent data. Technological Forecasting and Social Change, 166, 120651.
Yue, C. D., & Huang, G. R. (2011). An evaluation of domestic solar energy potential in Taiwan incorporating land use analysis. Energy Policy, 39(12), 7988-8002.
Yue, C. D., & Huang, G. R. (2011). An evaluation of domestic solar energy potential in Taiwan incorporating land use analysis. Energy Policy, 39(12), 7988-8002.
Yue, C. D., & Yang, M. H. (2009). Exploring the potential of wind energy for a coastal state. Energy Policy, 37(10), 3925-3940.
Zandalinas, S. I., Fritschi, F. B., & Mittler, R. (2021). Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. Trends in Plant Science.
Zare, F., Elsawah, S., Bagheri, A., Nabavi, E., & Jakeman, A. J. (2019). Improved integrated water resource modelling by combining DPSIR and system dynamics conceptual modelling techniques. Journal of environmental management, 246, 27-41.
Zhang, J., Ji, M., & Zhang, Y. (2015). Tourism sustainability in Tibet–Forward planning using a systems approach. Ecological Indicators, 56, 218-228.
Zhang, K., & Batterman, S. (2013). Air pollution and health risks due to vehicle traffic. Science of the total Environment, 450, 307-316.
Zheng, J., Sun, X., Jia, L., & Zhou, Y. (2020). Electric passenger vehicles sales and carbon dioxide emission reduction potential in China’s leading markets. Journal of Cleaner Production, 243, 118607.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊