跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/18 03:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱晨恩
研究生(外文):Chen-En Chiu
論文名稱:探討噴孔參數和振動模態對壓電式霧化器霧化量及粒徑分布影響
論文名稱(外文):Discussion on Influence of Nozzle Parameters and Vibration Modes on Spray Rates and Aerosol Size Distributions of Piezoelectric Atomizers
指導教授:王郁仁
指導教授(外文):WANG, YU-JEN
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:108
中文關鍵詞:壓電陶瓷超音波霧化振動噴孔片振動模態有限元素法
外文關鍵詞:Piezoelectric CeramicsUltrasonic atomizationVibrating Mesh PlateVibration modesFinite Element Method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的是希望針對壓電式霧化器,設計一霧化系統,並進行不同霧化器參數對霧化之影響。霧化系統主要由壓電致動器構成,並以一電路提供電壓訊號驅動。霧化器是由壓電陶瓷材料、噴孔片以及不銹鋼環片組合而成,噴孔片中心區域遍布微米等級之噴孔。本研究探討不同噴孔片之參數對流體霧化之影響,包含不同尺寸之噴孔大小、孔距大小、噴孔片以及不鏽鋼厚度,分析各參數對霧化液滴粒徑以及流體霧化量之影響。
本研究所使用之壓電霧化器,是採用鋯鈦酸鉛壓電陶瓷(Lead Zirconate Titanate, PZT)作為超音波振動子,並使用不銹鋼環片作為擴能件,將壓電陶瓷所產生之超音波傳遞至由聚醯亞胺(Polyimide, PI)製成之噴孔薄膜。在進行霧化實驗前,利用有限元素軟體(COMSOL)分析霧化器振動模態,經由頻域分析與特徵頻率辨別,得到所設計之超音波霧化器自身的阻抗、相位、軸向位移,藉由各項指標所對應之頻率,找到合適的共振頻率及驅動時的振動模態,並透過阻抗分析儀驗證模擬的正確性。最後進行不同噴孔參數與霧化器元件模態的霧化實驗。
經過實際量測比對,分析之共振頻率與實際共振頻率誤差約1%,驗證了本研究之分析方式可靠度。透過實驗數據發現,擴大噴孔出入口直徑均有都有助於增加霧化量,其中噴孔出口直徑對霧化量所造成的影響大於入口直徑。針對粒徑分布,透過分析實驗數據做擬合曲線推算出最佳的出入口比值約為0.37,當噴孔內壁斜度為67度,孔距等於130 um時,可以得到粒徑分布最為集中的效果。在霧化器元件頻率匹配的實驗中,雖然由於分析與實驗之模型存在一定差異,導致霧化實驗流體時霧化量並未如預期般增加,但在霧化水時霧化量差異不大,評估該設計在請專業廠商協助加工後仍具有一定可行性。
The purpose of this study is to design an atomization system for piezoelectric atomizers, and to investigate the effects of different atomizer parameters on atomizing. The atomizing system is mainly composed of piezoelectric actuators, which are driven by a circuit to provide voltage signals. The atomizer is composed of a piezoelectric ceramic ring, a nozzle plate and a stainless steel plate. The center area of the nozzle plate is full of micro nozzle. This study investigates the influence of different nozzle parameters on fluid atomization, including pitch, inlet and outlet diameters of nozzle, and stainless steel thickness.
The piezoelectric atomizer used in this research fabricates by lead zirconate titanate piezoelectric ceramics (Lead Zirconate Titanate, PZT) as the ultrasonic vibrator, and uses the stainless steel sheet as the expansion element to transmit the ultrasonic waves to the nozzle plate which was made of Polyimide (PI). Before conducting the atomization experiment, the finite element software (COMSOL) was used to analyze the vibration mode of the atomizer. According to eigenfrequency analysis and frequency domain analysis, the impedance, phase, and axial displacement of the piezoelectric atomizer were obtained. The propose design was obtained resonance frequency and corresponding vibration mode, and verified the correctness of simulation through impedance analyzer. At last, conducted the atomization experiments with different nozzle parameters and atomizer element modes, and then compared the differences in the experimental results.
After the actual measurement and comparison, the error between the analyzed resonance frequency and the actual resonance frequency is about 1%, which verifies the reliability of the analysis method in this study. And the experimental data show that, the influence of the nozzle outlet diameter on spray rate is greater than that of the inlet diameter. About the particle size distribution, the optimal inlet and outlet diameter ratio is calculated by analyzing the experimental results. The ratio is 0.37 based on the fitting curve. When the slope of the inner wall of the nozzle is 67 degrees and the hole pitch is equal to 130 um, the most concentrated particle size distribution is obtained. In the experiment of frequency matching of the atomizer components, although the spray rate when atomizing the experimental fluid is not increased as expected due to the difference between the analysis and the experimental model, the spray rate is not much different when atomizing the water, and the evaluation of the design is still feasible after asking professional manufacturers to assist in processing.
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖次 ix
表次 xiv
符號說明 xvi
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目的 2
1.3 文獻回顧 3
1.3.1 壓電超音波霧化技術 3
1.3.2 噴孔片與噴嘴相關設計 8
1.3.3 驅動條件影響 12
1.4 本文架構 16
第二章 壓電式霧化器原理與設計 17
2.1 壓電材料特性 17
2.2 霧化器元件設計與製作方式 20
2.3 測試驅動電路設計 26
第三章 霧化器之動態模擬方法與結果 33
3.1 COMSOL Multiphysics模擬流程 33
3.1.1 分析模組建立 34
3.1.2 分析前處理 34
3.1.3 分析後處理 37
3.2 模擬結果 38
3.2.1 霧化元件分析 38
3.2.2 霧化元件頻率匹配 42
3.2.3 霧化器振動模擬 45
3.2.4 頻率匹配霧化器振動模擬 49
3.2.5 擴大霧化區域之霧化器振動模擬 52
3.2.6 霧化器外徑尺寸優化分析 54
第四章 實驗設備與流程 56
4.1 實驗設備 56
4.2 實驗流程與環境 59
第五章 實驗結果與討論 61
5.1 阻抗分析儀測量與功率消耗 61
5.2 霧化實驗 63
5.2.1 霧化量比較 64
5.2.2 霧化粒徑分布比較 69
5.2.3 噴孔出入口孔徑與孔距交互作用實驗 73
5.2.4 霧化器壽命測試 73
5.3 實驗結果討論 74
5.3.1 不同噴孔出入口尺寸對霧化能力之影響 74
5.3.2 不同噴孔孔距對霧化能力之影響 78
5.3.3 噴孔出入口孔徑與孔距交互作用判別 79
5.3.4 不同打孔範圍對霧化能力之影響 80
5.3.5 霧化器頻率匹配前後霧化能力差異 82
5.3.6 壽命測試結果 84
第六章 結論與未來展望 86
6.1 結論 86
6.2 未來展望 87
參考文獻 88
[1]M. Beck-Broichsitter, I. E. Paulus, A. Greiner, and T. Kissel, “Modified vibrating-mesh nozzles for advanced spray-drying applications,” European Journal of Pharmaceutics and Biopharmaceutics92, pp. 96-101, 2015.
[2]F. Bari, M. M. Ahmad, A. Sherwani, and A. A. Wani, “Determining the influence of nozzle on droplet spectrum and pesticide deposition in cabbage against Pieris brassicae,” Journal of Entomology and Zoology Studies, vol. 7, issue. 1, pp. 270-277, 2019.
[3]I. P. Wu, M. Y. Chien, H. F. Hsiao, Y. T. Chen, Y. Y. Liu, C. W. Chou, and S. H. Lai, “Utilization of Vibrating Mesh Nebulizer in the Treatment of Infants with Acute Bronchiolitis: A Randomized, Controlled Trial,” Pediatric Respirology and Critical Care Medicine, vol. 1, issue. 3, pp. 63-68, 2017.
[4]N. Maehara, S. Ueha, and E. Mori, “Optimum design procedure for multi-pinhole-plate ultrasonic atomizer,” Japanese Journal of Applied Physics, vol. 26, supplement 26-1, pp. 215–217, 1987.
[5]M. N. Awais, N. M. Muhammad, D. Navaneethan, H. C. Kim, J. Jo, and K. H. Choi, “Fabrication of ZrO2 layer through electrohydrodynamic atomization for the printed resistive switch (memristor),” Microelectronic Engineering, vol. 103, pp. 167–172, 2013.
[6]M. Murata, T. Kondoh, T. Yagi, N. Funatsu, K. Tanaka, H. Tsukuni, K. Ohno, H. Usami, R. Nayve, N. Inoue, S. Seto, and N. Morita, “High-Resolution Piezo Inkjet Printhead Fabricated by Three Dimensional Electrical Connection Method using through Glass VIA,” 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems, pp. 507-510, 2009.
[7]J. M. Meacham, M. J. Varady, D. Esposito, F. L. Degertekin, and A. G. Fedorov, “Micromachined ultrasonic atomizer for liquid fuels,” Atomization and Sprays, vol. 18, pp. 163-190, 2008.
[8]M. Kurosawa, A. Futami, and T. Higuchi, “Characteristics of liquids atomization using surface acoustic wave,” IEEE Transducers ''97, vol. 2, pp. 801-804, 1997.
[9]M. Eslamian, and N. Ashgriz, “Effect of Atomization Method on the Morphology of Spray Generated Particles,” Journal of Engineering Materials and Technology, Transactions of the ASME, vol. 129, pp. 130-142, 2007.
[10]S. C. Shen, Y. J. Wang, and Y. Y. Chen, “Design and fabrication of medical micro-nebulizer,” Sensors and Actuators A: Physical, vol. 144, pp. 135-143, 2008.
[11]T. Asami, R. Yakou, T. Ono, and H. Miura, “Ultrasonic Atomization by Difference between Vibration Displacements of Two Circular Vibrating Plates,” Journal of Mechanical Engineering and Automation, vol. 6, issue. 2, pp. 30-35, 2016.
[12]H. C. Lian, J. Luo, X. M. Zhang, L. H. Qi, and H. Y. Qu, “Development of a droplet generation equipment for nano carbon thin films printing,” 2016 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Chongqing, China, pp. 388-391, 2016.
[13]H. Li, J. Liu, Y. Liu, K. Li, and Y. Feng, “Development of a resonant piezoelectric micro-jet for high-viscosity liquid using a longitudinal transducer,” Mechanical Systems and Signal Processing, vol. 146, pp. 1-16, 2021.
[14]J. Brünahl, and A. M. Grishina, “Piezoelectric shear mode drop-on-demand inkjet actuator,” Sensors and Actuators A: Physical, vol. 101, issue. 3, pp. 371-382, 2002.
[15]J. Best, Colour Design:Theories and Applications. United Kingdom, Woodhead Publishing Limited, 2012.
[16]F. Jiang, and J. H. Zhang, “Experimental research on ultrasonic atomization performance,” 2014 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Beijing, China, pp. 150-153, 2014.
[17]Y. D. Lang, and J. H. Zhang, “Influence of piezoelectric atomizer pores on ultrasonic atomization effect,” 2014 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Beijing, China, pp. 287-290, 2014.
[18]Y. H. Long, T. G. Feng, J. D. Bao, and Y. Q. Tong, “Structural Design of Nozzle Based on Hybrid Laser/Water-jet Scribing Technology,” 2016 3rd International Conference on Materials Engineering, Manufacturing Technology and Control, Taiyuan, China, pp. 464-468, 2016.
[19]P. Sharma, M. Quazi, I. R. Vazquez, and N. Jackson. Investigation of Droplet Size Distribution for Vibrating Mesh Atomizer. Retrieved from https://www.researchsquare.com/article/rs-1108564/v1 (November 30, 2021)
[20]Q. F. Yan, C. Y. Wu, and J. H. Zhang, “Effect of the Dynamic Cone Angle on the Atomization Performance of a Piezoceramic Vibrating Mesh Atomizer,” Applied Sciences, vol. 9, issue. 9, pp. 1-17, 2019.
[21]Y. M. Kuo, W. H. Chan, C. W. Lin, S. H. Huang, and C. C. Chen, “Characterization of Vibrating Mesh Aerosol Generators,” Aerosol and Air Quality Research, vol. 19, pp. 1678–1687, 2019.
[22]呂彥槿(2019)。壓電式力量感測器之適應性低頻特性補償。國立臺灣師範大學機電工程學系碩士論文,台北市。
[23]羅宇然(2021)。三軸向壓電式力量感測器設計。國立中山大學機械與機電工程學系碩士論文,高雄市。
[24]傅國杰(2016)。線性壓電製動器應用於自動充填裝置之設計與製作。國立中山大學機械與機電工程學系碩士論文,高雄市。
[25]黃欣儀(2020)。以霧化器提升均溫版暫態熱響應。國立中山大學機械與機電工程學系碩士論文,高雄市。
電子全文 電子全文(網際網路公開日期:20270722)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊