跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 17:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:袁佳慶
研究生(外文):YUAN, CHIA-CHING
論文名稱:導入人工智慧對話式機器人教學以提升國軍飛機修護訓練成效
論文名稱(外文):AI teaching chatbot design to enhance military aircraft maintenance training in ROC Armed Forces
指導教授:李政軒李政軒引用關係
指導教授(外文):Li, Cheng-Hsuan
口試委員:廖惠雯蔡宗憲施淑娟楊智為李政軒
口試委員(外文):Liao, Hui-WenTsai, Chung-HsienShih, Shu-ChuanYang, Jhih-WeiLi, Cheng-Hsuan
口試日期:2022-01-06
學位類別:博士
校院名稱:國立臺中教育大學
系所名稱:教育資訊與測驗統計研究所
學門:教育學門
學類:教育測驗評量學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:86
中文關鍵詞:國軍人工智慧對話式機器人戰鬥機修護訓練
外文關鍵詞:militaryaircraftfighter jettrainingartificial intelligencechatbot
相關次數:
  • 被引用被引用:4
  • 點閱點閱:614
  • 評分評分:
  • 下載下載:163
  • 收藏至我的研究室書目清單書目收藏:4
戰鬥機除了是國家的武器裝備,也是重要的資產,因為戰鬥機的機身及相關裝備、器材造價非常高,所以無論是駕駛飛機的飛行員或是維修飛機的地勤人員,在實際接觸到飛機前,均要完成相關的訓練才能駕駛飛機及維修飛機,故其相關的訓練就顯得非常重要。然而,國軍面臨著多次的軍事組織調整,人員編制精簡縮編,在人員訓練上往往無法做到1對1的教學,亦無法確認所有人員均能知悉程序中應注意的事項。反觀美國軍方則早已導入對話式機器人(AutoTutor)作為數位教材,運用於軍事訓練上,藉以提升訓練成效。因此,本研究採用市面普及的即時通訊軟體LINE,做為對話式機器人數位教材建置的平台,並以飛機發動機模組分解程序結合動態評量方式設計教材腳本,接著對國軍實際從事飛機修護的人員進行施測。研究主要在探討的是建置具有人工智慧的對話式機器人數位教材,在提升國軍飛機修護訓練成效的實際效益。
為了驗證建置對話式機器人數位教材的使用成效,本研究之實驗設計採實驗組及對照組,實驗組又分一般動態評量對話式及強化式動態評量對話式機器人兩組,三組採樣人數各20人,人員均為飛機修護單位的成員,惟具有不同年齡層、不同教育程度及不同畢業科系的背景。採用配對t檢定對前測和後測平均分進行差異分析,三組人員的學習成績均有顯著改善。另外,共變數分析結果表明三組之間存在顯著差異。一般動態評量對話式機器人訓練在人員表現提升方面比傳統講師教學有效,強化式動態評量對話式機器人訓練又比一般動態評量對話式機器人訓練更有效。藉此,本研究可得到導入人工智慧對話式機器人教學,對於國軍飛機修護可提升訓練成效之結論。
Fighter jets are a critical national asset. Because of the high cost of their manufacture, both pilots and maintenance personnel must complete intensive training before coming into contact with a jet. Due to gradual military downsizing, one-on-one training is often impracticable, and the level of familiarization with procedures among personnel is difficult to measure. The US military introduced a chatbot as part of its digital training material to enhance training effectiveness and avoid equipment damage. In this study, uses the popular instant messaging software LINE as a platform for the construction of digital textbook for an artificial intelligence (AI) chatbot. The textbook scripts are designed using the decomposition program of aircraft engine modules combined with dynamic assessment methods. Conduct tests on personnel actually engaged in aircraft repairs and maintenance of the military. The study mainly discusses the actual benefits of building digital textbook for chatbot with artificial intelligence in enhancing the effectiveness of aircraft maintenance training for the military.
To evaluate the necessity of an AI chatbot, research samples were divided into three groups, namely an experimental and a control group, with 20 people in each group. The personnel are all members of the aircraft maintenance unit, but they have different age groups, different education levels, and different graduation backgrounds. A paired t test was employed for differentiation analysis of pretest and posttest average scores, revealing that the three groups exhibited a statistically significant improvement in their learning performance. The effect of dynamic assessment chatbot training is more effective than general chatbot training and traditional lecturer teaching.
謝辭 I
摘要 III
ABSTRACT V
目錄 VII
表目錄 IX
圖目錄 XI
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的及待答問題 3
壹、研究目的 3
貳、待答問題 4
第二章 文獻探討 5
第一節 智慧教學系統的演進 5
壹、智能輔導系統 6
貳、智能導學系統 7
參、對話式機器人 10
肆、QnA Maker 13
第二節 動態評量 14
壹、動態評量的理論基礎 14
貳、動態評量的相關研究 16
第三章 研究方法 19
第一節 對話式機器人設計 19
壹、主題 19
貳、對話腳本設計 19
參、流程 25
肆、對話式機器人設計、開發 30
第二節 實驗設計 36
壹、參與人數 36
貳、學生背景 36
參、課程 38
肆、實驗流程、作法、步驟 39
第三節 分析工具 41
壹、 成對樣本t檢定 41
貳、 共變數分析ANCOVA 41
第四章 實驗結果 43
第一節 三種教學方法的學習表現 43
壹、傳統教學對照組 43
貳、一般動態評量對話式機器人教學實驗1組 44
參、強化式動態評量對話式機器人教學實驗2組 44
肆、學習表現比較 45
第二節 三種教學方法的學習成效差異 46
第三節 對話式機器人教學之學習回饋 50
第五章 結論 53
參考文獻 57
中文部分 57
英文部分 61
附錄一 學習前測試卷 67
附錄二 學習後測試卷 69
附錄三 回饋問卷 71
中文部分
朱倫君(2016)。數位新革命聊天機器人。Research Portal 喀報。
https://castnet.nctu.edu.tw/castnet/article/9826?issueID=625
朱經明、蔡玉瑟 (2000)。動態評量在診斷國小五年級數學障礙學生錯誤類型之應用成效。特殊教育研究學刊,18,173-189。
李昌仁(2010)。我國實施全募兵制後國防人力資源運用管理之研究(未出版之碩士論文)。淡江大學,新北市。
周明輝(2010)。實施募兵制對軍民關係之影響。國防雜誌,25(6),107-119。
林信志、湯凱雯、賴信志(2010)。以科技接受模式探討大學生學習以網路教學系統製作數位教材之意圖和成效。數位學習科技期刊,2(1),60-78。
林信良(2016)。應用數學智慧教學系統實施補救教學-以國小五年級 [平行四邊形, 三角形及梯形] 單元為例(博士論文)。國立臺中教育大學,台中市。
林國揚、林谷鴻(2014)。空軍士官長篩選模式之建構-以空軍某後勤單位為例。工程科技與教育學刊,11(3),311-322。
林經淦(2007)。以科技接受模式探討飛行員使用模擬機的接受態度(未出版之碩士論文)。亞洲大學,台中市。
邵美雀(2001)。透過解題活動進行建構教學之網路電腦輔助教學設計之研究-以國小數學除法為例(碩士論文)。國立臺灣師範大學,台北市。
唐宇侃 (2021)。我國後備兵員制度變革–以實施募兵制為例(未出版之碩士論文)。國立政治大學,台北市。
殷堂凱、邱南津(2002)。以模糊特徵擷取推論系統所建構之智慧型學生模型與教學代理人(1/2)。計畫編號: NSC91-2520-S-041-001。
高紅麗、隆舟、劉凱、徐升、蔡志強、胡祥恩(2016)。智能導學系統AutoTutor:理論、技術、應用和預期影響。開放教育研究雜誌,(2016年02),96-103。
張淑萍(2019)。數位教材的腳本寫作。數位學習深耕計畫辦公室。
張漢卿(2005)。飛機失事原因分析研究-以戰機為例(碩士論文)。國立臺灣大學,台北市。
莊逸陽(2018)。數位線性規劃教材設計與教學實驗(碩士論文)。國立臺灣師範大學,台北市。
莊麗娟(1996)。國小六年級浮力概念動態評量的效益分析(博士論文)。國立高雄師範大學,高雄市。
陳志杰、張仕穎、邱子晉、蔡名喬、張俊盛(2018)。節能知識問答機器人。In Proceedings of the 30th Conference on Computational Linguistics and Speech Processing(ROCLING 2018),276-285。
陳姿蓉(2016)。國小五年級數學線對稱圖形數學智慧教學系統成效探討(碩士論文)。國立臺中教育大學,台中市。
陳慧芬(2016)。利用數學智慧家教教學系統在國小六年級速度單元教學成效之分析(碩士論文)。國立臺中教育大學,台中市。
陳麗安(2014)。國語文句型教學:AutoTutor 介入模式(碩士論文)。國立臺中教育大學,台中市。
楊錦潭、林錦泓(2001)。運用智慧型代理人編製網路教案初探-國中生活科技為例。文化大學:全國計算機會議 NCS200。pp. H52H62。
嘉南藥理大學(2019)。居家安控機器人之語音對談的功能開發–子計畫一: 居家安控機器人之語音對談的功能開發(1),計畫編號:CN10808。
鄧志勇、張永佳、洪瑞雲(2017)。飛機發動機維修廠訓練檢定系統之改善-以 A公司為例(未出版之博士論文)。國立交通大學,新竹市。
鄭孟玉(2019)。數位教材類型、觀摩與特色。數位學習深耕計畫辦公室。
顏皓民(2017)。運用Web文字探勘方法來建構領域知識庫:以客戶服務與聊天機器人為研究案例(未出版之博士論文)。國立暨南國際大學,南投縣。



英文部分
Agrawal, P., Menon, T., Kam, A., Naim, M., Chouragade, C., Singh, G., ... & Rajput, N. (2020, April). QnAMaker: Data to Bot in 2 Minutes. In Companion Proceedings of the Web Conference 2020, 131-134.
Albayrak, N., Özdemir, A., & Zeydan, E.(2018). An overview of artificial intelligence based chatbots and an example chatbot application. In 2018 26th Signal processing and communications applications conference(SIU), 1-4. IEEE.
Almasri, A., Ahmed, A., Almasri, N., Abu Sultan, Y. S., Mahmoud, A. Y., Zaqout, I. S., ... & Abu-Naser, S. S.(2019). Intelligent tutoring systems survey for the period 2000-2018.
Anderson, J. R., & Bower, G. H.(2014). Human associative memory. Psychology press.
Anderson, J. R., Boyle, C. F., & Reiser, B. J.(1985). Intelligent tutoring systems. Science, 228(4698), 456-462.
Benjamin, N. Y. E., Xiangen, H. U., GRAESSER, A., & Zhiqiang, C. A. I.(2014). AutoTutor in the cloud: a service-oriented paradigm for an interoperable natural-language ITS. Journal of Advanced Distributed Learning Technology, 2(6), 49-63.
Campione, J. C., & Brown, A. L.(1987). Linking dynamic assessment with school achievement. In C. S. Lidz (Ed.), Dynamic
Chakrabarti, C., & Luger, G. F.(2015). Artificial conversations for customer service chatter bots: Architecture, algorithms, and evaluation metrics. Expert Systems with Applications, 42(20), 6878-6897.
Chandra, Y. W., & Suyanto, S.(2019). Indonesian Chatbot of University Admission Using a Question Answering System Based on Sequence-to-Sequence Model. Procedia Computer Science, 157, 367-374.
Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D.(1996). Understanding the limit concept: Beginning with a coordinated process scheme. Journal of mathematical behavior, 15(2), 167-192.
Duan, H., Li, J., Fan, S., Lin, Z., Wu, X., & Cai, W.(2021, October). Metaverse for social good: A university campus prototype. In Proceedings of the 29th ACM International Conference on Multimedia , 153-161.
Goh, O. S., Fung, C. C., & Depickere, A.(2008). Domain knowledge query conversation bots in instant messaging (IM). Knowledge-Based Systems, 21(7), 681-691.
Goldberg, B., Sinatra, A., Sottilare, R., Moss, J., & Graesser, A.(2015). Instructional Management for Adaptive Training and Education in Support of the US Army Learning Model-Research Outline (No. ARL-SR-0345). ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD HUMAN RESEARCH AND ENGINEERING DIRECTORATE.
Graesser, A. C.(2016). Conversations with AutoTutor help students learn. International Journal of Artificial Intelligence in Education, 26(1), 124-132.
Graesser, A. C., Lu, S., Jackson, G. T., Mitchell, H. H., Ventura, M., Olney, A., & Louwerse, M. M.(2004). AutoTutor: A tutor with dialogue in natural language. Behavior Research Methods, Instruments, & Computers, 36(2), 180-192.
Graesser, A., Penumatsa, P., Ventura, M., Cai, Z., & Hu, X.(2007). Using LSA in AutoTutor: Learning through mixed-initiative dialogue in natural language. In T. K. Landauer, D. S. McNamara, S. Dennis, & W. Kintsch (Eds.). Handbook of latent semantic analysis, 243-262.
Haywood, H. C., Brown, A. L., & Wingenfeld, S.(1990). Dynamic approaches to psychoeducational assessment. School Psychology Review, 19(4), 411–422. https://www.tandfonline.com/doi/abs/10.1080/02796015.1990.12087348
Hong, G., Folcarelli, A., Less, J., Wang, C., Erbasi, N., & Lin, S.(2021). Voice Assistants and Cancer Screening: A Comparison of Alexa, Siri, Google Assistant, and Cortana. The Annals of Family Medicine, 19(5), 447-449.
Lantolf, J. P., & Poehner, M. E.(2006). Dynamic assessment in the foreign language classroom: A teacher’s guide. Center for Advanced Language Proficiency Education and Research(CALPER).
Lauren Thomas(2016, JUL 13). Japanese messaging app Line will keep close ties to Korean internet giant Naver. CNBC. Retrieved from https://www.cnbc.com
Lee, J. Y. (2021). A Study on Metaverse Hype for Sustainable Growth. International journal of advanced smart convergence, 10(3), 72-80.
Lidz, C. S., & Gindis, B.(2003). Dynamic assessment of the evolving cognitive functions in children. Vygotsky’s educational theory in cultural context, 99-116.
Naser, S.S.A.(2006). Intelligent tutoring system for teaching database to sophomore students in Gaza and its effect on their performance. Information Technology Journal, 5(5), 916-922.
Naser, S.S.A.(2008). An agent based intelligent tutoring system for parameter passing in java programming. Journal of Theoretical and Applied Information Technology, 4(7), 585-589.
Naser, S.S.A.(2008). Developing an intelligent tutoring system for students learning to program in C++. Information technology journal, 7(7), 1055-1060.
Naser, S.S.A.(2008). Developing visualization tool for teaching AI searching algorithms. Information Technology Journal, 7(2), 350-355.
Naser, S.S.A.(2009). Evaluating the effectiveness of the CPP-Tutor an intelligent tutoring system for students learning to program in C++. Journal of Applied Sciences Research, 5(1), 109-114.
Naser, S.S.A. (2012). Predicting learner’s performance using artificial neural networks in linear programming intelligent tutoring system. International Journal of Artificial Intelligence & Applications, 3(2), 65-73.
Naser, S.S.A.(2016). ITSB: An Intelligent Tutoring System Authoring Tool. Journal of Scientific and Engineering Research, 3(5), 63-71.
Olney, A. M., Person, N. K., Louwerse, M., Graesser, A. C., & Tutoring Research Group. (2002). AutoTutor: A Conversational Tutoring Environment. In Proceedings of the ACL-02 Demonstration Session, 108-109. Association for Computational Linguistics.
Person, N. K., & Graesser, A. C.(2002, June). Human or Computer? AutoTutor in a Bystander Turing Test. In Proceedings of the 6th International Conference on Intelligent Tutoring Systems, 821-830.
Poehner, M. E.(2008). Dynamic assessment: A Vygotskian approach to understanding and promoting L2 development. Springer.
Ryder, J. M., Graesser, A. C., Le Mentec, J. C., Louwerse, M. M., & Karnavat, A.(2004). A dialog-based intelligent tutoring system for practicing battle command reasoning. CHI SYSTEMS INC FORT WASHINGTON PA.
Schlesinger, A., O’Hara, K. P., & Taylor, A. S.(2018, April). Let’s talk about race: Identity, chatbots, and AI. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1-14.
Siyaev, A., & Jo, G. S.(2021). Towards Aircraft Maintenance Metaverse Using Speech Interactions with Virtual Objects in Mixed Reality. Sensors, 21(6), 2066.
Suartama, I., Setyosari, P., Sulthoni, S., & Ulfa, S.(2020). Development of ubiquitous learning environment based on moodle learning management system.
Wang, T. H.(2010). Web-based dynamic assessment: Taking assessment as teaching and learning strategy for improving students’ e-learning effectiveness. Computers & Education, 54(4), 1157–1166. https://doi.org/10.1016/j.compedu.2009.11.001
Wong, B. T.(2018). Success in mobile and ubiquitous learning: Indicators of effectiveness. BRAIN. Broad Research in Artificial Intelligence and Neuroscience, 9, 55-63.
Wu, H. M., Kuo, B. C., & Wang, S. C.(2017). Computerized dynamic adaptive tests with immediately individualized feedback for primary school mathematics learning.
Educational Technology & Society, 20(1), 61–72. https://doi.org/10.2307/jeductechsoci.20.1.61
Wu, L. J., & Chang, K. E.(2020). Effect of embedding a cognitive diagnosis into the adaptive dynamic assessment of spatial geometry learning. Interactive Learning Environments, 1-18.
Xu, A., Liu, Z., Guo, Y., Sinha, V., & Akkiraju, R.(2017, May). A new chatbot for customer service on social media. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 3506-3510.
Yuan, C. C., Li, C. H., & Peng, C. C.(2021). Development of mobile interactive courses based on an artificial intelligence chatbot on the communication software LINE. Interactive Learning Environments, 1-15.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊