|
Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6), 734-749.
Bennett, J., & Lanning, S. (2007, August). The netflix prize. In Proceedings of KDD cup and workshop (Vol. 2007, p. 35).
Berg, R. v. d., Kipf, T. N., & Welling, M. (2017). Graph convolutional matrix completion. arXiv preprint arXiv:1706.02263.
Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4), 18-42.
Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203.
Burke, R. (2000). Knowledge-based recommender systems. Encyclopedia of library and information systems, 69(Supplement 32), 175-186.
Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta, S., He, Y., Lambert, M., & Livingston, B. (2010). The YouTube video recommendation system. In Proceedings of the fourth ACM conference on Recommender systems (pp. 293-296).
Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems, 29.
Deng, S., Huang, L., Xu, G., Wu, X., & Wu, Z. (2016). On deep learning for trust-aware recommendations in social networks. IEEE transactions on neural networks and learning systems, 28(5), 1164-1177.
Ding, Y., Zhu, Y., Feng, J., Zhang, P., & Cheng, Z. (2020). Interpretable spatio-temporal attention LSTM model for flood forecasting. Neurocomputing, 403, 348-359.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., & El Allioui, Y. (2019). A fuzzy classification approach for learning style prediction based on web mining technique in e-learning environments. Education and Information Technologies, 24(3), 1943-1959.
Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., & Yin, D. (2019, May). Graph neural networks for social recommendation. In The world wide web conference (pp. 417-426).
Fessahaye, F., Perez, L., Zhan, T., Zhang, R., Fossier, C., Markarian, R., ... & Oh, P. (2019, January). T-recsys: A novel music recommendation system using deep learning. In 2019 IEEE international conference on consumer electronics (ICCE) (pp. 1-6).
Forouzandeh, S., Aghdam, A. R., Barkhordari, M., Fahimi, S. A., Vayqan, M. K., Forouzandeh, S., & Khani, E. G. (2017). Recommender system for Users of Internet of Things (IOT). IJCSNS, 17(8), 46.
Fu, M., Qu, H., Yi, Z., Lu, L., & Liu, Y. (2018). A novel deep learning-based collaborative filtering model for recommendation system. IEEE transactions on cybernetics, 49(3), 1084-1096.
Gaudelet, T., Day, B., Jamasb, A. R., Soman, J., Regep, C., Liu, G., Hayter, J. B., Vickers, R., Roberts, C., & Tang, J. (2021). Utilizing graph machine learning within drug discovery and development. Briefings in bioinformatics, 22(6), bbab159.
Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30.
Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., & Sainath, T. N. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82-97.
Jamali, M., & Ester, M. (2010, September). A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the fourth ACM conference on Recommender systems (pp. 135-142).
Jeong, C.-S., Ryu, K.-H., Lee, J.-Y., & Jung, K.-D. (2020). Deep Learning-based Tourism Recommendation System using Social Network Analysis. International Journal of Internet, Broadcasting and Communication, 12(2), 113-119.
Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30-37.
Ma, H., Zhou, D., Liu, C., Lyu, M. R., & King, I. (2011, February). Recommender systems with social regularization. In Proceedings of the fourth ACM international conference on Web search and data mining (pp. 287-296).
McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual review of sociology, 27(1), 415-444.
Monti, F., Bronstein, M. M., & Bresson, X. (2017). Geometric matrix completion with recurrent multi-graph neural networks. arXiv preprint arXiv:1704.06803.
Paryudi, I., Ashari, A., & Mustofa, K. (2021). Creating Personality and Preference Models based on Demographic Data for Personality-based Recommender System for Fashion using Decision Tree and Association Rule. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(14), 5165-5174.
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994, October). Grouplens: An open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference on Computer supported cooperative work (pp. 175-186).
Rosa, R. L., Schwartz, G. M., Ruggiero, W. V., & Rodríguez, D. Z. (2018). A knowledge-based recommendation system that includes sentiment analysis and deep learning. IEEE Transactions on Industrial Informatics, 15(4), 2124-2135.
Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6), 734-749.
Bennett, J., & Lanning, S. (2007, August). The netflix prize. In Proceedings of KDD cup and workshop (Vol. 2007, p. 35).
Berg, R. v. d., Kipf, T. N., & Welling, M. (2017). Graph convolutional matrix completion. arXiv preprint arXiv:1706.02263.
Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4), 18-42.
Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203.
Burke, R. (2000). Knowledge-based recommender systems. Encyclopedia of library and information systems, 69(Supplement 32), 175-186.
Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta, S., He, Y., Lambert, M., & Livingston, B. (2010). The YouTube video recommendation system. Proceedings of the fourth ACM conference on Recommender systems,
Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems, 29, 3844-3852.
Deng, S., Huang, L., Xu, G., Wu, X., & Wu, Z. (2016). On deep learning for trust-aware recommendations in social networks. IEEE transactions on neural networks and learning systems, 28(5), 1164-1177.
Ding, Y., Zhu, Y., Feng, J., Zhang, P., & Cheng, Z. (2020). Interpretable spatio-temporal attention LSTM model for flood forecasting. Neurocomputing, 403, 348-359.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., & El Allioui, Y. (2019). A fuzzy classification approach for learning style prediction based on web mining technique in e-learning environments. Education and Information Technologies, 24(3), 1943-1959.
Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., & Yin, D. (2019, May). Graph neural networks for social recommendation. In The world wide web conference (pp. 417-426).
Fessahaye, F., Perez, L., Zhan, T., Zhang, R., Fossier, C., Markarian, R., ... & Oh, P. (2019, January). T-recsys: A novel music recommendation system using deep learning. In 2019 IEEE international conference on consumer electronics (ICCE) (pp. 1-6).
Forouzandeh, S., Aghdam, A. R., Barkhordari, M., Fahimi, S. A., Vayqan, M. K., Forouzandeh, S., & Khani, E. G. (2017). Recommender system for Users of Internet of Things (IOT). IJCSNS, 17(8), 46.
Fu, M., Qu, H., Yi, Z., Lu, L., & Liu, Y. (2018). A novel deep learning-based collaborative filtering model for recommendation system. IEEE transactions on cybernetics, 49(3), 1084-1096.
Gaudelet, T., Day, B., Jamasb, A. R., Soman, J., Regep, C., Liu, G., Hayter, J. B., Vickers, R., Roberts, C., & Tang, J. (2021). Utilizing graph machine learning within drug discovery and development. Briefings in bioinformatics, 22(6), bbab159.
Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30.
Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., & Sainath, T. N. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82-97.
Jamali, M., & Ester, M. (2010, September). A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the fourth ACM conference on Recommender systems (pp. 135-142).
Jeong, C.-S., Ryu, K.-H., Lee, J.-Y., & Jung, K.-D. (2020). Deep Learning-based Tourism Recommendation System using Social Network Analysis. International Journal of Internet, Broadcasting and Communication, 12(2), 113-119.
Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30-37.
Ma, H., Zhou, D., Liu, C., Lyu, M. R., & King, I. (2011, February). Recommender systems with social regularization. In Proceedings of the fourth ACM international conference on Web search and data mining (pp. 287-296).
McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual review of sociology, 27(1), 415-444.
Monti, F., Bronstein, M. M., & Bresson, X. (2017). Geometric matrix completion with recurrent multi-graph neural networks. arXiv preprint arXiv:1704.06803.
Paryudi, I., Ashari, A., & Mustofa, K. (2021). Creating Personality and Preference Models based on Demographic Data for Personality-based Recommender System for Fashion using Decision Tree and Association Rule. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(14), 5165-5174.
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994, October). Grouplens: An open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference on Computer supported cooperative work (pp. 175-186).
Rosa, R. L., Schwartz, G. M., Ruggiero, W. V., & Rodríguez, D. Z. (2018). A knowledge-based recommendation system that includes sentiment analysis and deep learning. IEEE Transactions on Industrial Informatics, 15(4), 2124-2135.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, April). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web (pp. 285-295).
Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 30(3), 83-98.
Sperduti, A., & Starita, A. (1997). Supervised neural networks for the classification of structures. IEEE transactions on neural networks, 8(3), 714-735.
Tang, J., Hu, X., & Liu, H. (2013). Social recommendation: a review. Social Network Analysis and Mining, 3(4), 1113-1133.
Tang, J., Wang, S., Hu, X., Yin, D., Bi, Y., Chang, Y., & Liu, H. (2016, February). Recommendation with social dimensions. In Thirtieth AAAI Conference on Artificial Intelligence.
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
Wang, X., He, X., Nie, L., & Chua, T. S. (2017, August). Item silk road: Recommending items from information domains to social users. In Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval (pp. 185-194).
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1), 4-24.
Yang, B., Lei, Y., Liu, J., & Li, W. (2016). Social collaborative filtering by trust. IEEE transactions on pattern analysis and machine intelligence, 39(8), 1633-1647.
Yang, L., Liu, Z., Dou, Y., Ma, J., & Yu, P. S. (2021, July). Consisrec: Enhancing gnn for social recommendation via consistent neighbor aggregation. In Proceedings of the 44th international ACM SIGIR conference on Research and development in information retrieval (pp. 2141-2145).
Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018, July). Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 974-983).
Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of anthropological research, 33(4), 452-473.
Zeng, Y., & Tang, J. (2021). Rlc-gnn: An improved deep architecture for spatial-based graph neural network with application to fraud detection. Applied Sciences, 11(12), 5656.
|