跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/15 04:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李奕騁
研究生(外文):Li, Yi-Cheng.
論文名稱:電漿改質奈米碳管與紙纖維複合材料之熱電性質研究
論文名稱(外文):Thermoelectric properties of plasma modified carbon nanotubes and paper fiber composites
指導教授:徐文光徐文光引用關係
指導教授(外文):Hsu, Wen-Kuang
口試委員:連德軒薛森鴻
口試委員(外文):Lien, Der-HsienXue, Seng Hong
口試日期:2022-07-25
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:60
中文關鍵詞:奈米碳管熱電
外文關鍵詞:carbon nanotubesthermoelectric
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管(Carbon nanotubes,CNTs)具有好的電導、熱導及機械性質,也具有優異的Seebeck係數;即溫差和電位差轉換的效果。良好的熱電(thermoelectric)材料通常有高的熱電優質(ZT),需同時具有高電導率和低熱導率和高Seebeck係數,才會出現顯著熱電效果。本實驗嘗試以奈米碳管與紙纖維混合後製作成可撓式熱電致冷碳管紙,並以不同重量百分比碳管加入紙纖維,以找出有最佳ZT值之碳管紙。
樣品分為兩種,分別是未進行氮氣電漿改質的p-type碳管紙,以及氮氣電漿處理後的n-type碳管紙,通過分別為5%、10%、20%、30%、40%和50%的奈米碳管含量之碳管紙以四點探針法進行電導率量測和自製分析儀器進行seebeck係數量測,以找出擁有最高ZT值之最佳碳管比例含量,並施打氮氣電漿嘗試將各比例碳管紙改質為n-type,同時與先進行10分鐘氧氣電漿施打後再打氮氣電漿之碳管紙進行比較分析,同時分別觀察5分鐘、10分鐘、20分鐘氮氣電漿處理後樣品ZT值的變化,最後使用掃描電子顯微鏡(SEM)觀察其結構,以及化學分析電子能譜儀(ESCA)進行鍵結的種類以及比例關係。
Carbon nanotubes (CNTs) show excellent properties, including conductivity, mechanical strength and thermoelectric, which have been studied over decades. Thermoelectric materials require have a high figure of merits (ZT) that is based on high electrical conductivity, Seebeck coefficient and low thermal conductivity. This study attempts to produce a flexible thermoelectric cooling material by mixing CNTs with the paper fibers. As-made CNTs are of intrinsically p-type and can be chemically modified into n-type through nitrogen plasma treatment. CNTs-paper composites with CNT content of 5%, 10%, 20%, 30%, 40% and 50% are characterized by laser flash technique for thermal conductivity, four-point probe method for electrical conductivity and self-made analytical instrument for Seebeck coefficient measurements. CNTs-paper composites are also treated with oxygen plasma for comparison.
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1前言 1
1-2研究動機 2
第二章 理論說明與文獻回顧 3
2-1 熱電簡介 3
2-1-1 Seebeck effect 4
2-1-2 Peltier effect 4
2-1-3 Thompson effect 5
2-2 熱電效率與理論 6
2-2-1 熱電發電 6
2-2-2 熱電致冷 7
2-2-3 熱電效率 8
2-2-4 熱電效率提升 9
2-3 奈米碳管 12
2-3-1 奈米碳管的結構 13
2-3-2 奈米碳管的電性 14
2-3-3 奈米碳管的熱性質 16
2-4 電漿 19
2-4-1 直流輝光放電電漿 20
2-4-2 電漿表面改質 22
第三章 研究方法 25
3-1 實驗藥品與器材 25
3-2 實驗流程圖 27
3-3 實驗步驟 28
3-3-1 碳管紙製備 28
3-3-2 電漿處理碳管紙 28
3-4 量測與分析 30
3-4-1 四點探針量測 30
3-4-2 掃描式電子顯微鏡(SEM) 32
3-4-3 Seebeck係數量測 32
3-4-4 霍爾濃度量測 34
3-4-5 拉曼光譜儀(Raman spectrometer) 36
3-4-6 化學分析電子能譜儀(ESCA/XPS) 37
第四章 實驗結果與討論 39
4-1 碳管紙結構與成分分析 39
4-1-1 SEM微結構分析 39
4-1-2 拉曼光譜儀分析 41
4-1-3 XPS表面鍵結與元素組成分析 43
4-2 碳管紙熱電性質分析 49
4-2-1 氮摻雜奈米碳管熱電性質 49
4-2-2 電漿處理與濃度分析 50
第五章 結論 56
參考文獻 57
[1] 科技大觀園https://scitechvista.nat.gov.tw/Article/C000003/detail?ID=c33a65d4-a15a-4d53-8e88-152954e3b560
[2] C.B. Satterthwaite and R.W. Ure Jr., Phys. Rev. 108, 1164(1957). Electrical and Thermal properties of Bi2Te3
[3] Biswas, Kanishka; He, Jiaqing; Blum, Ivan D.; Wu, Chun-I.; Hogan, Timothy P.; Seidman, David N.; Dravid, Vinayak P.; Kanatzidis, Mercouri G.(2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures
[4] D.M. Rowe, CRC handbook of thermoelectrics, CRC Press, (1995).
[5] M. J. Huang, T. M. Chang, W. Y. Chong, C. K. Liu, C. K. Yu, A new lattice
thermal conductivity model of a thin-film semiconductor. International Journal of
Heat and Mass Transfer, 50, 67–74 (2007)
[6] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, Thin-film
thermoelectric devices with high room-temperature figures of merit. Nature, 413,
(2001)
[7] H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y.
Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, Giant thermoelectric
Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Materials,
6, 129 (2007)
[8] J. F. Li, W. S. Liu, L. D. Zhao, M. Zhou, High-performance nanostructured
thermoelectric materials. NPG Asia Materials, 2(4), 152–158 (2010)
[9] Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature., 354(6348), p. 56-58.
[10] 陳亞群(2007)。多壁奈米碳管填充之導電高分子材料電磁波屏蔽效能研究。國立清華大學材料科學與工程研究所碩士論文。
[11] 張雅筑(2007)。常壓下以電暈方式製備奈米碳管或奈米結構。國立清華大學材料科學與工程研究所碩士論文。
[12] 李惠菁(2008)。多壁奈米碳管/聚乙烯醇之合成與其物理性質研究。國立清華大學材料科學與工程研究所碩士論文。
[13] Smalley, R.E., Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. (2003). Carbon nanotubes: synthesis, structure, properties, and applications. Springer Science & Business Media., Vol. 80.
[14] Odom, T.W., et al. (2000). Structure and Electronic Properties of Carbon Nanotubes. The Journal of Physical Chemistry B. 104(13): p. 2794-2809
[15] Dresselhaus, M.S., et al. (2000). Carbon Nanotubes, in The Physics of Fullerene-Based and Fullerene-Related Materials. Springer Netherlands: Dordrecht. p. 331-379.
[16] Saito, R., et al. (1992). Electronic structure of chiral graphene tubules. Applied Physics Letters. 60(18): p. 2204-2206.
[17] E. T. Thostenson, Z. Ten, T. W. Chou. (2001). Compos. Sci. Technol., 61, 1899.
[18] Saito, R., Dresselhaus, G. & Dresselhaus, M. S. (1988). Physical properties of carbon nanotubes. World scientific.
[19] Dresselhaus, M.S., Dresselhaus, G. & Eklund, P. C. (1996). Science of fullerenes and carbon nanotubes: their properties and applications. Academic press.
[20] Dresselhaus, M.S. and P.C. Eklund. (2000). Phonons in carbon nanotubes. Advances in Physics. 49(6): p. 705-814.
[21] Hamada, N., S. Sawada, and A. Oshiyama. (1992). New one-dimensional conductors: Graphitic microtubules. Physical Review Letters. 68(10): p. 1579-1581.
[22] Dresselhaus, M.S., G. Dresselhaus, and A. Jorio. (2004) UNUSUAL PROPERTIES AND STRUCTURE OF CARBON NANOTUBES. Annual Review of Materials Research. 34(1): p. 247-278.
[23] Dai, H. (2002). Carbon nanotubes: opportunities and challenges. Surface Science. 500(1): p. 218-241.
[24]Hassanien,A.,et al.,Geometrical structure and electronic properties of automatically resolved multiwall carbon nanotubes.Applied Physics Letters,1999.75(18):p.2755-2757
[25]Lambin,P.,Electronic structure of carbon nanotubes.Comptes Rendus Physique,2003.4(9):p.1009-1019
[26] Pop E, Mann D, Wang Q, Goodson K, Dai H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006 Jan;6(1):96-100.
[27] J. Hone, M. Whitney, C. Piskoti, and A. Zettl. Thermal conductivity of single-walled carbon nanotubes. Physical Review B. 1999 Apr;59(4)p.:2514.
[28] W. Yi, L. Lu, Zhang Dian-lin, Z. W. Pan, and S. S. Xie. Linear specific heat of carbon nanotubes. Physical Review B. 1999 Apr;59(14):9015–9018.
[29] Jianwei Che, Tahir ¸Cagın and William A Goddard III. Thermal conductivity of carbon nanotubes. Nanotechnology. 2000;11:65–69.
[30] I. Langmuir. (1928). Proceedings of the National Academy of Sciences of the United States of America. 14.
[31] Alfred Grill. (1994). Cold plasma in materials fabrication. IEEE. New York.
[32] M. I. Boulos, P. Fauchais, and E. Pfender. Thermal plasmas : fundamentals and applications.
[33] Alfred Grill. (1994). Cold plasma in materials fabrication. IEEE. New York.
[34]Gewartowski, James W.; Watson, Hugh Alexander (1965). Principles of Electron Tubes: Including Grid-controlled Tubes, Microwave Tubes and Gas Tubes
[35]Ayrton, Hertha (2015). Electric Arc (CLASSIC REPRINT). S.l: FORGOTTEN BOOKS. p. 94
[36]P.K. Chua,*, J.Y. Chena,b, L.P. Wanga , N. Huangb. Plasma-surface modification of biomaterials. 2002;143–206.
[37] Uwe Vohrer,* Nicolas Peer Zschoerper, Yvonne Koehne, Stefanie Langowski, Christian Oeh. Plasma Modification of Carbon Nanotubes and Bucky Papers. PLASMA PROCESSES AND POLYMERS. 2007;4(1):871–877.
[38]Masato Yamashita1, Toshifumi Nishii2 and Hiroya Mizutani2. Resistivity Measurement by Dual-Configuration Four-Probe Method. Japanese Journal of Applied Physic. 2003 Feb;42(2R):695.
[39]G. Rouget, B. Majidi, D. Picard, G. Gauvin, D. Ziegler, J. Mashreghi & H. Alamdari. Electrical Resistivity Measurement of Petroleum Coke Powder by Means of Four-Probe Method. Metallurgical and Materials Transactions B. 2017 Jul;2543–2550.
[40]Dirch H. Petersen,, Ole Hansen, a), Rong Lin, and Peter F. Nielsen. Micro-four-point probe Hall effect measurement method. Journal of Applied Physics. 2008 Jul;104(1).
[41]F. Tuinstra and J. L. Koenig. Raman Spectrum of Graphite. The Journal of Chemical Physics. 2003 Nov;53(3).
[42]Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. J.T.Grant and D.Briggs, published by IM Publications, 2003, Chichester, UK
[43]U Gelius1, P F Hedén1, J Hedman1, B J Lindberg1,3, R Manne1,2, R Nordberg1, C Nordling1 and K Siegbahn1. Molecular Spectroscopy by Means of ESCA III. Carbon compounds. Physica Scripta. 2(1–2).
[44]Nitrogen Doping Mechanism in Small Diameter Single-Walled Carbon Nanotubes: Impact on Electronic Properties and Growth SelectivityHamid Reza Barzegar, Eduardo Gracia-Espino, Tiva Sharifi, Florian Nitze, and Thomas WågbergThe Journal of Physical Chemistry C 2013 117 (48), 25805-25816
[45]Yuxin Li and Ashley E. Ross. (2020). Plasma-treated carbon-fiber microelectrodes for improved purine detection with fast-scan cyclic voltammetry. Analyst, 145, 805-815.
[46]Nitrogen–Oxygen Co-Doped Carbon-Coated Porous Silica/Carbon Nanotube Composites: Implications for High-Performance CapacitorsLiju Zhou, Fangxiang Song, Jinliang Yi, Ting Xu, and Qianlin ChenACS Applied Nano Materials 2022 5 (2), 2175-2186
[47]A.J. Bard, L.R. Faulkner. (1996). Electrochemical Principles, Methods and Applications, Oxford University, Britain.
[48]Snyder, G., Toberer, E. Complex thermoelectric materials. Nature Mater 7, 105–114 (2008).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊