|
1. Wimmer, T., Cyclodextrins. Ullmann's encyclopedia of industrial chemistry, 2003. Weinheim: Wiley-VCH 2. Bruns, Exploring and exploiting the symmetry-breaking effect of cyclodextrins in mechanomolecules. Symmetry. 2019, 11 (10). 3. Harada, A.; Takashima, Y.; Yamaguchi, H., Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 2009, 38 (4), 875-82. 4. Vazquez, M. E.; Caamano, A. M.; Mascarenas, J. L., From transcription factors to designed sequence-specific DNA-binding peptides. Chem. Soc. Rev. 2003, 32 (6), 338-49. 5. Takeda, Y.; Nagamachi, T.; Nishikori, K.; Minakata, S., An inclusion complex of C60 with organosilylated γ-cyclodextrin: drastic enhancement of apparent solubility of C60 in nonpolar and weakly polar organic solvents. Asian J. Org. Chem. 2013, 2 (1), 69-73. 6. Sophie Fourmentin, G. C., Eric Lichtfouse, Cyclodextrin fundamentals, reactivity and analysis. 2018. Springer, Cham. 7. Kitagishi, H.; Jiromaru, M.; Hasegawa, N., Intracellular delivery of adamantane-tagged small molecule, proteins, and liposomes using an octaarginine-conjugated β-cyclodextrin. ACS Appl. Bio Mater. 2020, 3 (8), 4902-4911. 8. Kurkov, S. V.; Messner, M.; Lucassen, M.; van den Dobbelsteen, D. J.; den Engelsman, J.; Loftsson, T., Evaluation of sugammadex self-association. Int. J. Pharm. 2011, 413 (1-2), 134-9. 9. Hu, J.; Hashidzume, A.; Harada, A., Photoregulated switching of the recognition site of α-cyclodextrin in a side chain polyrotaxane bearing two recognition sites linked with oligo(ethylene glycol). Macromol. Chem. Phys. 2011, 212 (10), 1032-1038. 10. Tromans, R. A.; Carter, T. S.; Chabanne, L.; Crump, M. P.; Li, H.; Matlock, J. V.; Orchard, M. G.; Davis, A. P., A biomimetic receptor for glucose. Nat. Chem. 2019, 11 (1), 52-56. 11. Brooks, W. L.; Sumerlin, B. S., Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chem. Rev. 2016, 116 (3), 1375-97. 12. Brooks, W. L. A.; Deng, C. C.; Sumerlin, B. S., Structure-reactivity relationships in boronic acid-diol complexation. ACS Omega. 2018, 3 (12), 17863-17870. 13. Duval, F. L., New applications of the interaction between diols and boronic acid. 2015. Wageningen University. 14. Saito, S.; Massie, T. L.; Maeda, T.; Nakazumi, H.; Colyer, C. L., A long-wavelength fluorescent squarylium cyanine dye possessing boronic acid for sensing monosaccharides and glycoproteins with high enhancement in aqueous solution. Sensors. 2012, 12 (5), 5420-31. 15. Utecht, K. N.; Kolesar, J., Bortezomib: a novel chemotherapeutic agent for hematologic malignancies. Am. J. Health. Syst. Pharm. 2008, 65 (13), 1221-31. 16. Paramore, A.; Frantz, S., Bortezomib. Nat. Rev. Drug. Discov. 2003, 2 (8), 611-2. 17. Kumai, M.; Kozuka, S.; Samizo, M.; Hashimoto, T.; Suzuki, I.; Hayashita, T., Glucose recognition by a supramolecular complex of boronic acid fluorophore with boronic acid-modified cyclodextrin in water. Anal. Sci. 2012, 28 (2), 121-6. 18. Liu, Y.; Qin, A.; Chen, X.; Shen, X. Y.; Tong, L.; Hu, R.; Sun, J. Z.; Tang, B. Z., Specific recognition of beta-cyclodextrin by a tetraphenylethene luminogen through a cooperative boronic acid/diol interaction. Chem. Eur. J. 2011, 17 (52), 14736-40. 19. Ruggiero, M. T.; Sibik, J.; Orlando, R.; Zeitler, J. A.; Korter, T. M., Measuring the elasticity of poly-L-proline helices with terahertz spectroscopy. Angew. Chem. Int. Ed. 2016, 55 (24), 6877-81. 20. Tsai, C. L.; Wu, S. Y.; Hsu, H. K.; Huang, S. B.; Lin, C. H.; Chan, Y. T.; Wang, S. K., Preparation and conformational analysis of polyproline tri-helix macrocycle nanoscaffolds of varied sizes. Nanoscale. 2021, 13 (8), 4592-4601. 21. Lin, C. H.; Wen, H. C.; Chiang, C. C.; Huang, J. S.; Chen, Y.; Wang, S. K., Polyproline tri-helix macrocycles as nanosized scaffolds to control ligand patterns for selective protein oligomer interactions. Small. 2019, 15 (20), e1900561. 22. Kalenius, E.; Groessl, M.; Rissanen, K., Ion mobility–mass spectrometry of supramolecular complexes and assemblies. Nat. Rev. Chem. 2018, 3 (1), 4-14. 23. Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1 (6), 2876-90. 24. Tang, Y.; Zeng, X.; Liang, J., Surface plasmon resonance: an introduction to a surface spectroscopy technique. J. Chem. Educ. 2010, 87 (7), 742-746. 25. Wen, H. C.; Lin, C. H.; Huang, J. S.; Tsai, C. L.; Chen, T. F.; Wang, S. K., Selective targeting of DC-SIGN by controlling the oligomannose pattern on a polyproline tetra-helix macrocycle scaffold. Chem. Commun. 2019, 55 (62), 9124-9127. 26. Jicsinszky, L.; Caporaso, M.; Martina, K.; Calcio Gaudino, E.; Cravotto, G., Efficient mechanochemical synthesis of regioselective persubstituted cyclodextrins. Beilstein J. Org. Chem. 2016, 12, 2364-2371. 27. Shi, Y.; Li, H.; Cheng, J.; Luan, T.; Liu, D.; Cao, Y.; Zhang, X.; Wei, H.; Liu, Y.; Zhao, G., Entirely oligosaccharide-based supramolecular amphiphiles constructed via host-guest interactions as efficient drug delivery platforms. Chem. Commun. 2017, 53 (91), 12302-12305. 28. Khan, A. R.; Barton, L.; D'Souza, V. T., Epoxides of the secondary side of cyclodextrins(1). J. Org. Chem. 1996, 61 (23), 8301-8303. 29. Harada, A., Cyclodextrin-based molecular machines. Acc. Chem. Res. 2001, 34 (6), 456-64. 30. Harada, A.; Li, J.; Kamachi, M., Preparation and properties of inclusion complexes of polyethylene glycol with -cyclodextrin. Macromolecules. 2002, 26 (21), 5698-5703. 31. Dai, C.; Cheng, Y.; Cui, J.; Wang, B., Click reactions and boronic acids: applications, issues, and potential solutions. Molecules. 2010, 15 (8), 5768-81. 32. Yang, R.; Yang, X. R.; Evans, D. F.; Hendrickson, W. A.; Baker, J., Scanning tunneling microscopy images of poly(ethylene oxide) polymers: evidence for helical and superhelical structures. J. Phys. Chem. A. 2002, 94 (15), 6123-6125. 33. Kumar, A.; Ng, T.; Malhotra, S.; Gruenhagen, J.; Wigman, L., Accurate analysis of boronic pinacol esters using low residual silanol silica based reversed phase HPLC. J. Liq. Chromatogr. Pelat. Techanol. 2014, 37 (14), 1985-1998. 34. Llanes, P.; Rodriguez-Escrich, C.; Sayalero, S.; Pericas, M. A., Organocatalytic enantioselective continuous-flow cyclopropanation. Org. Lett. 2016, 18 (24), 6292-6295. 35. Kumin, M.; Sonntag, L. S.; Wennemers, H., Azidoproline containing helices: stabilization of the polyproline II structure by a functionalizable group. J. Am. Chem. Soc. 2007, 129 (3), 466-7. 36. Cui, B.; Yu, J.; Yu, F.-C.; Li, Y.-M.; Chang, K.-J.; Shen, Y., Synthesis of (1R,4R)-2,5-diazabicyclo[2.2.1]heptane derivatives by an epimerization–lactamization cascade reaction. RSC Adv. 2015, 5 (14), 10386-10392. 37. Torino, D.; Mollica, A.; Pinnen, F.; Feliciani, F.; Spisani, S.; Lucente, G., Novel chemotactic For-Met-Leu-Phe-OMe (fMLF-OMe) analogues based on met residue replacement by 4-amino-proline scaffold: synthesis and bioactivity. Bioorg. Med. Chem. 2009, 17 (1), 251-9. 38. Fisher, A.; Mann, A.; Verma, V.; Thomas, N.; Mishra, R. K.; Johnson, R. L., Design and synthesis of photoaffinity-labeling ligands of the L-prolyl-L-leucylglycinamide binding site involved in the allosteric modulation of the dopamine receptor. J. Med. Chem. 2006, 49 (1), 307-17. 39. He, K.; Zhang, Z.; Wang, W.; Zheng, X.; Wang, X.; Zhang, X., Discovery and biological evaluation of proteolysis targeting chimeras (PROTACs) as an EGFR degraders based on osimertinib and lenalidomide. Bioorg. Med. Chem. Lett. 2020, 30 (12), 127167. 40. Xiao, Q.; Becar, N. A.; Brown, N. P.; Smith, M. S.; Stern, K. L.; Draper, S. R. E.; Thompson, K. P.; Price, J. L., Stapling of two PEGylated side chains increases the conformational stability of the WW domain via an entropic effect. Org. Biomol. Chem. 2018, 16 (46), 8933-8939. 41. Zhang, A. X.; Murelli, R. P.; Barinka, C.; Michel, J.; Cocleaza, A.; Jorgensen, W. L.; Lubkowski, J.; Spiegel, D. A., A remote arene-binding site on prostate specific membrane antigen revealed by antibody-recruiting small molecules. J. Am. Chem. Soc. 2010, 132 (36), 12711-6. 42. Vaclavik, J.; Zschoche, R.; Klimankova, I.; Matousek, V.; Beier, P.; Hilvert, D.; Togni, A., Irreversible cysteine-selective protein labeling employing modular electrophilic tetrafluoroethylation reagents. Chem. Eur. J. 2017, 23 (27), 6490-6494. 43. Thompson, S.; Fleming, I. N.; O'Hagan, D., Enzymatic transhalogenation of dendritic RGD peptide constructs with the fluorinase. Org. Biomol. Chem. 2016, 14 (11), 3120-9. 44. Reintjens, N. R. M.; Tondini, E.; de Jong, A. R.; Meeuwenoord, N. J.; Chiodo, F.; Peterse, E.; Overkleeft, H. S.; Filippov, D. V.; van der Marel, G. A.; Ossendorp, F.; Codee, J. D. C., Self-adjuvanting cancer vaccines from conjugation-ready lipid A analogues and synthetic long peptides. J. Med. Chem. 2020, 63 (20), 11691-11706. 45. Schmidt, F.; Rosnizeck, I. C.; Spoerner, M.; Kalbitzer, H. R.; König, B., Zinc(II)cyclen–peptide conjugates interacting with the weak effector binding state of Ras. Inorganica Chim. Acta. 2011, 365 (1), 38-48. 46. Mames, A.; Stecko, S.; Mikolajczyk, P.; Soluch, M.; Furman, B.; Chmielewski, M., Direct, catalytic synthesis of carbapenams via cycloaddition/rearrangement cascade reaction: unexpected acetylenes' structure effect. J. Org. Chem. 2010, 75 (22), 7580-7. 47. Becker, M. M.; Ravoo, B. J., Highly fluorinated cyclodextrins and their host-guest interactions. Chem. Commun. 2010, 46 (24), 4369-71. 48. Le, H. T.; Park, S. C.; Kang, C.; Lim, C. W.; Kim, T. W., Small polyanion recognition of a triazolium cyclodextrin click cluster in water. Org. Biomol. Chem. 2015, 13 (30), 8291-7. 49. Chan, Y. T.; Li, X.; Yu, J.; Carri, G. A.; Moorefield, C. N.; Newkome, G. R.; Wesdemiotis, C., Design, synthesis, and traveling wave ion mobility mass spectrometry characterization of iron(II)- and ruthenium(II)-terpyridine metallomacrocycles. J. Am. Chem. Soc. 2011, 133 (31), 11967-76.
|