|
[1]M. Shankar-Hari, G. S. Phillips, M. L. Levy, C. W. Seymour, V. X. Liu, C. S. Deutschman, D. C. Angus, G. D. Rubenfeld, and M. S.inger, "Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)," JAMA, vol. 315, no. 8, pp. 775-787, 2016, DOI: 10.1001/jama.2016.0289. [2]J. L. Vincent, R. Moreno, J. Takala, S. Willatts, A. De Mendonça, H. Bruining, C. K. Reinhart, P. M. Suter, and L. G. Thijs, "The SOFA (Sepsis-related Organ Failure Assessment) Score to Describe Organ Dysfunction/Failure," Intensive Care Medicine, vol. 22, no. 7, pp. 707-710, 1996, DOI: 10.1007/BF01709751. [3]J. L. Vincent, A. de Mendonça, F. Cantraine, R. Moreno, J. Takala, P. M. Suter, C. L. Sprung, F. Colardyn, and S. Blecher, "Use of the SOFA Score to Assess the Incidence of Organ Dysfunction/Failure in Intensive Care Units: Results of a Multicenter, Prospective Study. Working Group on "Sepsis-Related Problems" of the European Society of Intensive Care Medicine," Critical Care Medicine, vol. 26, no. 11, pp. 1793-1800, 1998, DOI: 10.1097/00003246-199811000-00016. [4]R. Moreno, J. L. Vincent, R. Matos, A. Mendonça, F. Cantraine, L. Thijs, J. Takala, C. Sprung, M. Antonelli, H. Bruining, and S. Willatts, "The Use of Maximum SOFA Score to Quantify Organ Dysfunction/Failure in Intensive Care. Results of a Prospective, Multicentre Study. Working Group on Sepsis Related Problems of the ESICM," Intensive Care Medicine, vol. 25, no. 7, pp. 686-696, 1999, DOI: 10.1007/s001340050931. [5]A. de Mendonça, J. L. Vincent, P. M. Suter, R. Moreno, N. M. Dearden, M. Antonelli, J. Takala, C. Sprung, and F. Cantraine, "Acute Renal Failure in the ICU: Risk Factors and Outcome Evaluated by the SOFA Score," Intensive Care Medicine, vol. 26, no. 7, pp. 915-921, 2000, DOI: 10.1007/s001340051281. [6]F. L. Ferreira, D. P. Bota, A. Bross, C. Mélot, and J. L. Vincent, "Serial Evaluation of the SOFA Score to Predict Outcome in Critically Ill Patients," JAMA, vol. 286, no. 14, pp. 1754-1758, 2001, DOI: 10.1001/jama.286.14.1754. [7]D. C. Angus, C. W. Seymour, C. M. Coopersmith, C. S. Deutschman, M. Klompas, M. M. Levy, G. S. Martin, T. M. Osborn, C. Rhee, and R. S. Watson, "A Framework for the Development and Interpretation of Different Sepsis Definitions and Clinical Criteria," Critical Care Medicine, vol. 44, no. 3, pp. e113-121, 2016, DOI: 10.1097/ccm.0000000000001730. [8]M. Singer, C. S. Deutschman, C. W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G. R. Bernard, J. D. Chiche, C. M. Coopersmith, R. S. Hotchkiss, M. M. Levy, J. C. Marshall, G. S. Martin, S. M. Opal, G. D. Rubenfeld, T. van der Poll, J. L. Vincent, and D. C. Angus, "The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)," JAMA, vol. 315, no. 8, pp. 801-810, 2016, DOI: 10.1001/jama.2016.0287. [9]F. C. Chen, C. T. Kung, H. H. Cheng, C. Y. Cheng, T. C. Tsai, S. Y. Hsiao, and C. M. Su, "Quick Sepsis-related Organ Failure Assessment predicts 72 h Mortality in Patients with Suspected Infection," European Journal of Emergency Medicine, vol. 26, no. 5, pp. 323-328, 2019, DOI: 10.1097/mej.0000000000000563. [10]Å. Askim, F. Moser, L. T. Gustad, H. Stene, M. Gundersen, B. O. Åsvold, J. Dale, L. P. Bjørnsen, J. K. Damås, and E. Solligård, "Poor Performance of Quick-SOFA (qSOFA) Score in Predicting Severe Sepsis and Mortality - a Prospective Study of Patients Admitted with Infection to the Emergency Department," Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, vol. 25, no. 1, pp. 56, 2017, DOI: 10.1186/s13049-017-0399-4. [11]J. M. Williams, J. H. Greenslade, J. V. McKenzie, K. Chu, A. F. T. Brown, and J. Lipman, "Systemic Inflammatory Response Syndrome, Quick Sequential Organ Function Assessment, and Organ Dysfunction: Insights From a Prospective Database of ED Patients With Infection," Chest, vol. 151, no. 3, pp. 586-596, 2017, DOI: 10.1016/j.chest.2016.10.057. [12]A. Awad, M. Bader-El-Den, J. McNicholas, and J. Briggs, "Early Hospital Mortality Prediction of Intensive Care Unit Patients Using an Ensemble Learning Approach," International Journal of Medical Informatics, vol. 108, pp. 185-195, 2017, DOI: 10.1016/j.ijmedinf.2017.10.002. [13]A. P. Bradley, "The Use of the Area Under the ROC curve in the Evaluation of Machine Learning Algorithms," Pattern Recognition, vol. 30, no. 7, pp. 1145-1159, 1997, DOI: 10.1016/S0031-3203(96)00142-2. [14](2020) "Wuhan Municipal Health Commission Infection Data." Available: http://wjw.wuhan.gov.cn. [15](2020) "Coronavirus disease (COVID-19) outbreak." Available: https://www.who.int/westernpacific/emergencies/covid-19. [16]A. Das, U. R. Acharya, S. S. Panda, and S. Sabut, "Deep Learning Based Liver Cancer Detection Using Watershed Transform and Gaussian Mixture Model Techniques," Cognitive Systems Research, vol. 54, pp. 165-175, 2019, DOI: 10.1016/j.cogsys.2018.12.009. [17]G. Swapna, R. Vinayakumar, and K. P. Soman, "Diabetes Detection Using Deep Learning Algorithms," ICT Express, vol. 4, no. 4, pp. 243-246, 2018, DOI: 10.1016/j.icte.2018.10.005. [18]R. Miotto, L. Li, and J. T. Dudley, "Deep Learning to Predict Patient Future Diseases from the Electronic Health Records," Advances in Information Retrieval. ECIR 2016. Lecture Notes in Computer Science, vol. 9626, pp. 768-774, 2016, DOI: 10.1007/978-3-319-30671-1_66. [19]M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P. M. Jodion, and H. Larochelle, "Brain Tumor Segmentation with Deep Neural Networks," Medical Image Analysis, vol. 35, pp. 18-31, 2015, DOI: 10.1016/j.media.2016.05.004. [20]C. Esteban, O. Staeck, S. Baier, Y. Yang, and V. Tresp, "Predicting Clinical Events by Combining Static and Dynamic Information Using Recurrent Neural Networks," IEEE International Conference on Healthcare Informatics, pp. 93-101, 2016, DOI: 10.1109/ICHI.2016.16. [21]X. Dai and Z. Gao, "From Model, Signal to Knowledge: A Data-Driven Perspective of Fault Detection and Diagnosis," IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 2226-2238, 2013, DOI: 10.1109/TII.2013.2243743. [22]D. Jiang, L. Huo, and Y. Li, "Fine-Granularity Inference and Estimations to Network Traffic for SDN," PLoS One, vol. 13, no. 5, pp. e0194302, 2018, DOI: 10.1371/journal.pone.0194302. [23]D. Jiang, L. Huo, Z. Lv, H. Song, and W. Qin, "A Joint Multi-Criteria Utility-Based Network Selection Approach for Vehicle-to-Infrastructure Networking," IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 10, pp. 3305-3319, 2018, DOI: 10.1109/TITS.2017.2778939. [24]D. Jiang, Z. Xu, W. Li, C. Yao, Z. Lv, and T. Li, "An Energy-Efficient Multicast Algorithm with Maximum Network Throughput in Multi-Hop Wireless Networks," Journal of Communications and Networks, vol. 18, no. 5, pp. 713-724, 2016, DOI: 10.1109/JCN.2016.000101. [25]D. Jiang, Z. Xu, J. Liu, and W. Zhao, "An Optimization-Based Robust Routing Algorithm to Energy-Efficient Networks for Cloud Computing," Telecommunication Systems, vol. 63, no. 1, pp. 89-98, 2016, DOI: 10.1007/s11235-015-9975-y. [26]D. Jiang, W. Li, and H. Lv, "An Energy-Efficient Cooperative Multicast Routing in Multi-Hop Wireless Networks for Smart Medical Applications," Neurocomputing, vol. 220, pp. 160-169, 2017, DOI: 10.1016/j.neucom.2016.07.056. [27]D. Jiang, Y. Wang, Y. Han, and H. Lv, "Maximum Connectivity-Based Channel Allocation Algorithm in Cognitive Wireless Networks for Medical Applications," Neurocomputing, vol. 220, pp. 41-51, 2017, DOI: 10.1016/j.neucom.2016.05.102. [28]H. Du, M. M. Ghassemi, and M. Feng, "The Effects of Deep Network Topology on Mortality Prediction," 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2602-2605, 2016, DOI: 10.1109/EMBC.2016.7591263. [29]M. Chinazzi, J. T. Davis, M. Ajelli, C. Gioannini, M. Litvinova, S. Merler, A. P. y Piontti, K. Mu, L. Rossi, K. Sun, C. Viboud, X. Xiong, H. Yu, M. E. Halloran, I. M. Longini, and A. Vespignani, "The Effect of Travel Restrictions on the Spread of the 2019 Novel Coronavirus (COVID-19) Outbreak," Science, vol. 368, no. 6489, pp. 395-400, 2020, DOI: 10.1126/science.aba9757. [30]M. U. G. Kraemer, C. H. Yang, B. Gutierrez, C. H. Wu, B. Klein, D. M. Pigott, Open COVID-19 Data Working Group†, L. du Plessis, N. R. Faria, R. Li, W. P. Hanage, J. S. Brownstein, M. Layan, A. Vespignani, H. Tian, C. Dye, O. G. Pybus, and S. V. Scarpino, "The Effect of Human Mobility and Control Measures on the COVID-19 Epidemic in China," Science, vol. 368, no. 6490, pp. 493-497, 2020, DOI: 10.1126/science.abb4218. [31]J. Koopman, "Modeling Infection Transmission," Annual Review of Public Health, vol. 25, pp. 303-326, 2004, DOI: 10.1146/annurev.publhealth.25.102802.124353. [32]S. A. Levin, B. Grenfell, A. Hastings, and A. S. Perelson, "Mathematical and Computational Challenges in Population Biology and Ecosystems Science," Science, vol. 275, no. 5298, pp. 334-343, 1997, DOI: 10.1126/science.275.5298.334. [33]R. M. Anderson, "The Pandemic of Antibiotic Resistance," Nature Medicine, vol. 5, no. 2, pp. 147-149, 1999, DOI: 10.1038/5507. [34]T. W. Ng, G. Turinici, and A. Danchin, "A Double Epidemic Model for the SARS Propagation," BMC Infectious Diseases, vol. 3, no. 19, 2003, DOI: 10.1186/1471-2334-3-19. [35]W. O. Kermack and A. G. McKendrick, "A Contribution to the Mathematical Theory of Epidemics," Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 115, no. 772, pp. 700-721, 1927, DOI: doi:10.1098/rspa.1927.0118. [36]M. Iannelli, M. Martcheva, and X. Z. Li, "Strain Replacement in an Epidemic Model with Super-Infection and Perfect Vaccination," Mathematical Biosciences, vol. 195, no. 1, pp. 23-46, 2005, DOI: 10.1016/j.mbs.2005.01.004. [37]C. Dye and N. Gay, "Modeling the SARS Epidemic," Science, vol. 300, no. 5627, pp. 1884-1885, 2003, DOI: 10.1126/science.1086925. [38]X. N. Han, S. J. de Vlas, L. Q. Fang, D. Feng, W. C. Cao, and J. D. Habbema, "Mathematical Modelling of SARS and Other Infectious Diseases in China: A Review," Tropical Medicine & International Health, vol. 14, no. s1, pp. 92-100, 2009, DOI: 10.1111/j.1365-3156.2009.02244.x. [39]M. Lipsitch, T. Cohen, B. Cooper, J. M. Robins, S. Ma, L. James, G. Gopalakrishna, S. K. Chew, C. C. Tan, M. H. Samore, D. Fisman, and M. Murray, "Transmission Dynamics and Control of Severe Acute Respiratory Syndrome," Science, vol. 300, no. 5627, pp. 1966-1970, 2003, DOI: 10.1126/science.1086616. [40]D. J. Watts and S. H. Strogatz, "Collective Dynamics of ‘Small-World’ Networks," Nature, vol. 393, no. 6684, pp. 440-442, 1998, DOI: 10.1038/30918. [41]R. Pastor-Satorras and A. Vespignani, "Epidemic Spreading in Scale-Free Networks," Physical Review Letters, vol. 86, no. 14, pp. 3200-3203, 2001, DOI: 10.1103/PhysRevLett.86.3200. [42]L. Zhong, L. Mu, J. Li, J. Wang, Z. Yin, and D. Liu, "Early Prediction of the 2019 Novel Coronavirus Outbreak in the Mainland China Based on Simple Mathematical Model," IEEE Access, vol. 8, pp. 51761-51769, 2020, DOI: 10.1109/ACCESS.2020.2979599. [43]H. Zhang, K. M. Saravanan, Y. Yang, Md T. Hossain, J. Li, X. Ren, Y. Pan, and Y. Wei, "Deep Learning Based Drug Screening for Novel Coronavirus 2019-nCov," Interdisciplinary Sciences: Computational Life Sciences, vol. 12, pp. 368-376, 2020, DOI: 10.1007/s12539-020-00376-6. [44]H. Zhu, Q. Guo, M. Li, C. Wang, Z. Fang, P. Wang, J. Tan, S. Wu, and Y. Xiao, "Host and Infectivity Prediction of Wuhan 2019 Novel Coronavirus Using Deep Learning Algorithm," bioRxiv, pp. 2020.01.21.914044, 2020, DOI: 10.1101/2020.01.21.914044. [45]S. J. Fong, G. Li, N. Dey, R. G. Crespo, and E. Herrera-Viedma, "Composite Monte Carlo Decision Making Under High Uncertainty of Novel Coronavirus Epidemic Using Hybridized Deep Learning and Fuzzy Rule Induction," Applied Soft Computing, vol. 93, pp. 106282, 2020, DOI: 10.1016/j.asoc.2020.106282. [46]M. Sajadi, P. Habibzadeh, A. Vintzileos, S. Shokouhi, F. Miralles-Wilhelm, and A. Amoroso, " Temperature, Humidity, and Latitude Analysis to Estimate Potential Spread and Seasonality of Coronavirus Disease 2019 (COVID-19)," JAMA Network Open, vol. 3, no. 6, pp. e2011834, 2020, DOI: 10.1001/jamanetworkopen.2020.11834. [47]R. C. Bone, R. A. Balk, F. B. Cerra, R. P. Dellinger, A. M. Fein, W. A. Knaus, R. M. Schein, and W. J. Sibbald, "Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine," Chest, vol. 101, no. 6, pp. 1644-1655, 1992, DOI: 10.1378/chest.101.6.1644. [48]B. Goldstein, B. Giroir, A. Randolph, and Adrienne MD Members of the International Consensus Conference on Pediatric Sepsis, "International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics," Pediatric Critical Care Medicine, vol. 6, no. 1, pp. 2-8, 2005, DOI: 10.1097/01.Pcc.0000149131.72248.E6. [49]C. W. Seymour, V. X. Liu, MD, T. J. Iwashyna, F. M. Brunkhorst, T. D. Rea, A. Scherag, G. Rubenfeld, J. M. Kahn, M. Shankar-Hari, M. Singer, C. S. Deutschman, G. J. Escobar, and D. C. Angus, "Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)," JAMA, vol. 315, no. 8, pp. 762-774, 2016, DOI: 10.1001/jama.2016.0288. [50]G. H. Golub and C. Reinsch, "Singular Value Decomposition and Least Squares Solutions," Numerische Mathematik, vol. 14, no. 5, pp. 403-420, 1970, DOI: 10.1007/BF02163027. [51]H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, "Support Vector Regression Machines," Advances in neural information processing systems, vol. 9, pp. 155-161, 1997. [52]T. S. Breusch and A. R. Pagan, "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, vol. 47, no. 1, pp. 239-253, 1980, DOI: 10.2307/2297111. [53]M. J. D. Powell, "A Method for Minimizing a Sum of Squares of Non-Linear Functions Without Calculating Derivatives," The Computer Journal, vol. 7, no. 4, pp. 303-307, 1965, DOI: 10.1093/comjnl/7.4.303. [54]B. Efron, "Bootstrap Methods: Another Look at the Jackknife," Breakthroughs in Statistics, pp. 569-593, 1992, DOI: 10.1007/978-1-4612-4380-9_41. [55]D. E. Rumelhart, J. L. McClelland, "Information Processing in Dynamical Systems: Foundations of Harmony Theory," Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations, MIT Press, pp.194-281, 1987. [56]A. Coates, A. Ng, and H. Lee, "An Analysis of Single-Layer Networks in Unsupervised Feature Learning," Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, vol. 15, pp. 215-223, 2011. [57]G. E. Hinton and R. R. Salakhutdinov, "Reducing the Dimensionality of Data with Neural Networks," Science, vol. 313, no. 5786, pp. 504-507, 2006, DOI: 10.1126/science.1127647. [58]R. Salakhutdinov, A. Mnih, and G. Hinton, "Restricted Boltzmann Machines for Collaborative Filtering," Proceedings of the 24th International Conference on Machine learning, pp. 791-798, 2007, DOI: 10.1145/1273496.1273596. [59]H. Larochelle and Y. Bengio, "Classification Using Discriminative Restricted Boltzmann Machines," Proceedings of the 25th international conference on Machine learning, pp. 536-543, 2008, DOI: 10.1145/1390156.1390224. [60]G. B. Orr and K. R. Müller, "Neural Networks: Tricks of the Trade," Springer, 2012, DOI: 10.1007/978-3-642-35289-8. [61]K. Y. Lee, A. Sode-Yome, and P. June Ho, "Adaptive Hopfield Neural Networks for Economic Load Dispatch," IEEE Transactions on Power Systems, vol. 13, no. 2, pp. 519-526, 1998, DOI: 10.1109/59.667377. [62]G. E. Hinton, "Training Products of Experts by Minimizing Contrastive Divergence," Neural Computation, vol. 14, no. 8, pp. 1771-1800, 2002, DOI: 10.1162/089976602760128018. [63]L. Deng, M. Seltzer, D. Yu, A. Acero, A. R. Mohamed, and G. Hinton, "Binary Coding of Speech Spectrograms Using a Deep Auto-Encoder," 11th Annual Conference of the International Speech Communication Association, pp. 1692-1695, 2010. [64]A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet Classification with Deep Convolutional Neural Networks," Advances in Neural Information Processing Systems, pp. 1097-1105, 2012. [65]G. Liu, Z. Yin, Y. Jia, and Y. Xie, "Passenger Flow Estimation Based on Convolutional Neural Network in Public Transportation System," Knowledge-Based Systems, vol. 123, pp. 102-115, 2017, DOI: 10.1016/j.knosys.2017.02.016. [66]R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. Webb, R. J. Beale, J. L. Vincent, and R. Moreno, and The Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, "Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2012," Critical Care Medicine, vol. 41, no. 2, pp. 580-637, 2013, DOI: 10.1097/CCM.0b013e31827e83af. [67]M. M. Levy, M. P. Fink, J. C. Marshall, E. Abraham, D. Angus, D. Cook, J. Cohen, S. M. Opal, J. L. Vincent, and Graham Ramsay for the International Sepsis Definitions Conference, "2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference," Critical Care Medicine, vol. 31, no. 4, pp. 1250-1256, 2003, DOI: 10.1097/01.Ccm.0000050454.01978.3b. [68]S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift," Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 448-456, 2015. [69]D. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," arXiv: 1412.6980, 2014. [70]B. Liu, Y. X. Chen, Q. Yin, Y. Z. Zhao, and C. S. Li, "Diagnostic Value and Prognostic Evaluation of Presepsin for Sepsis in an Emergency Department," Critical Care, vol. 17, pp. R244, 2013, DOI: 10.1186/cc13070. [71]C. C. Lee, S .Y. Chen, C. L. Tsai, S. C Wu, W. C. Chiang, J. L. Wang, H. Y. Sun, S. C. Chen, W. J. Chen, and P. R. Hsueh, "Prognostic Value of Mortality in Emergency Department Sepsis Score, Procalcitonin, and C-Reactive Protein in Patients with Sepsis at the Emergency Department," Shock, vol. 29, no. 3, pp. 322-327, 2008, DOI: 10.1097/shk.0b013e31815077ca. [72]C. Lichtenstern, T. Brenner, H. J. Bardenheuer, and M. A. Weigand, "Predictors of Survival in Sepsis: What is the Best Inflammatory Marker to Measure?," Current Opinion in Infectious Diseases, vol. 25, no. 3, pp. 328336, 2012, DOI: 10.1097/QCO.0b013e3283522038. [73]R. A. Taylor, J. R. Pare, A. K. Venkatesh, H. Mowafi, E. R. Melnick, W. Fleischman, and M. K. Hall, "Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach," Academic Emergency Medicine : Official Journal of the Society for Academic Emergency Medicine, vol. 23, no. 3, pp. 269-278, 2016, DOI: 10.1111/acem.12876. [74]V. J. Ribas, J. C. López, A. Ruiz-Sanmartín, J. C. Ruiz-Rodríguez, J. Rello, A. Wojdel and A. Vellido, "Severe Sepsis Mortality Prediction with Relevance Vector Machines," Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 100-103, 2011, DOI: 10.1109/iembs.2011.6089906. [75]I. H. Kao, Y. W. Hsu, Y. Z. Yang, Y. L. Chen, Y. H. Lai, and J.-W. Perng, "Determination of Lycopersicon Maturity Using Convolutional Autoencoders," Scientia Horticulturae, vol. 256, pp. 108538, 2019, DOI: 10.1016/j.scienta.2019.05.065. [76]I. H. Kao, Y. W. Hsu, Y. H. Lai, and J. W. Perng, "Laser Cladding Quality Monitoring Using Coaxial Image Based on Machine Learning," IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 6, pp. 2868-2880, 2019, DOI: 10.1109/TIM.2019.2926878. [77]L. Gattinoni, F. Vasques, L. Camporota, J. Meessen, F. Romitti, I. Pasticci, E. Duscio, F. Vassalli, L. G. Forni, D. Payen, M. Cressoni, A. Zanella, R. Latini, M. Quintel, and J. J. Marini, "Understanding Lactatemia in Human Sepsis. Potential Impact for Early Management," American Journal of Respiratory and Critical Care Medicine, vol. 200, no. 5, pp. 582-589, 2019, DOI: 10.1164/rccm.201812-2342OC. [78]S. Arayici, G. K. Şimşek, F. E. Canpolat, M. Y. Oncel, N. Uras, and S. S. Oguz, "Can Base Excess be Used for Prediction to Early Diagnosis of Neonatal Sepsis in Preterm Newborns?," Mediterranean Journal of Hematology and Infectious Diseases, vol. 11, no. 1, pp. e2019014, 2019, DOI: 10.4084/mjhid.2019.014. [79]Y. Q. Han, L. Zhang, L. Yan, P. Li, P. H. Ouyang, G. Lippi, and Z. D. Hu, "Red Blood Cell Distribution Width Predicts Long-Term Outcomes in Sepsis Patients Admitted to the Intensive Care Unit," Clinica Chimica Acta, vol. 487, pp. 112-116, 2018, DOI: 10.1016/j.cca.2018.09.019. [80](2020) "Johns Hopkins University CSSE COVID-19 Dashboard." Available: https://github.com/CSSEGISandData/COVID-19. [81](2020) "Novel Coronavirus 2019 time series data on cases." Available: https://github.com/datasets/covid-19. [82]M. Chen, X. Shi, Y. Zhang, D. Wu, and M. Guizani, "Deep Features Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network," IEEE Transactions on Big Data, pp. 1-1, 2017, DOI: 10.1109/TBDATA.2017.2717439. [83]K. Ghasedi Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang, "Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization," Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 5736-5745, 2017. [84]B. Leng, S. Guo, X. Zhang, and Z. Xiong, "3D Object Retrieval with Stacked Local Convolutional Autoencoder," Signal Processing, vol. 112, pp. 119-128, 2015, DOI: 10.1016/j.sigpro.2014.09.005. [85]H. Huang, X. Hu, Y. Zhao, M. Makkie, Q. Dong, S. Zhao, L. Guo, and T. Liu, "Modeling Task fMRI Data Via Deep Convolutional Autoencoder," IEEE Transactions on Medical Imaging, vol. 37, no. 7, pp. 1551-1561, 2018, DOI: 10.1109/TMI.2017.2715285. [86]M. Courbariaux, Y. Bengio, and J. P. David, "Binaryconnect: Training Deep Neural Networks with Binary Weights During Propagations," Advances in neural information processing systems, pp. 3123-3131, 2015. [87]Q. Huynh-Thu and M. Ghanbari, "Scope of Validity of PSNR in Image/Video Quality Assessment," Electronics Letters, vol. 44, no. 13, pp. 800-801, 2008, DOI: 10.1049/el:20080522. [88]A. Horé and D. Ziou, "Image Quality Metrics: PSNR vs. SSIM," 20th International Conference on Pattern Recognition, pp. 2366-2369, 2010, DOI: 10.1109/ICPR.2010.579. [89](2020) "Historical Daily Weather Data 2020." Available: https://www.kaggle.com/vishalvjoseph/weather.
|