跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/16 03:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏宇
研究生(外文):Bo-Yu Chen
論文名稱:針對具有輸入限制之擾動非線性系統設計適應性超扭曲追蹤控制器
論文名稱(外文):Design of Adaptive Super Twisting Tracking Controllers for Perturbed Nonlinear Systems with Input Constraints
指導教授:鄭志強鄭志強引用關係
指導教授(外文):Cheng,Chih-Chiang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:76
中文關鍵詞:順滑模態控制超扭曲輸入飽和適應控制狀態觀測器
外文關鍵詞:sliding mode controlsuper-twistinginput saturationadaptive controlstate observer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對一類具有輸入限制及匹配與非匹配擾動之多輸入多輸出非線性系統,提出一種適應性超扭曲控制方案來解決問題。首先,部分狀態觀察器被設計用來解決不可測量的狀態問題。其次,提出一種順滑面函數設計和具有輸入飽和的自適應超扭曲順滑模態控制器來解決追蹤問題。飽和輸入的上下界不需要分別為正和負。在某些條件下,追蹤誤差和狀態估測誤差會在有限時間收斂至零。此外,在提出的控制方案裡使用了自適應機制,因此不需要事先完全知道設備中遇到的擾動上限。最後透過數值範例與實際應用,驗證所提出之控制器的可行性。
In this thesis a adaptive super-twisting control scheme is proposed to solve the tracking problems for a class of MIMO nonlinear system with matched and unmatched disturbances under input constraints. First of all, a partial state''s observer is designed to solve the unmeasurable state problems. Secondly, design of a sliding surface function and an adaptive super-twisting sliding mode controller with input saturations are presented to solve the tracking problems. The sign of upper and lower bounds of the input saturations do not have be positive and negative, respectively. The tracking errors and state estimation errors will converge to zero in finite time under certain conditions. In addition, adaptive mechanisms are utilized in the proposed control scheme so that the upper bounds of perturbations encountered in the plants do not need to be totally known in advance. Finally, a numerical example and a practical application are demonstrated for showing the feasibility of the proposed control strategy.
論文審定書 ............................................................................................................. i
誌謝 ......................................................................................................................... ii
中文摘要 ................................................................................................................. iii
Abstract ................................................................................................................... iv
List of Figures ..........................................................................................................vii
List of Table ............................................................................................................. ix
Chapter 1 Introduction 1
1.1 Motivation ....................................................................................................... 1
1.2 Brief Sketch of the Contents .......................................................................... 4
Chapter 2 Design of Adaptive Super-Twisting Sliding Mode Controllers 5
2.1 System Descriptions and Problem Formulations ........................................ 5
2.2 Design of Partial States Observer ................................................................. 7
2.3 Stability Analysis of Partial State Observer…... ………………………..…... 9
2.4 Design of the Controller ………………...…….………………………..…..... 13
2.5 Stability Analysis of Overall Controlled System ..……………………….…. 15
2.6 The Effects of Designed Parameters on System’s Performance ………….. 34
Chapter 3 Computer Simulation 35
3.1 Numerical Example……………………………….…………………..…….... 35
3.2 Practical Example ……………………………….………………………….... 44
Chapter 4 Conclusions 58
Bibliography 59
Appendix 66
[1] N. Wang and Z. Deng, “Finite-time fault estimator based fault-tolerance control for a surface vehicle with input saturations,” IEEE Transactions on Industrial Informatics, vol. 16, no. 2, pp. 1172-1181, 2020.
[2] H. Karami, K. A. Alattas, S. Mobayen, and A. Fekih, “Adaptive integral-type terminal sliding mode tracker based on active disturbance rejection for uncertain nonlinear robotic systems with input saturation,” IEEE Access, vol. 9, pp. 129528-129538, 2021.
[3] X. Shao, Q. Hu, Y. Shi, and B. Jiang, “Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation,” IEEE Transactions on Control Systems Technology, vol. 28, no. 2, pp. 574-582, 2020.
[4] B. S. Dey, M. K. Bera, and B. K. Roy, “Super twisting sliding mode control of cancer chemotherapy,” 2018 15th International Workshop on Variable Structure Systems (VSS), pp. 343-348, 2018.
[5] P. Khalili, R. Vatankhah, and S. Taghvaei, “Optimal sliding mode control of drug delivery in cancerous tumour chemotherapy considering the obesity effects,” IET Systems Biology, vol. 12, no. 4, pp. 185-189, 2018.
[6] J. A. Sharp, A. P. Browning, T. Mapder, K. Burrage, and M. J. Simpson, “Optimal control of acute myeloid leukaemia,” Journal of Theoretical Biology, vol. 470, pp. 30-42, 2019.
[7] L. H. Abood, E. H. Karam, and A. H. Issa, “Design of adaptive neuro sliding mode controller for anesthesia drug delivery based on biogeography based optimization,” International Journal of Advanced Computer Research, vol. 9, no. 42, pp. 146-155, 2019.
[8] X.-G. Guo and C. K. Ahn, “Adaptive fault-tolerant pseudo-PID sliding-mode control for high-speed train with integral quadratic constraints and actuator saturation,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 12, pp. 7421-7431, 2021.
[9] Y. Wang, D. Tian, and R. Xu, “Multi-actuators control for prototype panorama scanning imaging with input saturation,” IEEE Transactions on Aerospace and Electronic Systems, pp. 1-24, 2021.
[10] C. A. Martinez-Fuentes, R. Seeber, L. Fridman, and J. A. Moreno, “Saturated Lipschitz continuous sliding mode controller for perturbed systems with uncertain control coefficient,” IEEE Transactions on Automatic Control, vol. 66, no. 8, pp. 3885-3891, 2021.
[11] X. Li, G. Sun, S. Han, and X. Shao, “Fractional-order nonsingular terminal sliding mode tension control for the deployment of space tethered satellite,” IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 5, pp. 2759-2770, 2021.
[12] Y. Lv, J. Fu, G. Wen, T. Huang, and X. Yu, “Distributed adaptive observer-based control for output consensus of heterogeneous mass with input saturation constraint,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 3, pp. 995-1007, 2020.
[13] M. Zhang, Y. Guan, Q. Li, Z. Sun, and Z. Duan, “Adaptive nonlinear control for the stabilized platform with disturbance and input saturation,” IEEE Access, vol. 8, pp. 200774-200788, 2020.
[14] O. Mofid and S. Mobayen, “Adaptive finite-time backstepping global sliding mode tracker of quad-rotor UAVs under model uncertainty, wind perturbation, and input saturation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 58, no. 1, pp. 140-151, 2022.
[15] H. Min, S. Xu, and Z. Zhang, “Adaptive finite-time stabilization of stochastic nonlinear systems subject to full-state constraints and input saturation,” IEEE Transactions on Automatic Control, vol. 66, no. 3, pp. 1306-1313, 2021.
[16] Y.Wang, X. Jiang,W. She, and F. Ding, “Tracking control with input saturation and full-state constraints for surface vessels,” IEEE Access, vol. 7, pp. 144741-144755, 2019.
[17] L. B.Wu, J. H. Park, X. P. Xie, and N. N. Zhao, “Adaptive fuzzy tracking control for a class of uncertain switched nonlinear systems with full-state constraints and input saturations,” IEEE Transactions on Cybernetics, vol. 51, no. 12, pp. 6054-6065, 2021.
[18] S. Xu, G. Sun, Z.Ma, and X. Li, “Fractional-order fuzzy sliding mode control for the deployment of tethered satellite system under input saturation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 55, no. 2, pp. 747-756, 2019.
[19] X. Yan, M. Chen, G. Feng, Q. Wu, and S. Shao, “Fuzzy robust constrained control for nonlinear systems with input saturation and external disturbances,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 2, pp. 345-356, 2021.
[20] J. Yu, L. Zhao, H. Yu, C. Lin, and W. Dong, “Fuzzy finite-time command filtered control of nonlinear systems with input saturation,” IEEE Transactions on Cybernetics, vol. 48, no. 8, pp. 2378-2387, 2018.
[21] X.-G. Guo, J.-L. Wang, F. Liao, and R. S. H. Teo, “CNN-based distributed adaptive control for vehicle-following platoon with input saturation,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 10, pp. 3121-3132, 2018.
[22] N. Zerari, M. Chemachema, and N. Essounbouli, “Neural network based adaptive tracking control for a class of pure feedback nonlinear systems with input saturation,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 1, pp. 278-290, 2019.
[23] Z. Li and J. Zhao, “Adaptive consensus of non-strict feedback switched multi-agent systems with input saturations,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 11, pp. 1752-1761, 2021.
[24] S. Jia and J. Shan, “Finite-time trajectory tracking control of space manipulator under actuator saturation,” IEEE Transactions on Industrial Electronics, vol. 67, no. 3, pp. 2086-2096, 2020.
[25] H. L. Ye, Meng, Yang, Chunhua, and Gui,Weihua, “Finite-time stabilization of the double integrator subject to input saturation and input delay,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 5, pp. 1017-1024, 2018.
[26] Z. Yu, Y. Qu, and Y. Zhang, “Distributed fault-tolerant cooperative control for multi-UAVs under actuator fault and input saturation,” IEEE Transactions on Control Systems Technology, vol. 27, no. 6, pp. 2417-2429, 2019.
[27] B.Wang,W. Chen, J.Wang, B. Zhang, and P. Shi, “Semiglobal tracking cooperative control for multiagent systems with input saturation: a multiple saturation levels framework,” IEEE Transactions on Automatic Control, vol. 66, no. 3, pp. 1215-1222, 2021.
[28] C.Wu, J. Liu, Y. Xiong, and L.Wu, “Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 7, pp. 3022-3033, 2018.
[29] J. H. Park, S. H. Kim, and T. S. Park, “Output-feedback adaptive neural controller for uncertain pure-feedback nonlinear systems using a high-order sliding mode observer,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 5, pp. 1596-1601, 2019.
[30] R. R. Nair and L. Behera, “Robust adaptive gain higher order sliding mode observer based control-constrained nonlinear model predictive control for spacecraft formation flying,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 1, pp. 367-381, 2018.
[31] J. Lu, M. Savaghebi, A. M. Y. M. Ghias, X. Hou, and J. M. Guerrero, “A reduced-order generalized proportional integral observer-based resonant super-twisting sliding mode control for grid-connected power converters,” IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 5897-5908, 2021.
[32] G. S. da Silva, R. P. Vieira, and C. Rech, “Discrete-time sliding-mode observer for capacitor voltage control in modular multilevel converters,” IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 876-886, 2018.
[33] W. A. Apaza-Perez, J. A. Moreno, and L. Fridman, “Global sliding mode observers for some uncertain mechanical systems,” IEEE Transactions on Automatic Control, vol. 65, no. 3, pp. 1348-1355, 2020.
[34] H. Min, S. Xu, Q. Ma, B. Zhang, and Z. Zhang, “Composite-observer-based output-feedback control for nonlinear time-delay systems with input saturation and its application,” IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5856-5863, 2018.
[35] Y. Yang, Z. Liu, Q. Li, and D. C. Wunsch, “Output constrained adaptive controller design for nonlinear saturation systems,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 2, pp. 441-454, 2021.
[36] C. Wen, J. Zhou, Z. Liu, and H. Su, “Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance,” IEEE Transactions on Automatic Control, vol. 56, no. 7, pp. 1672-1678, 2011.
[37] T. Y. Lin, Design of Adaptive Sliding Mode Tracking Controllers for Perturbed Nonlinear Systems with Partial Unmeasurable States and State Constraints, Master’s Thesis, Department of Electrical Engineering, National Sun Yat-sen University, 2021.
[38] G. Tao, Adaptive Control Design and Analysis, New Jersey: John Wiley & sons, 2003.
[39] Y. Islam, I. Ahmad, M. Zubair, and K. Shahzad, “Double integral sliding mode control of leukemia therapy,” Biomedical Signal Processing and Control, vol. 61, pp. 1-20, 2020.
[40] R. Ma and J. Zhao, “Backstepping design for global stabilization of switched nonlinear systems in lower triangular form under arbitrary switchings,” Automatica, vol. 46, no. 11, pp. 1819-1823, 2010.
[41] Z. Zhang, S. Xu, and Y. Chu, “Adaptive stabilisation for a class of non-linear state time-varying delay systems with unknown time-delay bound,” IET Control Theory & Applications, vol. 4, no. 10, pp.1905-1913, 2010.
[42] Y. S. Lin and C. C. Cheng, “Design of terminal block backstepping controllers for perturbed systems in semi-strict feedback form,” International Journal of Control, vol. 88, no. 10, pp. 2107-2116, 2015.
[43] J. Y. Hung, W. Gao and J. C. Hung, “Variable structure control: a survey,” IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 2-22, 1993.
電子全文 電子全文(網際網路公開日期:20250621)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊