跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 02:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳紹永
研究生(外文):Wu, Shao-Yong
論文名稱:脯胺酸三螺旋環肽骨架與環糊精之辨識及結合
論文名稱(外文):Recognition and Conjugation of Polyproline Tri-Helix Macrocycle Scaffold with Cyclodextrin
指導教授:王聖凱
指導教授(外文):Wang, Sheng-Kai
口試委員:林俊成許銘華
口試委員(外文):Lin, Chun-ChengHsu, Ming-Hua
口試日期:2021-11-10
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:186
中文關鍵詞:聚脯胺酸環糊精骨架
外文關鍵詞:PolyprolineCyclodextrinScaffold
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
先前本實驗室利用奈米級的脯胺酸三螺旋環肽骨架調控配體排列以符合受體的寡聚結構,使其具有辨識的能力。而環狀醣體-環糊精亦是常見的奈米級分子骨架,亦可用於分子辨識,並且在許多領域皆有良好的應用性。我們希望測試是否可利用脯胺酸三螺旋骨架辨識環糊精或者結合二者來拓展奈米骨架的應用。
本論文第一部分透過化學方法對於環糊精進行修飾,並將其與脯胺酸三螺旋環肽骨架進行連接,從而探討多肽骨架對於環糊精主客化學的影響。在 α-環糊精的組裝體中,我們想要探討客分子-聚乙二醇是否依然能夠與其結合,間接瞭解客分子能否穿越多肽骨架中心孔洞。而在 β-環糊精的組裝體中,我們分別利用環糊精的兩端與多肽骨架進行連接,並分別探討客分子-金剛烷是否依然能夠與其結合,以及能否透過順序性的組裝將其包裹在疏水中心。另外,我們也利用離子遷移光譜進行組裝體之間的比較及結構分析以及圓二色光譜判斷脯胺酸多肽的構形是否因為環糊精的連接而造成扭曲。
第二部份以脯胺酸三螺旋環肽作為骨架設計人工受體,我們以硼酸基作為受體之官能基,希望透過連接分子長度的調控來達到不同大小環糊精的選擇性,而我們已完成此人工受體的設計及合成,以便未來利用表面電漿共振測試。
Our group previously developed polyproline tri-helix macrocycle scaffolds to control ligand positions at nanoscale to fit the oligomeric receptor patterns for molecular recognition. Natural cyclic oligosaccharide-cyclodextrins are also a common nanoscale molecular framework, which can also be used for molecular recognition for many applications in different fields. It is interesting to test whether the polyproline tri-helix macrocycle scaffold can be used to recognize cyclodextrins or to combine them to expand the applications in nanotechnology.
In the first part, the cyclodextrin was chemically modified and conjugated to the polyproline tri-helix macrocycle scaffold, which allowed us to investigate the influence of cyclic peptide scaffold for host-guest chemistry of cyclodextrin. We tested whether the guest molecule-polyethylene glycol can still bind to the α-cyclodextrin that conjugated to our cyclic peptide scaffold to reflect whether the guest molecule can pass through the central opening of the peptide scaffold. In the assembly of β-cyclodextrin, the peptide scaffold was conjugated to the both sides of the β-cyclodextrin, respectively, to test whether the guest molecule-adamantane can still bind to it, and whether it can be trapped inside the hydrophobic center during assembly. In addition, we also used ion mobility spectroscopy to compare three assemblies to aid structural analysis. CD spectroscopy was also performed to determine whether the polyproline helix II conformation of the peptide scaffold is distorted due to the conjugation of cyclodextrin.
In the second part, we designed artificial receptor based on boronic acids located on polyproline tri-helix macrocycle scaffolds. We investigated the selectivity toward cyclodextrins of different sizes by regulating the length of the linker molecules. We have succeeded in synthesis of boronic acid equipped cyclic peptide scaffold and provided a feasible route to prepare and immobilize this molecule on SPR chip as a device for future applications.
摘要..... i
Abstract..... ii
圖目錄..... vii
表目錄..... ix
流程目錄..... x
縮寫對照表..... xi
第一章、緒論..... 1
1.1 主客化學 (Host-Guest Chemistry) ..... 1
1.2 環糊精 (Cyclodextrins) ..... 1
1.2.1 環糊精的應用..... 3
1.2.2 環糊精衍生物的臨床應用..... 4
1.3 分子機械 (Molecular Machine) ..... 5
1.3.1分子開關 (Molecular Switch) ..... 5
1.4 人工受體 (Artificial receptor) ..... 7
1.5 硼酸 (Boronic acid) ..... 8
1.5.1 硼酸結構與雙醇結合之關係..... 9
1.5.2 硼酸誘導晶片上的抗體修飾..... 10
1.6 硼酸衍生物於化學生物學上之應用 ..... 11
1.6.1 硼酸型式螢光探針..... 11
1.6.2 硼酸型式蛋白酶體抑制劑..... 13
1.7 硼酸螢光團與環糊精衍生物之醣體辨識 ..... 14
1.8 硼酸螢光團對於環糊精之辨認 ..... 15
1.9 聚脯胺酸 ..... 16
1.9.1 聚脯胺酸三螺旋環肽骨架..... 17
1.9.2 聚脯胺酸三螺旋環肽骨架的應用..... 18
1.10 離子遷移光譜-質譜法 (Ion-mobility spectrometry-mass spectrometry, IMS-MS) ..... 19
1.11 圓二色性光譜 (Circular Dichroism, CD) ..... 20
1.12 表面電漿共振 (Surface Plasmon Resonance, SPR) ..... 21
1.13 研究動機 ..... 23
1.14實驗設計 ..... 24
1.14.1 三螺旋環肽與環糊精組裝及測試..... 24
1.14.2 人工受體設計..... 25
第二章、結果與討論..... 27
2.1 聚脯胺酸三螺旋環肽骨架與 β-環糊精衍生物之組裝及主客化學測試 ..... 27
2.1.1 Cbz 建築單元 (Building Block) 之合成 ..... 27
2.1.2 聚脯胺酸三螺旋環肽骨架之合成..... 29
2.1.3 炔基脯胺酸多肽骨架之合成..... 36
2.1.4 β-環糊精衍生物之合成 ..... 36
2.1.5 聚脯胺酸三螺旋環肽骨架與 β-環糊精衍生物 27 之組裝及主客化學測試..... 39
2.1.6 聚脯胺酸三螺旋環肽骨架與環糊精衍生物 31 之組裝及主客化學測試..... 41
2.2 聚脯胺酸三螺旋環肽骨架與 α-環糊精衍生物之組裝及主客化學測試 ..... 45
2.2.1 α-環糊精與聚乙二醇之結合測試 ..... 45
2.2.2 α-環糊精疊氮衍生物之合成 .....46
2.2.3 聚脯胺酸三螺旋環肽骨架與 α-環糊精衍生物37之組裝 ..... 47
2.2.4 α-環糊精組裝體 38 與聚乙二醇之結合測試..... 47
2.3 離子遷移光譜對於組裝體之比較及結構分析 ..... 48
2.4 圓二色光譜對於組裝體之分析 ..... 50
2.5 硼酸聚脯胺酸多肽骨架設計 ..... 51
2.5.1 聚脯胺酸多肽與連接分子之組裝..... 52
2.5.2 硼酸連接分子之合成..... 53
2.5.3 硼酸連接分子與聚脯胺酸三螺旋環肽骨架之組裝..... 54
2.5.4 帶有硼酸連接分子之聚脯胺酸多肽骨架與環糊精之結合測試..... 56
2.6 聚脯胺酸多肽作為人工受體之裝置設計 ..... 63
2.6.1 人工受體裝置設計..... 63
2.6.2 Alloc 建築單元 (Building Block) 之合成 ..... 64
2.6.3 多肽骨架非天然脯胺酸安排設置..... 65
2.6.4 聚脯胺酸三螺旋環肽骨架之合成..... 66
2.6.5 胺基連接分子之合成..... 68
2.6.6 胺基連接分子與多肽骨架之組裝..... 68
2.6.7 硼酸連接分子與多肽骨架之組裝..... 69
2.7 結論 ..... 71
第三章、實驗方法與材料..... 73
3.1 General methods for synthesis and characterization ...... 73
3.2 Synthesis of peptide building blocks ..... 74
3.3 Synthesis of boronic acid linker ..... 80
3.4 Synthesis of linker compound ..... 86
3.5 Synthesis of the capping molecule .....87
3.6 Synthesis of cyclodextrin derivatives ..... 88
3.7 Synthesis and analytical data of peptide scaffolds ..... 94
3.7.1 General methods for peptide synthesis and analysis..... 94
3.7.2 Conjugation of cyclic peptide trimer and cyclodextrins ..... 98
3.7.3 General methods for binding test ..... 99
3.7.4 Traveling wave ion mobility spectrometry analysis ..... 99
3.7.5 Molecular modeling ..... 100
3.7.6 Synthesis of peptide monomers: peptide acid ..... 102
3.7.7 Synthesis of peptide monomers: alkynyl peptides ..... 104
3.7.8 Synthesis of linear peptide trimers: peptide acids ..... 106
3.7.9 Synthesis of linear peptide trimers: alkynyl peptides ..... 108
3.7.10 Synthesis of cyclic peptide trimers ..... 110
3.7.11 N-Alloc deprotection ..... 113
3.7.12 N-Cbz deprotection ..... 114
3.7.13 Alkyne group installation on cyclic peptide scaffold ..... 116
3.7.14 Cyclic peptide scaffold and cyclodextrin derivatives assembly ..... 117
3.7.15 Azido group installation on cyclic peptide scaffold ..... 120
3.7.16 Boronic acid linker installation on cyclic peptide scaffold ..... 123
3.7.17 N-Boc amino linker installation on cyclic peptide scaffold ..... 127
3.7.18 N-Boc deprotection on cyclic peptide scaffold ..... 128
第四章、參考文獻..... 129
附錄..... 135
1. Wimmer, T., Cyclodextrins. Ullmann's encyclopedia of industrial chemistry, 2003. Weinheim: Wiley-VCH
2. Bruns, Exploring and exploiting the symmetry-breaking effect of cyclodextrins in mechanomolecules. Symmetry. 2019, 11 (10).
3. Harada, A.; Takashima, Y.; Yamaguchi, H., Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 2009, 38 (4), 875-82.
4. Vazquez, M. E.; Caamano, A. M.; Mascarenas, J. L., From transcription factors to designed sequence-specific DNA-binding peptides. Chem. Soc. Rev. 2003, 32 (6), 338-49.
5. Takeda, Y.; Nagamachi, T.; Nishikori, K.; Minakata, S., An inclusion complex of C60 with organosilylated γ-cyclodextrin: drastic enhancement of apparent solubility of C60 in nonpolar and weakly polar organic solvents. Asian J. Org. Chem. 2013, 2 (1), 69-73.
6. Sophie Fourmentin, G. C., Eric Lichtfouse, Cyclodextrin fundamentals, reactivity and analysis. 2018. Springer, Cham.
7. Kitagishi, H.; Jiromaru, M.; Hasegawa, N., Intracellular delivery of adamantane-tagged small molecule, proteins, and liposomes using an octaarginine-conjugated β-cyclodextrin. ACS Appl. Bio Mater. 2020, 3 (8), 4902-4911.
8. Kurkov, S. V.; Messner, M.; Lucassen, M.; van den Dobbelsteen, D. J.; den Engelsman, J.; Loftsson, T., Evaluation of sugammadex self-association. Int. J. Pharm. 2011, 413 (1-2), 134-9.
9. Hu, J.; Hashidzume, A.; Harada, A., Photoregulated switching of the recognition site of α-cyclodextrin in a side chain polyrotaxane bearing two recognition sites linked with oligo(ethylene glycol). Macromol. Chem. Phys. 2011, 212 (10), 1032-1038.
10. Tromans, R. A.; Carter, T. S.; Chabanne, L.; Crump, M. P.; Li, H.; Matlock, J. V.; Orchard, M. G.; Davis, A. P., A biomimetic receptor for glucose. Nat. Chem. 2019, 11 (1), 52-56.
11. Brooks, W. L.; Sumerlin, B. S., Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chem. Rev. 2016, 116 (3), 1375-97.
12. Brooks, W. L. A.; Deng, C. C.; Sumerlin, B. S., Structure-reactivity relationships in boronic acid-diol complexation. ACS Omega. 2018, 3 (12), 17863-17870.
13. Duval, F. L., New applications of the interaction between diols and boronic acid. 2015. Wageningen University.
14. Saito, S.; Massie, T. L.; Maeda, T.; Nakazumi, H.; Colyer, C. L., A long-wavelength fluorescent squarylium cyanine dye possessing boronic acid for sensing monosaccharides and glycoproteins with high enhancement in aqueous solution. Sensors. 2012, 12 (5), 5420-31.
15. Utecht, K. N.; Kolesar, J., Bortezomib: a novel chemotherapeutic agent for hematologic malignancies. Am. J. Health. Syst. Pharm. 2008, 65 (13), 1221-31.
16. Paramore, A.; Frantz, S., Bortezomib. Nat. Rev. Drug. Discov. 2003, 2 (8), 611-2.
17. Kumai, M.; Kozuka, S.; Samizo, M.; Hashimoto, T.; Suzuki, I.; Hayashita, T., Glucose recognition by a supramolecular complex of boronic acid fluorophore with boronic acid-modified cyclodextrin in water. Anal. Sci. 2012, 28 (2), 121-6.
18. Liu, Y.; Qin, A.; Chen, X.; Shen, X. Y.; Tong, L.; Hu, R.; Sun, J. Z.; Tang, B. Z., Specific recognition of beta-cyclodextrin by a tetraphenylethene luminogen through a cooperative boronic acid/diol interaction. Chem. Eur. J. 2011, 17 (52), 14736-40.
19. Ruggiero, M. T.; Sibik, J.; Orlando, R.; Zeitler, J. A.; Korter, T. M., Measuring the elasticity of poly-L-proline helices with terahertz spectroscopy. Angew. Chem. Int. Ed. 2016, 55 (24), 6877-81.
20. Tsai, C. L.; Wu, S. Y.; Hsu, H. K.; Huang, S. B.; Lin, C. H.; Chan, Y. T.; Wang, S. K., Preparation and conformational analysis of polyproline tri-helix macrocycle nanoscaffolds of varied sizes. Nanoscale. 2021, 13 (8), 4592-4601.
21. Lin, C. H.; Wen, H. C.; Chiang, C. C.; Huang, J. S.; Chen, Y.; Wang, S. K., Polyproline tri-helix macrocycles as nanosized scaffolds to control ligand patterns for selective protein oligomer interactions. Small. 2019, 15 (20), e1900561.
22. Kalenius, E.; Groessl, M.; Rissanen, K., Ion mobility–mass spectrometry of supramolecular complexes and assemblies. Nat. Rev. Chem. 2018, 3 (1), 4-14.
23. Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1 (6), 2876-90.
24. Tang, Y.; Zeng, X.; Liang, J., Surface plasmon resonance: an introduction to a surface spectroscopy technique. J. Chem. Educ. 2010, 87 (7), 742-746.
25. Wen, H. C.; Lin, C. H.; Huang, J. S.; Tsai, C. L.; Chen, T. F.; Wang, S. K., Selective targeting of DC-SIGN by controlling the oligomannose pattern on a polyproline tetra-helix macrocycle scaffold. Chem. Commun. 2019, 55 (62), 9124-9127.
26. Jicsinszky, L.; Caporaso, M.; Martina, K.; Calcio Gaudino, E.; Cravotto, G., Efficient mechanochemical synthesis of regioselective persubstituted cyclodextrins. Beilstein J. Org. Chem. 2016, 12, 2364-2371.
27. Shi, Y.; Li, H.; Cheng, J.; Luan, T.; Liu, D.; Cao, Y.; Zhang, X.; Wei, H.; Liu, Y.; Zhao, G., Entirely oligosaccharide-based supramolecular amphiphiles constructed via host-guest interactions as efficient drug delivery platforms. Chem. Commun. 2017, 53 (91), 12302-12305.
28. Khan, A. R.; Barton, L.; D'Souza, V. T., Epoxides of the secondary side of cyclodextrins(1). J. Org. Chem. 1996, 61 (23), 8301-8303.
29. Harada, A., Cyclodextrin-based molecular machines. Acc. Chem. Res. 2001, 34 (6), 456-64.
30. Harada, A.; Li, J.; Kamachi, M., Preparation and properties of inclusion complexes of polyethylene glycol with -cyclodextrin. Macromolecules. 2002, 26 (21), 5698-5703.
31. Dai, C.; Cheng, Y.; Cui, J.; Wang, B., Click reactions and boronic acids: applications, issues, and potential solutions. Molecules. 2010, 15 (8), 5768-81.
32. Yang, R.; Yang, X. R.; Evans, D. F.; Hendrickson, W. A.; Baker, J., Scanning tunneling microscopy images of poly(ethylene oxide) polymers: evidence for helical and superhelical structures. J. Phys. Chem. A. 2002, 94 (15), 6123-6125.
33. Kumar, A.; Ng, T.; Malhotra, S.; Gruenhagen, J.; Wigman, L., Accurate analysis of boronic pinacol esters using low residual silanol silica based reversed phase HPLC. J. Liq. Chromatogr. Pelat. Techanol. 2014, 37 (14), 1985-1998.
34. Llanes, P.; Rodriguez-Escrich, C.; Sayalero, S.; Pericas, M. A., Organocatalytic enantioselective continuous-flow cyclopropanation. Org. Lett. 2016, 18 (24), 6292-6295.
35. Kumin, M.; Sonntag, L. S.; Wennemers, H., Azidoproline containing helices: stabilization of the polyproline II structure by a functionalizable group. J. Am. Chem. Soc. 2007, 129 (3), 466-7.
36. Cui, B.; Yu, J.; Yu, F.-C.; Li, Y.-M.; Chang, K.-J.; Shen, Y., Synthesis of (1R,4R)-2,5-diazabicyclo[2.2.1]heptane derivatives by an epimerization–lactamization cascade reaction. RSC Adv. 2015, 5 (14), 10386-10392.
37. Torino, D.; Mollica, A.; Pinnen, F.; Feliciani, F.; Spisani, S.; Lucente, G., Novel chemotactic For-Met-Leu-Phe-OMe (fMLF-OMe) analogues based on met residue replacement by 4-amino-proline scaffold: synthesis and bioactivity. Bioorg. Med. Chem. 2009, 17 (1), 251-9.
38. Fisher, A.; Mann, A.; Verma, V.; Thomas, N.; Mishra, R. K.; Johnson, R. L., Design and synthesis of photoaffinity-labeling ligands of the L-prolyl-L-leucylglycinamide binding site involved in the allosteric modulation of the dopamine receptor. J. Med. Chem. 2006, 49 (1), 307-17.
39. He, K.; Zhang, Z.; Wang, W.; Zheng, X.; Wang, X.; Zhang, X., Discovery and biological evaluation of proteolysis targeting chimeras (PROTACs) as an EGFR degraders based on osimertinib and lenalidomide. Bioorg. Med. Chem. Lett. 2020, 30 (12), 127167.
40. Xiao, Q.; Becar, N. A.; Brown, N. P.; Smith, M. S.; Stern, K. L.; Draper, S. R. E.; Thompson, K. P.; Price, J. L., Stapling of two PEGylated side chains increases the conformational stability of the WW domain via an entropic effect. Org. Biomol. Chem. 2018, 16 (46), 8933-8939.
41. Zhang, A. X.; Murelli, R. P.; Barinka, C.; Michel, J.; Cocleaza, A.; Jorgensen, W. L.; Lubkowski, J.; Spiegel, D. A., A remote arene-binding site on prostate specific membrane antigen revealed by antibody-recruiting small molecules. J. Am. Chem. Soc. 2010, 132 (36), 12711-6.
42. Vaclavik, J.; Zschoche, R.; Klimankova, I.; Matousek, V.; Beier, P.; Hilvert, D.; Togni, A., Irreversible cysteine-selective protein labeling employing modular electrophilic tetrafluoroethylation reagents. Chem. Eur. J. 2017, 23 (27), 6490-6494.
43. Thompson, S.; Fleming, I. N.; O'Hagan, D., Enzymatic transhalogenation of dendritic RGD peptide constructs with the fluorinase. Org. Biomol. Chem. 2016, 14 (11), 3120-9.
44. Reintjens, N. R. M.; Tondini, E.; de Jong, A. R.; Meeuwenoord, N. J.; Chiodo, F.; Peterse, E.; Overkleeft, H. S.; Filippov, D. V.; van der Marel, G. A.; Ossendorp, F.; Codee, J. D. C., Self-adjuvanting cancer vaccines from conjugation-ready lipid A analogues and synthetic long peptides. J. Med. Chem. 2020, 63 (20), 11691-11706.
45. Schmidt, F.; Rosnizeck, I. C.; Spoerner, M.; Kalbitzer, H. R.; König, B., Zinc(II)cyclen–peptide conjugates interacting with the weak effector binding state of Ras. Inorganica Chim. Acta. 2011, 365 (1), 38-48.
46. Mames, A.; Stecko, S.; Mikolajczyk, P.; Soluch, M.; Furman, B.; Chmielewski, M., Direct, catalytic synthesis of carbapenams via cycloaddition/rearrangement cascade reaction: unexpected acetylenes' structure effect. J. Org. Chem. 2010, 75 (22), 7580-7.
47. Becker, M. M.; Ravoo, B. J., Highly fluorinated cyclodextrins and their host-guest interactions. Chem. Commun. 2010, 46 (24), 4369-71.
48. Le, H. T.; Park, S. C.; Kang, C.; Lim, C. W.; Kim, T. W., Small polyanion recognition of a triazolium cyclodextrin click cluster in water. Org. Biomol. Chem. 2015, 13 (30), 8291-7.
49. Chan, Y. T.; Li, X.; Yu, J.; Carri, G. A.; Moorefield, C. N.; Newkome, G. R.; Wesdemiotis, C., Design, synthesis, and traveling wave ion mobility mass spectrometry characterization of iron(II)- and ruthenium(II)-terpyridine metallomacrocycles. J. Am. Chem. Soc. 2011, 133 (31), 11967-76.
電子全文 電子全文(網際網路公開日期:20261128)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top