跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/22 16:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林佳慧
研究生(外文):Jia-Huei Lin
論文名稱:開發具溫度補償讀出電路之心肌鈣蛋白I感測微系統
論文名稱(外文):Development of an Extended-Gate Field Effect Transistor Based cTnI Sensing Microsystem with Temperature Compensation and Readout Circuit
指導教授:黃義佑
指導教授(外文):Huang, I-Yu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:83
中文關鍵詞:溫度效應溫度校正與補償電路微機電製程技術延伸式閘極場效電晶場心肌鈣蛋白I
外文關鍵詞:temperature effecttemperature calibration and compensation circuitmicro electro mechanical systemsextended gate field-effect-transistorcardiac troponin-I
相關次數:
  • 被引用被引用:1
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  近年來,從結構的改良至不同的感測機制,有大量的離子感測器被開發並應用於工業、環境檢測至生醫等領域,然而由於溫度效應的關係,在不同溫度環境下進行量測時,將會使得量測結果產生誤差,因此本論文除了以延伸式閘極場效電晶體(Extended-gate Field-effect Transistor, EGFET)作為本研究之微型離子感測器,對急性心肌梗塞之生物標誌物心肌鈣蛋白I(Cardiac Troponin-I, cTnI)進行量測,並探討在不同溫度下,對輸出特性產生的影響,再透過開發高精準度之量測電路,對其進行溫度補償及校正。
本論文利用微機電系統技術開發具立體結構延伸式閘極場效電晶體,再搭配具溫度補償及校正功能之訊號讀出電路,以完成心肌鈣蛋白I感測微系統之研發。整體電路分為三部分:橋式讀出電路、溫度校正電路及訊號差分電路,首先透過橋式讀出電路讀取感測器之原始輸出訊號,同時使用商用溫度感測器搭配溫度校正電路,模擬待測液受溫度影響,使感測器產生誤差之項,然後將橋式讀出電路及溫度校正電路之輸出訊號作為訊號差分電路之輸入端,最後得出具溫度補償及校正之輸出訊號。
本論文成功開發一種具溫度校正與補償讀出電路之cTnI感測微系統,於0.1 ng/ml之cTnI抗原溶液中進行量測,經溫度補償後,於15℃時,讀值誤差由14.199%降低至5.438%,於30℃時,讀值誤差由4.309%降低至0.949%。
In recent years, a large number of ion sensors have been developed and applied in the fields of industry, environmental testing and biomedicine. However, due to the temperature effect, when the measurement is performed in a different temperature environment, it will cause errors in the measurement results. Accordingly, the micro-ionic sensors based on extended-gate field-effect transistor (EGFET) are thus adopted to develop in this thesis. Moreover, the biomarkers, Cardiac Troponin-I (abbreviated as cTnI), for acute myocardial infarction is measured with different temperatures to discuss the influences on the output characteristics of the proposed ionic sensors. The mentioned output characteristics are also calibrated and temperature compensated through the development of the detection circuits with high accuracy.
In this thesis, an EGFET-based cTnI microsensor with 3D structure is developed by micro-electromechanical system (MEMS) technology. In addition, a signal read-out circuit with temperature compensation and correction functions is also developed to complete the cTnI sensing microsystem. The proposed circuit is divided into three parts: bridge type readout circuit, temperature calibration circuit, and the signal differential circuit. First, the bridge circuits are adopted to read out the original signals produced by the sensors. Meanwhile, the commercial temperature sensor is connected with the compensating circuits to simulate the effects arising from the pending liquids measured with various temperature and also make the sensors produce error terms. Subsequently, the output signals for temperature compensation and calibration are thus obtained through the fashion by input the signals coming from the bridge circuits and temperature compensation circuits to the circuits for differential signaling.
The EGFET based cTnI sensing microsystem with temperature compensation and readout circuit has been successfully developed in this thesis. After temperature compensation, the reading error is reduced from 14.199% to 5.438% and from 4.309% to 0.949% at 15°C and 30°C, respectively, when measured in 0.1 ng/ml cTnI antigen solution.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 心肌鈣蛋白I醫學檢測分析 3
1.2.2 離子選擇電極 4
1.2.3 離子感測場效電晶體 5
1.2.4 延伸式閘極場效電晶體 6
1.3 實驗方法及論文架構 7
第二章 原理介紹 9
2.1 延伸式閘極場效電晶體原理 9
2.1.1 能斯特方程式 9
2.1.2 吸附鍵結模型 10
2.1.3 延伸式閘極場效電晶體工作原理 11
2.2 心肌鈣蛋白I感測機制 14
2.3 EGFET感測器溫度校正與補償 15
2.3.1 待測液溫度效應 15
2.3.2 感測薄膜與待測液介面溫度效應 16
2.3.3 EGFET臨界電壓溫度效應 16
2.4量測電路架構 16
2.4.1 橋式源極訊號讀出電路 17
2.4.2 溫度校正電路 20
2.4.3 溫度補償電路 22
第三章 元件設計與製作 24
3.1微型cTnI感測晶片設計 24
3.1.1 延伸式閘極場效電晶體結構與光罩設計佈局 25
3.1.2 封裝光罩佈局 28
3.2微型cTnI感測晶片製程 29
3.2.1 延伸式閘極場效電晶體製程步驟 29
3.2.2 封裝晶片製程步驟 44
3.3 感測器封裝與感測薄膜調配 49
3.3.1 微型心肌鈣蛋白I感測晶片之封裝 49
3.3.2 心肌鈣蛋白I感測薄膜條配 51
3.4 具溫度校正與補償效果之電路 52
3.4.1 橋式源極讀出電路 54
3.4.2 溫度校正電路 54
3.4.3 訊號差分補償電路 55
第四章 結果與討論 56
4.1延伸式閘極場效電晶體之電性量測與分析 56
4.1.1 電性量測架構 56
4.1.2 電性量測與分析 57
4.2具溫度校正與補償之讀出電路輸出結果 58
4.2.1 溫度補償電路量測架構 58
4.2.2 橋式源極訊號讀出電路之量測結果 59
4.2.3 商用溫度感測器之量測結果 62
4.2.4 溫度校正電路之量測結果 62
4.2.5 溫度補償電路之量測結果 65
第五章 結論與展望 68
5.1結論 68
5.2未來展望 69
參考文獻 70
[1]余紹華,中國醫藥大學附設醫院,Available online : https://cmuh.cmu.edu.tw/NewsInfo/NewsArticle?no=6913
[2]行政院衛生福利部統計處,109年國人死因統計結果,Available online : https://www.mohw.gov.tw/cp-5017-61533-1.html
[3]彰化基督教醫院檢驗資訊系統,Available online : http://www2.cch.org.tw/labsearch/Lab_Detail.aspx?CODE=FRCTRO
[4]G. Hasenfuss, J. R. Teerlink, “Cardiac inotropes: current agents and future directions,” Eur. Heart J. 32, 1838-1845 (2011).
[5]M. Cremer, “Über die Ursache der elektromotorischen Eigenschaften der Gewebe,zugleich ein Beitrag zur Lehre von den polyphasischen Elektrolytketten,” Z. Biol.47, 562–569 (1906).
[6]S. Makarychev-Mikhailov, A. Shvarev, “Electrochemical Sensors, Biosensors and their Biomedical Applications,” Academic Press (2018).
[7]P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Trans. Biomed. Eng. 17, 70-71 (1970).
[8]P. Bergveld, “Thirty years of ISFETOLOGY what happened in the past 30 years and what may happen in the next 30 years,” Sens. Actuators B: Chem. 88, 1-20 (2003).
[9]S. A. Pullano, N. T. Tasneem, I. Mahbub, S. Shamsir, M. Greco, S .K. Islam and A. S. Fiorillo, “Deep submicron EGFET based on transistor association technique for chemical sensing” Sensors 19, 1063 (2019).
[10]J. Schoning and A. Poghossian, “Recent advances in biologically sensitive field effect transistors,” Analyst 127, 1137-1151 (2002).
[11]E. M. Guerra, G. R. Silva and M. Mulato, “Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol–gel method,” Solid State Sci. 11, 456-460 (2009).
[12]L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrane,” Mater. Chem. Phys. 63,19-23 (2000).
[13]J. L. Chiang, S. S. Jhan, S. C. Hsieh and A. L. Huang, “Hydrogen ion sensors based on indium tin oxide thin film using radio frequency sputtering system,” Thin Solid Films 517, 4805-4809 (2009).
[14]L. T. Yina, Y. T. Linb, Y. C. Leua and C. Y. Hua, “Enzyme immobilization on 54 nitrocellulose film for pH-EGFET type biosensors,” Sens. Actuators B: Chem. 148, 207-213 (2010).
[15]J.-C. Chen, J.-C. Chou, T.-P. Sun and S.-K. Hsiung, “Portable urea biosensor based on the extended-gate field effect transistor,” Sens. Actuators B: Chem. 91, 180-186 (2003).
[16]M. Kamahori, Y. Ishige and M. Shimoda, “A novel enzyme immunoassay based on potentiometric measurement of molecular adsorption events by an extended-gate field-effect transistor sensor,” Biosens. Bioelectron. 22, 3080-3085 (2007).
[17]B. Johan, A. Ivaska, and A. Lewenstam, “Potentiometric Ion Sensors,” Chem. Rev. 108, 329-351 (2008).
[18]D. Yates, S. Levine and T. W. Healy, “Site-binding mode of the electrical double layer at the oxide/water interface,” J. Chem. Soc. Faraday Trans. 70, 1807-1818 (1974).
[19]Van der Spiegel, J. and Lauks, I., “The extended gate chemically sensitive field effect transistor as multi-species microprobe,” Sens. Actuators 4, 291-298(1983).
[20]S. Koji, D. Siswanta, O. Takeshi and A. Tsuyoshi, “Design and synthesis of a more highly selective ammonium ionophore than nonactin and its application as an ion sensing component for an ion-selective electrode,” Anal. Chem. 72, 2200-2205 (2000).
[21]W. Lee, B-k Oh, Y. M. Bae, “Fabrication of self-assembled protein A monolayer and its application as an immunosensor” Biosens. Bioelectron , 19, 185-192 (2003).
[22]W. Gui-Hua, Y. Dun, “ISFET temperature charactristics,” Sens. Actuators 11, 221-237 (1987).
[23]Feynman, R.: The Feynman Lectures of Physics, Addison–Wesley, 1964.
[24]Wen-Yaw Chung, Yeong-Tsair Lin, et al., “New ISFET interface circuit design with temperature compensation,” Microelectronics Journal 37, 1105–1114 (2006).
[25]羅炳琦,開發一種具溫度補償與校正功能之延伸式閘極場效電晶體離子感測器,中山大學電機工程學系碩士論文(2014)。
[26]劉怡萱,具蜂巢幾何結構延伸閘極之微型心肌鈣蛋白感測晶片研發,中山大學電機工程學系碩士論文(2018)。
[27]蘇冠介,具積體化氯化銀參考電積之可攜式微型氯離子感測晶片開發,中山大學電機工程學系碩士論文(2017)。
電子全文 電子全文(網際網路公開日期:20261115)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊