跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 08:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭心媛
研究生(外文):Jeng, Hsin-Yuan
論文名稱:建構圖形神經網路上的社群推薦系統
論文名稱(外文):Social Recommendation System Using Graph Neural Network
指導教授:廖文華廖文華引用關係
指導教授(外文):Liao, Wen-Hwa
學位類別:碩士
校院名稱:國立臺北商業大學
系所名稱:資訊與決策科學研究所
學門:電算機學門
學類:電算機應用學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:36
中文關鍵詞:推薦系統深度學習圖形神經網路
外文關鍵詞:Deep learningGraph Neural Network (GNN)Recommender system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的進步與電商的蓬勃發展,用戶面對眾多的商品種類,無法藉由瀏覽搜索就得到想要的結果。現今的推薦系統(Recommendation System)廣泛應用於各行各業,可用於預測用戶的購買喜好。傳統的推薦系統只考慮到用戶以往購買過的商品以及用戶間購買商品的關係,而沒有考慮到用戶彼此的社交關係。然而用戶的購買行為往往受到同學、朋友、親戚和同事之影響。因此本論文提出使用深度學習(Deep Learning)的圖形神經網路(Graph Neural Network, GNN)的方法,利用用戶間親疏的社交關係與用戶購買商品的評分,加上購買商品間的關係,預測可能購買的商品,提升推薦商品的準確度。
With the advancement of technology and the vigorous development of e-commerce, users are faced with numerous product categories, and they cannot get the desired results by browsing and searching. The recommendation systems are widely used in various fields and can be used to predict users’ purchasing preferences. The traditional recommendation system only considers the products that users have purchased in the past and the relationship between the purchased products between users, but does not consider the social relations of users. However, users’ purchase behavior is often influenced by their classmates, friends, relatives and colleagues. Therefore, this thesis proposes a Graph Neural Network (GNN) mechanism based on deep learning that can predict the possible purchased products and get high accuracy of the recommended products from the social tie strengths.
摘 要 i
Abstract ii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 8
1.3研究架構與流程 9
第二章 文獻探討 10
2.1推薦系統文獻回顧 10
2.2圖神經網路相關研究 11
2.3深度學習相關研究 12
第三章 基於社交關係的GNN推薦系統 14
3.1模型架構 14
3.2社交關係評分 15
3.3定義相關符號與算式 17
3.3.1查詢層(Query Layer) 18
3.3.2鄰居採樣(Neighbor Sampling) 19
3.3.3關係注意力(Relation Attention) 21
3.3.4評分預測及優化(Rating Prediction and Optimization) 22
第四章 實驗建模與分析 23
4.1參數設定 23
4.2評估指標 MAE、RMSE 24
第五章 結論 28
參考文獻 29
Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6), 734-749.

Bennett, J., & Lanning, S. (2007, August). The netflix prize. In Proceedings of KDD cup and workshop (Vol. 2007, p. 35).

Berg, R. v. d., Kipf, T. N., & Welling, M. (2017). Graph convolutional matrix completion. arXiv preprint arXiv:1706.02263.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4), 18-42.

Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203.

Burke, R. (2000). Knowledge-based recommender systems. Encyclopedia of library and information systems, 69(Supplement 32), 175-186.

Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta, S., He, Y., Lambert, M., & Livingston, B. (2010). The YouTube video recommendation system. In Proceedings of the fourth ACM conference on Recommender systems (pp. 293-296).

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems, 29.

Deng, S., Huang, L., Xu, G., Wu, X., & Wu, Z. (2016). On deep learning for trust-aware recommendations in social networks. IEEE transactions on neural networks and learning systems, 28(5), 1164-1177.

Ding, Y., Zhu, Y., Feng, J., Zhang, P., & Cheng, Z. (2020). Interpretable spatio-temporal attention LSTM model for flood forecasting. Neurocomputing, 403, 348-359.

El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., & El Allioui, Y. (2019). A fuzzy classification approach for learning style prediction based on web mining technique in e-learning environments. Education and Information Technologies, 24(3), 1943-1959.

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., & Yin, D. (2019, May). Graph neural networks for social recommendation. In The world wide web conference (pp. 417-426).

Fessahaye, F., Perez, L., Zhan, T., Zhang, R., Fossier, C., Markarian, R., ... & Oh, P. (2019, January). T-recsys: A novel music recommendation system using deep learning. In 2019 IEEE international conference on consumer electronics (ICCE) (pp. 1-6).

Forouzandeh, S., Aghdam, A. R., Barkhordari, M., Fahimi, S. A., Vayqan, M. K., Forouzandeh, S., & Khani, E. G. (2017). Recommender system for Users of Internet of Things (IOT). IJCSNS, 17(8), 46.

Fu, M., Qu, H., Yi, Z., Lu, L., & Liu, Y. (2018). A novel deep learning-based collaborative filtering model for recommendation system. IEEE transactions on cybernetics, 49(3), 1084-1096.

Gaudelet, T., Day, B., Jamasb, A. R., Soman, J., Regep, C., Liu, G., Hayter, J. B., Vickers, R., Roberts, C., & Tang, J. (2021). Utilizing graph machine learning within drug discovery and development. Briefings in bioinformatics, 22(6), bbab159.

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., & Sainath, T. N. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82-97.

Jamali, M., & Ester, M. (2010, September). A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the fourth ACM conference on Recommender systems (pp. 135-142).

Jeong, C.-S., Ryu, K.-H., Lee, J.-Y., & Jung, K.-D. (2020). Deep Learning-based Tourism Recommendation System using Social Network Analysis. International Journal of Internet, Broadcasting and Communication, 12(2), 113-119.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30-37.

Ma, H., Zhou, D., Liu, C., Lyu, M. R., & King, I. (2011, February). Recommender systems with social regularization. In Proceedings of the fourth ACM international conference on Web search and data mining (pp. 287-296).

McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual review of sociology, 27(1), 415-444.

Monti, F., Bronstein, M. M., & Bresson, X. (2017). Geometric matrix completion with recurrent multi-graph neural networks. arXiv preprint arXiv:1704.06803.

Paryudi, I., Ashari, A., & Mustofa, K. (2021). Creating Personality and Preference Models based on Demographic Data for Personality-based Recommender System for Fashion using Decision Tree and Association Rule. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(14), 5165-5174.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994, October). Grouplens: An open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference on Computer supported cooperative work (pp. 175-186).

Rosa, R. L., Schwartz, G. M., Ruggiero, W. V., & Rodríguez, D. Z. (2018). A knowledge-based recommendation system that includes sentiment analysis and deep learning. IEEE Transactions on Industrial Informatics, 15(4), 2124-2135.

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6), 734-749.

Bennett, J., & Lanning, S. (2007, August). The netflix prize. In Proceedings of KDD cup and workshop (Vol. 2007, p. 35).

Berg, R. v. d., Kipf, T. N., & Welling, M. (2017). Graph convolutional matrix completion. arXiv preprint arXiv:1706.02263.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4), 18-42.

Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203.

Burke, R. (2000). Knowledge-based recommender systems. Encyclopedia of library and information systems, 69(Supplement 32), 175-186.

Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta, S., He, Y., Lambert, M., & Livingston, B. (2010). The YouTube video recommendation system. Proceedings of the fourth ACM conference on Recommender systems,

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems, 29, 3844-3852.

Deng, S., Huang, L., Xu, G., Wu, X., & Wu, Z. (2016). On deep learning for trust-aware recommendations in social networks. IEEE transactions on neural networks and learning systems, 28(5), 1164-1177.

Ding, Y., Zhu, Y., Feng, J., Zhang, P., & Cheng, Z. (2020). Interpretable spatio-temporal attention LSTM model for flood forecasting. Neurocomputing, 403, 348-359.

El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., & El Allioui, Y. (2019). A fuzzy classification approach for learning style prediction based on web mining technique in e-learning environments. Education and Information Technologies, 24(3), 1943-1959.

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., & Yin, D. (2019, May). Graph neural networks for social recommendation. In The world wide web conference (pp. 417-426).

Fessahaye, F., Perez, L., Zhan, T., Zhang, R., Fossier, C., Markarian, R., ... & Oh, P. (2019, January). T-recsys: A novel music recommendation system using deep learning. In 2019 IEEE international conference on consumer electronics (ICCE) (pp. 1-6).

Forouzandeh, S., Aghdam, A. R., Barkhordari, M., Fahimi, S. A., Vayqan, M. K., Forouzandeh, S., & Khani, E. G. (2017). Recommender system for Users of Internet of Things (IOT). IJCSNS, 17(8), 46.

Fu, M., Qu, H., Yi, Z., Lu, L., & Liu, Y. (2018). A novel deep learning-based collaborative filtering model for recommendation system. IEEE transactions on cybernetics, 49(3), 1084-1096.

Gaudelet, T., Day, B., Jamasb, A. R., Soman, J., Regep, C., Liu, G., Hayter, J. B., Vickers, R., Roberts, C., & Tang, J. (2021). Utilizing graph machine learning within drug discovery and development. Briefings in bioinformatics, 22(6), bbab159.

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., & Sainath, T. N. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82-97.

Jamali, M., & Ester, M. (2010, September). A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the fourth ACM conference on Recommender systems (pp. 135-142).

Jeong, C.-S., Ryu, K.-H., Lee, J.-Y., & Jung, K.-D. (2020). Deep Learning-based Tourism Recommendation System using Social Network Analysis. International Journal of Internet, Broadcasting and Communication, 12(2), 113-119.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30-37.

Ma, H., Zhou, D., Liu, C., Lyu, M. R., & King, I. (2011, February). Recommender systems with social regularization. In Proceedings of the fourth ACM international conference on Web search and data mining (pp. 287-296).

McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual review of sociology, 27(1), 415-444.

Monti, F., Bronstein, M. M., & Bresson, X. (2017). Geometric matrix completion with recurrent multi-graph neural networks. arXiv preprint arXiv:1704.06803.

Paryudi, I., Ashari, A., & Mustofa, K. (2021). Creating Personality and Preference Models based on Demographic Data for Personality-based Recommender System for Fashion using Decision Tree and Association Rule. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(14), 5165-5174.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994, October). Grouplens: An open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference on Computer supported cooperative work (pp. 175-186).

Rosa, R. L., Schwartz, G. M., Ruggiero, W. V., & Rodríguez, D. Z. (2018). A knowledge-based recommendation system that includes sentiment analysis and deep learning. IEEE Transactions on Industrial Informatics, 15(4), 2124-2135.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, April). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web (pp. 285-295).

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 30(3), 83-98.

Sperduti, A., & Starita, A. (1997). Supervised neural networks for the classification of structures. IEEE transactions on neural networks, 8(3), 714-735.

Tang, J., Hu, X., & Liu, H. (2013). Social recommendation: a review. Social Network Analysis and Mining, 3(4), 1113-1133.

Tang, J., Wang, S., Hu, X., Yin, D., Bi, Y., Chang, Y., & Liu, H. (2016, February). Recommendation with social dimensions. In Thirtieth AAAI Conference on Artificial Intelligence.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.

Wang, X., He, X., Nie, L., & Chua, T. S. (2017, August). Item silk road: Recommending items from information domains to social users. In Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval (pp. 185-194).

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1), 4-24.

Yang, B., Lei, Y., Liu, J., & Li, W. (2016). Social collaborative filtering by trust. IEEE transactions on pattern analysis and machine intelligence, 39(8), 1633-1647.

Yang, L., Liu, Z., Dou, Y., Ma, J., & Yu, P. S. (2021, July). Consisrec: Enhancing gnn for social recommendation via consistent neighbor aggregation. In Proceedings of the 44th international ACM SIGIR conference on Research and development in information retrieval (pp. 2141-2145).

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018, July). Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 974-983).

Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of anthropological research, 33(4), 452-473.

Zeng, Y., & Tang, J. (2021). Rlc-gnn: An improved deep architecture for spatial-based graph neural network with application to fraud detection. Applied Sciences, 11(12), 5656.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊