跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 03:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴郁汝
研究生(外文):LAI, YU-JU
論文名稱:溴氧化鉍/碘氧化鉍/石墨相氮化碳複合物:合成、特性及光催化活性
論文名稱(外文):Bismuth-oxybromide/bismuth-oxyiodide/graphitic-carbon nitride composites: synthesis, characterization, and photocatalytic activity
指導教授:陳錦章陳錦章引用關係
指導教授(外文):CHEN, CHIING-CHANG
口試委員:張嘉麟盧長興曾怡享戴永銘
口試委員(外文):CHANG, JIA-LINLU, CHUNG-SHINTSENG, I-HSIANGDAI, YONG-MING
口試日期:2021-11-09
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:科學教育與應用學系碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:114
中文關鍵詞:二氧化碳還原光催化溴氧化鉍碘氧化鉍石墨相氮化碳結晶紫染料水楊酸
外文關鍵詞:carbon dioxide reductionphotocatalysisbismuth bromide oxidebismuth oxyiodidegraphitic carbon nitridecrystal violet dyesalicylic acid
相關次數:
  • 被引用被引用:1
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
近年來,全球面對日益嚴重的環境污染與污染物處理問題,積極尋求合適的解決方法,加上能源緊縮,以至於科學家無不找尋再生能源期望為世界帶來一道曙光。此時由光驅動的光催化劑則被視為切合之技術,能在污染物降解與太陽能轉化中引起重要的作用。
本研究合成一系列溴氧化鉍/碘氧化鉍/石墨相氮化碳(BiOxBry / BiOmIn / g-C3N4)作為光催化反應的複合半導體材料。合成出的觸媒樣品透過X射線粉末繞射儀(XRD)、紫外光-可見光漫反射光譜儀(UV-vis DRS)、場發式掃描電子顯微鏡附能量散射光譜儀(FE-SEM-EDS)、場發式穿透電子顯微鏡附能量散射光譜儀(FE-TEM-EDS)、傅立葉轉換紅外線光譜儀(FT-IR)、高解析電子能譜儀(HR-XPS)、光激發螢光光譜儀(PL)、比表面積分析儀(BET)、電子順磁共振光譜儀(EPR)、紫外光光電子能譜儀(UPS)等儀器鑑定產物的組成和特性。實驗表明在一系列BiOxBry / BiOmIn / g-C3N4 合成觸媒實現了太陽能驅動的光催化降解結晶紫染料(Crystal Violet, CV)和水楊酸(Salicylic Acid, 2-HBA),以及將光催化還原CO2為CH4的成果,在研究中提出並討論光催化機制。
研究結果顯示,複合的BiOxBry / BiOmIn 系列樣品中降解結晶紫染料最高速率k值原本只有0.1967h-1,但複合的BiOxBry / BiOmIn / g-C3N4最高降解效率變為0.2888h-1有提高的效果,顯示這些觸媒具有光催化能力。另外將最佳觸媒進行五次回收使用,效率仍維持在94%,表示這些觸媒具有重複使用的價值。而在光催化還原 CO2反應時,BB2I1-200-7與BB2I1-200-7-C3N4-10的CH4的產量最高分別達63.81 ppm與 49.82 ppm,進而達成綠色化學之目標。
In face of worsening environmental pollution and pollutant treatment problems in past years, suitable solutions are positive searched globally. Moreover, energy crunch has scientists search renewable energy for a light at the end of the tunnel. In this case, light-driven photocatalysts are regarded as a suitable technology to induce important function in pollutant degradation and solar energy conversion.
A series of bismuth bromide oxide/bismuth oxyiodide/graphitic carbon nitride (BiOxBry / BiOmIn / g-C3N4) are synthesized as the compound semiconductor material for photocatalytic reaction. The synthesized catalyst samples are tested the composition and characteristics with X-ray powder diffractometer (XRD), ultraviolet-visible diffusion reflectance spectrophotometer (UV-vis DRS), field emission scanning electron microscope: energy dispersive spectrometer (FE-SEM-EDS), Fourier transform infrared spectrometer (FT-IR), high resolution X-ray photoelectron spectroscopy (HR-XPS), photoluminescence spectrometer (PL), surface area and porosimetry analyzer (BET), electron paramagnetic resonance spectrometer (EPR), and ultraviolet photoelectron spectroscopy (UPS). The experiment reveals that the series of BiOxBry / BiOmIn / g-C3N4 synthesized catalysts realize solar energy driven photocatalysis degrading crystal violet dye (CV) and salicylic acid (2-HBA) as well as photocatalytic reduction of CO2 to CH4. The photocatalysis mechanism is proposed and discussed in the research.
The research results show that the maximum speed k for degrading crystal violet dye among the compound BiOxBry / BiOmIn samples is merely 0.1967h-1, but the maximal degradation efficiency in the compound BiOxBry / BiOmIn / g-C3N4 appears 0.2888h-1. The increase reveals the photocatalytic analysis of such catalysts. Furthermore, the optimal catalysts are reused for 5 times, and the efficiency remains 94%, showing the value of such catalysts being repeatedly used. During the photocatalytic reduction of CO2, BB2I1-200-7 and BB2I1-200-7-C3N4-10 appear the highest CH4 production 63.81 ppm and 49.82 ppm, respectively, to further achieve the goal of green chemistry.
摘要 I
Abstract II
第一章 緒論 1
1-1研究動機 1
1-2研究目的 2
第二章 文獻探討 3
2-1結晶紫 3
2-2水楊酸 4
2-3染料廢水處理技術 5
2-4高級氧化程序 6
2-5光催化氧化法 6
2-6光催化還原二氧化碳 7
2-7光觸媒 8
2-8石墨相氮化碳(g-C3N4) 10
第三章 實驗材料與方法 11
3-1研究架構 11
3-2實驗藥品 12
3-2-1三元鹵氧化鉍製備藥品 12
3-2-2異質複合材料 12
3-2-3光催化活性實驗藥品 12
3-2-4活性物種試劑 12
3-3觸媒合成方法 13
3-3-1觸媒合成器材與設備 13
3-3-2石墨相氮化碳(g-C3N4)之製備 13
3-3-3溴氧化鉍/碘氧化鉍之製備 14
3-3-4溴氧化鉍/碘氧化鉍/石墨相氮化碳之製備 15
3-4複合光觸媒樣品代碼表 16
3-5觸媒成分鑑定及特性分析儀器 17
3-5-1儀器規格 17
3-5-2儀器對觸媒特性分析 18
3-6光觸媒降解汙染物實驗方法 19
3-6-1降解實驗器材與設備 19
3-6-2照光位置測驗 20
3-6-3暗室時間確認 21
3-6-4照光程序 22
3-7測定活性物種 23
3-8 光催化還原二氧化碳實驗方法 24
3-8-1 實驗器材與設備 24
3-8-2 實驗程序 25
第四章 結果與討論 26
4-1分析BiOxBry / BiOmIn之表面特性 26
4-1-1 X射線粉末繞射儀(XRD) 27
4-1-1-1 BB1I2在100 °C改變pH值 28
4-1-1-2 BB1I2在150 °C改變pH值 30
4-1-1-3 BB1I2在200 °C改變pH值 32
4-1-1-4 BB1I2在250 °C改變pH值 34
4-1-1-5 BB2I1在100 °C改變pH值 37
4-1-1-6 BB2I1在150 °C改變pH值 39
4-1-1-7 BB2I1在200 °C改變pH值 41
4-1-1-8 BB2I1在250 °C改變pH值 43
4-1-2紫外光-可見光漫反射光譜儀(UV-vis DRS) 46
4-1-2-1 BB1I2在100 °C改變pH值 47
4-1-2-2 BB1I2在150 °C改變pH值 48
4-1-2-3 BB1I2在200 °C改變pH值 49
4-1-2-4 BB1I2在250 °C改變pH值 50
4-1-2-5 BB2I1在100 °C改變pH值 51
4-1-2-6 BB2I1在150 °C改變pH值 52
4-1-2-7 BB2I1在200 °C改變pH值 53
4-1-2-8 BB2I1在250 °C改變pH值 54
4-1-3場發式掃描電子顯微鏡附能量散射光譜儀(FE-SEM-EDS) 57
4-1-4比表面積分析儀(BET) 60
4-2 BiOxBry / BiOmIn之光催化活性探討 61
4-2-1光降解效率圖 61
4-2-1-1 BB1I2在100 °C改變pH值 62
4-2-1-2 BB1I2在150 °C改變pH值 63
4-2-1-3 BB1I2在200 °C改變pH值 64
4-2-1-4 BB1I2在250 °C改變pH值 65
4-2-1-5 BB2I1在100 °C改變pH值 66
4-2-1-6 BB2I1在150 °C改變pH值 67
4-2-1-7 BB2I1在200 °C改變pH值 68
4-2-1-8 BB2I1在250 °C改變pH值 69
4-3 分析BiOxBry / BiOmIn / g-C3N4之表面特性 71
4-3-1 X射線粉末繞射儀(XRD) 71
4-3-2傅立葉轉換紅外線光譜儀(FT-IR) 73
4-3-3紫外光-可見光漫反射光譜儀(UV-vis DRS) 74
4-3-4場發式掃描電子顯微鏡附能量散射光譜儀(FE-SEM-EDS) 77
4-3-5場發式穿透電子顯微鏡附能量散射光譜儀(FE-TEM-EDS) 78
4-3-6高解析電子能譜儀(HR-XPS) 81
4-3-7比表面機分析儀(BET) 87
4-3-8光激發螢光光譜儀(PL) 89
4-4 BiOxBry/BiOmIn/g-C3N4之光催化活性探討 90
4-4-1光降解效率圖 90
4-4-2活性物種確認 97
4-4-3電子順磁共振光譜儀(EPR) 98
4-4-4光催化反應機制圖 100
4-4-5回收再利用 102
4-5 光催化還原二氧化碳之探討 103
第五章 結論與建議 106
5-1結論 106
5-2建議 107
參考文獻 108

【1】J.G. Yu, X.H. Zhao, H. Yang, X.H Chen, Q. Yang, L.Y Yu, J.H. Jiang, X.Q Chen, Aqueous adsorption and removal of organic contaminants by carbon nanotubes, Science of the Total Environment, 482 (2014) 241-251.
【2】U. Meyer, Biodegradation of synthetic organic colorants, FEMS Microbiology Reviews, 12 (1981) 371-385.
【3】J. Georgin, D. S. Franco, M. S. Netto, D. Allasia, M. L. Oliveira, G. L. Dotto, Evaluation of Ocotea puberula bark powder (OPBP) as an effective adsorbent to uptake crystal violet from colored effluents: alternative kinetic approaches, Environmental Science and Pollution Research, 20 (2020) 1-13.
【4】S. Maiti, K. Sasmal, S.S. Sinha, M. Singh, Analysis of cytotoxicity and genotoxicity on E. coli, human blood cells and Allium cepa suggests a greater toxic potential of hair dye, Ecotoxicology and Environmental Safety, 124 (2016) 248-254.
【5】F.M. Machado, C.P. Bergmann, T.H. Fernandes, E.C. Lima , B. Royer, T. Calvete, S.B. Fagan, Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon, Journal of Hazardous Materials, 192 (2011) 1122-1131.
【6】F. Silva, L. Nascimento, M. Brito, K. da Silva, W. Paschoal, R. Fujiyama, Biosorption of methylene blue dye using natural biosorbents made from weeds, Materials. 12 (2019) 2486.
【7】L. Xu, X. Chen, H. Li, F. Hu, M. Liang, Characterization of the biosorption and biodegradation properties of Ensifer adhaerens: A potential agent to remove polychlorinated biphenyls from contaminated water, Journal of Hazardous Materials, 302 (2016) 314-322.
【8】N.M. Mahmoodi, A. Dalvand, Treatment of colored textile wastewater containing acid dye using electrocoagulation process, Desalination and Water Treatment, 51 (2013) 5959–5964.
【9】F.E. Gohary, A. Tawfik, Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process, Desalination, 249 (2009) 1159-1164.
【10】M.A. Nejad, C. Mücksch, H.M. Urbassek, Insulin adsorption on crystalline SiO2: Comparison between polar and nonpolar surfaces using accelerated molecular-dynamics simulations, Chemical Physics Letters, 670 (2017) 77-83.
【11】C.S.D. Rodrigues, S.A.C. Carabineiro, F.J. Maldonado-Hódar, L.M. Madeira, Wet peroxide oxidation of dye-containing wastewatersusing nanosized Au supported on Al2O3, Catalysis Today, 280 (2017) 165-175.
【12】M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis, Journal of Power Sources, 181 (2008) 46-55.
【13】H. Tu, D. Li, Y. Yi, R. Liu, Y. Wu, X. Dong, X. Shi, H. Deng, Incorporation of rectorite into porous polycaprolactone/TiO2 nanofibrous mats for enhancing photocatalysis properties towards organic dye pollution, Composites Communications, 15 (2019) 58-63.
【14】Y. Shiraishi, Y. Sugano, D. Inoue, T. Hirai, Effect of substrate polarity on photocatalytic activity of titanium dioxide particles embedded in mesoporous silica, Journal of Catalysis, 264 (2009) 175-182.
【15】K.L. Li, W.W. Lee, C.S. Lu, Y.M. Dai, S.Y. Chou, H.L. Chen, H.P. Lin, C.C. Chen, Synthesis of BiOBr, Bi3O4Br, and Bi12O17Br2 by controlled hydrothermal method and their photocatalytic properties, Journal of the Taiwan Institute of Chemical Engineers, 45 (2014) 2688-2697.
【16】J. Miao, G. Xu, J. Liu, J. Lv, Y. Wu, Synthesis and photocatalytic performance of g-C3N4 nanosheets via liquid phase stripping, Journal of Solid State Chemistry, 246 (2017) 186-193.
【17】R.L. Feller, Accelerated aging Photochemical and thermal aspects, Journal of the American Institute for Conservation, 35 (1996) 163-165.
【18】S.R. Patil, S.S. Sutar, J.P. Jadhav, Sorption of crystal violet from aqueous solution using live roots of Eichhornia crassipes: Kinetic, isotherm, phyto and cyto-genotoxicity studies, Environmental Technology & Innovation, 18 (2020) 100648.
【19】W. Zhu, Z. Yang, L. Wang, Application of ferrous-hydrogen peroxide for the treatment of H-acid manufacturing process wastewater, Water Research, 30 (1996) 2949-2954.
【20】W. Azmi, R.K. Sani, U.C. Banerjee, Biodegradation of triphenylmethane dyes, Enzyme and Microbial Technology, 22 (1998) 185-191.
【21】Y. Zhou, M. Zhang, X. Wang, Q. Huang, Y. Min, J. Niu, Removal of Crystal Violet by a Novel Cellulose-Based Adsorbent:Comparison with Native Cellulose, Industrial & Engineering Chemistry Research, 53 (2014) 5498-5506.
【22】S. Srivastava, R. Sinha, D. Roy, Toxicological effects of malachite green, Aquatic Toxicology, 66 (2004) 319-329.
【23】D. Selishchev, D. Kozlov, Photocatalytic oxidation of diethyl sulfide vapor over TiO2-Based composite photocatalysts, Molecules, 19 (2014) 21424-21441.
【24】Y. Lin, X. Sun, Q. Yuan, Y. Yan, Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli, Metabolic Engineering, 23 (2014) 62-69.
【25】M. Tian, B. Adams, J. Wen, R.M. Asmussen, A. Chen, Photoelectrochemical oxidation of salicylic acid and salicylaldehyde on titanium dioxide nanotube arrays, Electrochimica Acta, 54 (2009) 3799-3805.
【26】X. Liu, M. Du, J. Yang, Y. Wu, Q. Xu, D. Wang, Q. Yang, G. Yang, X. Li, Sulfite serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge, Chemical Engineering Journal, 385 (2020) 123991.
【27】L. Mai, B.V.D. Akker, J. Du, R.S. Kookana, H. Fallowfield, Impact of exogenous organic carbon on the removal of chemicals of concern in the high rate nitrifying trickling filters, Journal of Environmental Management, 174 (2006) 7-13.
【28】X. Wang, Y. Tian, X. Zhao, Q. Wu, S. Peng, L. Yan, Optimizing the operation of combined oxidation pond-constructedwetland ecosystems used for treating composite wastewater, Ecological Engineering, 88 (2016) 64-76.
【29】K. Yuan, S. Li, F. Zhong, Treatment of coking wastewater in biofilm-based bioaugmentation process:Biofilm formation and microbial community analysis, Journal of Hazardous Materials, 400 (2020) 123117.
【30】M. Pessoa-Lopes, J.G. Crespo, S. Velizarov, Arsenate removal from sulphate-containing water streams by an ion-exchange membrane process, Separation and Purification Technology, 166 (2016) 125-134.
【31】P. Zhang, R. Tian, R. Lv, B. Na, Q. Liu, Water-permeable polylactide blend membranes for hydrophilicity-based separation, Chemical Engineering Journal, 269 (2015) 180-185.
【32】Q. Zhou, A. Xing, J. Li, D. Zhao, K. Zhao, M. Lei, Synergistic enhancement in photoelectrocatalytic degradation of bisphenol A by CeO2 and reduced graphene oxide co-modified TiO2 nanotube arrays in combination with Fenton oxidation, Electrochimica Acta, 209 (2016) 379-388.
【33】M.M. M’Arimi a, C.A. Mecha, A.K. Kiprop, R. Ramkat, Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review, Renewable and Sustainable Energy Reviews, 121 (2020) 109669.
【34】X. Chang, J. Huang, C. Cheng, Q. Sui, W. Sha, G. Ji, S. Deng, G. Yu, BiOX (X = Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: Characterization and catalytic performance, Catalysis Communications,11 (2010) 460-464.
【35】A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-38.
【36】X.J. Wang, Q. Wang, F.T. Li, W.Y. Yang, Y. Zhao, Y.J. Hao, S.J. Liu, Novel BiOCl–C3N4 heterojunction photocatalysts: In situ preparation via an ionic-liquid-assisted solvent-thermal route and their visible-light photocatalytic activities, Chemical Engineering Journal, 234 (2013) 361-371.
【37】Y.X. Pan, Y. You, S. Xin, Y. Li, G. Fu, Z. Cui, Y.L. Men, F.F. Cao, S.H. Yu, J.B. Goodenough, Photocatalytic CO2 Reduction by Carbon-Coated Indium-Oxide Nanobelts, Journal of the American Chemical Society, 139(2017) 4123-4129.
【38】M. Tarek , K.M.R. Karim, S.M. Sarkar, A. Deb, H.R. Ong, H. Abdullah, C.K. Cheng, M.M.R. Khan, Hetero-structure CdS-CuFe2O4 as an efficient visible light active photocatalyst for photoelectrochemical reduction of CO2 to methanol, International Journal of Hydrogen Energy, 44(2019)26271-26284.
【39】H. Cheng, B. Huang, Y. Daib, Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications, Nanoscale, 6 (2014) 2009-2026.
【40】D. Ma, S. Huang, W. Chen, S. Hu, F. Shi, K. Fan, Self-Assembled Three-Dimensional Hierarchical Umbilicate Bi2WO6 Microspheres from Nanoplates: Controlled Synthesis, Photocatalytic Activities and Wettability, Journal of Physical Chemistry C, 113 (2009) 4369-4374.
【41】P. Pawinrata, O. Mekasuwandumrong, J. Panpranota, Synthesis of Au–ZnO and Pt–ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes, Catalysis Communications, 10 (2009) 1380-1385.
【42】X. Lin, T. Huang, F. Huang, W. Wang, J. Shia, Photocatalytic activity of a Bi-based oxychloride Bi4NbO8Cl, Journal of Materials Chemistry, 17 (2007) 2145-2150.
【43】J. Luo, X. Zhou, L. Ma, X. Xu, Enhanced visible-light-driven photocatalytic activity of WO3/BiOI heterojunction photocatalysts, Journal of Molecular Catalysis A: Chemical, 401 (2015) 168-176.
【44】C. W. Siao, W. W. Lee, W. H. Chung, J. T. Hung, P. H. Huang, W. Y. Lin, C. C. Chen, BiOxCly/BiOmBrn/BiOpIq/GO quaternary composites: Syntheses and application of visible-light-driven photocatalytic activities, Journal of Colloid and Interface Science, 544(2019)25-36.
【45】Y. Sun, W. Zhang, T. Xiong, Z. Zhan, F. Dong, R. Wang, W.K. Ho, Growth of BiOBr nanosheets on C3N4 nanosheets to construct two-dimensional nanojunctions with enhanced photoreactivity for NO removal, Journal of Colloid and Interface Science, 418 (2014) 317-323.
【46】L. Ye, J. Liu, Z. Jiang, T. Peng, Zan L. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity, Applied Catalysis B: Environmental, 142-143 (2013) 1-7.
【47】H.L. Chen, W.W. Lee, W.H. Chung, H.P. Lin, Y.J. Chen, Y.R. Jiang, W.Y. Lin, C.C. Chen, Controlled hydrothermal synthesis of bismuth oxybromides and their photocatalytic properties, Journal of the Taiwan Institute of Chemical Engineers, 45 (2014) 1892-1909.
【48】H. Linn, H. Ye, X. Li, J. Cao, S. Chen, Facile anion-exchange synthesis of BiOI/BiOBr composite with enhanced photoelectrochemical and photocatalytic properties, Ceramics International, 40 (2014) 9743-9750.
【49】J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal, Chemical Engineering Journal, 185-186 (2012) 91-99.
【50】F. Dong, Y. Sun, M. Fu, Z. Wu, S.C. Lee, Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers, Journal of Hazardous Materials, 219-220 (2012) 26-34.
【51】X. Xiao, R. Hao, M. Liang, X. Zuo, J. Nan, L. Li, W. Zhang, One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A, Journal of Hazardous Materials, 233-234 (2012) 122-130.
【52】T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nautre, 277(1979)637-638.
【53】J. Chen, J. Zhu, Z. Da, H. Xu, J. Yan, H. Ji, H. Shu, H. Li, The Improving the photocatalytic activity and stability of graphene-like BN / AgBr composites, Applied Surface Science, 313 (2014) 1-9.
【54】B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, W. Schnick, Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride:  Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies, Journal of the American Chemical Society, 125 (2003) 10288-10300.
【55】C.T. Yang, W.W. Lee, H.P. Lin, Y.M. Dai, H.T. Chi, C.C. Chen, A novel heterojunction photocatalyst, Bi2SiO5/g-C3N4: synthesis, characterization, photocatalytic activity, and mechanism, Royal socity of chemistry, RSC Advances, 6 (2016) 40664-40675.
【56】C.C. Chen, T.T. Chen, J. Shaya, C.L. Wu, C.S. Lu, Bi12SiO20/g-C3N4 heterojunctions: Synthesis, characterization, photocatalytic activity for organic pollutant degradation, and mechanism, Journal of the Taiwan Institute of Chemical Engineers, 123(2021)288-244.
【57】Y. Shang, X. Chen, W. Liu, P. Tan, H. Chen, L. Wu, C. Ma, X. Xiong, J. Pan, Photocorrosion inhibition and high-efficiency photoactivity of porous g-C3N4/Ag2CrO4 composites by simple microemulsion-assisted co-precipitation method, Applied Catalysis B: Environmental, 204 (2017) 78-88.
【58】L.W. Chen, H.L. Chen, C.S. Lu, S.T. Huang, T.W. Yeh, C.C. Chen, Preparation of perovskites-like PbBiO2I/g-C3N4 exhibiting visible-light-driven activity, Catalysis Today, 375(2021)472-483.
【59】R. Yin, Y. Li, K. Zhong, H. Yao, Y. Zhang, K. Lai, Multifunctional property exploration: Bi4O5I2 with high visible light photocatalytic performance and a large nonlinear optical effect, RSC Advances, 9 (2019) 4539-4544.
【60】Y. Chen, B. Zhai, Y. Liang, Y. Li, Hybrid photocatalysts using semiconductor/MOF/graphene oxide for superior photodegradation of organic pollutants under visible light, Materials Science in Semiconductor Processing, 107 (2020) 104838.
【61】X. Xiaoab, W.D. Zhang, Hierarchical Bi7O9I3 micro/nano-architecture: facile synthesis, growth mechanism, and high visible light photocatalytic performance, RSC Advances, 1 (2011) 1099-1105.
【62】F. Rao, G. Zhu, W. Zhang, J. Gao, F. Zhang, Y. Huang, M. Hojamberdiev, In-situ generation of oxygen vacancies and metallic bismuth from (BiO)2CO3 via N2- assisted thermal-treatment for efficient selective photocatalytic NO removal, Applied Catalysis B: Environmental, 281 (2021) 119481.
【63】F.T. Li, Y. Zhao, Q. Wang, X.J. Wang, Y.J. Hao, R.H. Liu, D. Zhaob, Enhanced visible-light photocatalytic activity of active Al2O3/g-C3N4 heterojunctions synthesized via surface hydroxyl modification, Journal of Hazardous Materials, 283 (2015) 371-381.
【64】H. Liu, D. Chen , Z. Wang, H. Jing, R. Zhang, Microwave-assisted molten-salt rapid synthesis of isotypetriazine-/heptazine based g-C3N4 heterojunctions with highlyenhanced photocatalytic hydrogen evolution performance, Applied Catalysis B: Environmental, 203 (2017) 300-313.
【65】M. Arif, G. Yasin, M. Shakeel, X.Fang, R. Gao, S. Ji, D. Yana, Coupling of bifunctional comn-layered double hydroxide @ Graphitic-C3N4 nanohybrids towards efficient photoelectrochemical overall water splitting, Chemistry An Asian Journal, 13 (2018) 1045-1052.
【66】S. Ge, D. Li, Z. Cui, Y. Zhang, S. Zhang, T. Zhang, G. Jia, W. He, Z. Zheng, Regulating the relative content of O2−‧ and ·OH for PCPNa degradation on BiOCl plates with controllable exposed crystal faces and surface oxygen vacancies, Separation and Purification Technology, 228 (2019) 115743.
【67】X. Xiaoa, M.i Lua, J. Nana, X Zuoa, W Zhangb, S Liuc,S Wangc, Rapid microwave synthesis of I-doped Bi4O5Br2 with significantlyenhanced visible-light photocatalysis for degradation of multipleparabens, Applied Catalysis B: Environmental, 218(2017)398-408.
【68】H.L. Chen, F.Y. Liu, X. Xiao, J. Hu, B. Gao, D. Zou, C.C. Chen, Visible-light-driven photocatalysis of carbon dioxide and organic pollutants by MFeO2 (M = Li, Na, or K), Journal of Colloid and Interface Science, 601 (2021) 758-772.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊