|
[1] C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D, vol. 23, pp. 1693–1708, 1981. [2] A. I. Lvovsky, “Squeezed light,” Photonics: Scientific Foundations, Technology and Applications, vol. 1, pp. 121–163, 2015. [3] K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Maximumlikelihood estimation of the density matrix,” Phys. Rev. A, vol. 61, p. 010304, 1999. [4] A. I. Lvovsky, “Iterative maximum-likelihood reconstruction in quantum homodyne tomography,” Journal of Optics B: Quantum and Semiclassical Optics, vol. 6, pp. S556–S559, 2004. [5] J. Řeháček, Z. c. v. Hradil, E. Knill, and A. I. Lvovsky, “Diluted maximumlikelihood algorithm for quantum tomography,” Phys. Rev. A, vol. 75, p. 042108, 2007. [6] C. Ferrie and R. Blume-Kohout, “Maximum likelihood quantum state tomography is inadmissible,” arXiv preprint arXiv:1808.01072, 2018. [7] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar, “Neural operator: Graph kernel network for partial differential equations,” arXiv preprint arXiv:2003.03485, 2020. [8] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar, “Fourier neural operator for parametric partial differential equations,” arXiv preprint arXiv:2010.08895, 2021. [9] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Julia: A fast dynamic language for technical computing,” arXiv preprint arXiv:1209.5145, 2012. [10] S. Ahmed, C. Sánchez Muñoz, F. Nori, and A. F. Kockum, “Quantum state tomography with conditional generative adversarial networks,” Phys. Rev. Lett., vol. 127, p. 140502, 2021. [11] H. Seifoory, S. Doutre, M. M. Dignam, and J. E. Sipe, “Squeezed thermal states: the result of parametric down conversion in lossy cavities,” J. Opt. Soc. Am. B, vol. 34, pp. 1587–1596, 2017. [12] H.-Y. Hsieh, Y.-R. Chen, H.-C. Wu, H. Chen, J. Ning, Y.-C. Huang, C.-M. Wu, and R.-K. Lee, “Extract the degradation information in squeezed states with machine learning,” arXiv preprint arXiv:2106.04058, 2021. [13] Y.-R. Chen, H.-Y. Hsieh, J. Ning, H.-C. Wu, H. L. Chen, Y.-L. Chuang, P. Yang, O. Steuernagel, C.-M. Wu, and R.-K. Lee, “Experimental reconstruction of wigner distribution currents in quantum phase space,” arXiv preprint arXiv:2111.08285, 2021. [14] L. Susskind and J. Glogower, “Quantum mechanical phase and time operator,” Physics Physique Fizika, vol. 1, pp. 49–61, 1964. [15] D. T. Pegg and S. M. Barnett, “Phase properties of the quantized single-mode electromagnetic field,” Phys. Rev. A, vol. 39, pp. 1665–1675, 1989. [16] D. Walls and G. Milburn, Quantum Optics. Springer Berlin Heidelberg, 2008. [17] U. Leonhardt, “Discrete wigner function and quantum-state tomography,” Phys. Rev. A, vol. 53, pp. 2998–3013, 1996. [18] J. E. Moyal, “Quantum mechanics as a statistical theory,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 45, pp. 99–124, 1949. [19] E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev., vol. 40, pp. 749–759, 1932. [20] I. Strandberg, Y. Lu, F. Quijandría, and G. Johansson, “Numerical study of wigner negativity in one-dimensional steady-state resonance fluorescence,” Phys. Rev. A, vol. 100, p. 063808, 2019. [21] M. Fox, Quantum Optics: An Introduction. Oxford Master Series in Physics, OUP Oxford, 2006. [22] M. Innes, E. Saba, K. Fischer, D. Gandhi, M. C. Rudilosso, N. M. Joy, T. Karmali, A. Pal, and V. Shah, “Fashionable modelling with flux,” arXiv preprint arXiv:1811.01457, 2018. [23] M. Innes, “Flux: Elegant machine learning with julia,” Journal of Open Source Software, vol. 3, no. 25, p. 602, 2018. [24] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and A. Anandkumar, “Neural operator: Learning maps between function spaces,” arXiv preprint arXiv:2108.08481, 2021. [25] K. Xu, M. Zhang, J. Li, S. S. Du, K.-i. Kawarabayashi, and S. Jegelka, “How neural networks extrapolate: From feedforward to graph neural networks,” arXiv preprint arXiv:2009.11848, 2021. [26] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing for quantum chemistry,” 2017.
|