跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/03 14:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳皇祿
研究生(外文):Ngo, Thi Hoang Loc
論文名稱:波色凝結體在非簡諧位能中的非平衡動態
論文名稱(外文):BEC non-equilibrium dynamics in anharmonic potentials
指導教授:劉怡維劉怡維引用關係
指導教授(外文):Liu, Yi-Wei
口試委員:王立邦童世光林育如
口試委員(外文):Wang, Li-BangTung, Shih-KuangLin, Yu-Ju
口試日期:2022-01-27
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:86
中文關鍵詞:非平衡動態非簡諧位能波色凝結體
外文關鍵詞:non-equilibrium dynamicsanharmonic potentialsBEC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:24
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究了非簡諧位能阱中的玻色凝結體(BEC)的非平衡動力學,並利用主
成分分析(PCA)技術來提高圖像品質。在本實驗中,我們在混合型位能阱(hybrid trap)中產生了銣原子 87 Rb的 BEC,此混合位能阱是磁陷阱(magnetic trap)和光學偶極阱 (optical dipole trap)的組合,產生的BEC溫度低於 100nK。以此為基礎,我們為進一步研 究了BEC的動力學。接著,我們關閉光學偶極阱並保持降低了四極磁場位能阱低的強度 ,以便剛好足以抵銷大部分的重力作用,以減慢 BEC 自由落下的速度。
我們引入了主成分分析 (PCA),以消除,在光束路徑到達 CCD 相機之前,由光學 元件的動度所產生的雜訊,與干涉效應的條紋。並以低通濾波器去除計算計算過程中產生 的高頻雜訊。
我們觀察到 BEC 在水平方向的振盪在兩種條件下是一致的(高原子數目
:1.2×10^5 個,低原子數目:3×10^4 個),同時也在不同原子密度下比較原子間相互作用 對 BEC 動力學的影響。此外,還觀察到 BEC 的不均勻形狀及其不對稱的密度分佈。然 而這種奇特的動態和密度分佈只有在量子簡併性下才能觀察到。觀察到在磁場作用下落下 的熱原子雲是向四面八方膨脹,其分佈呈高斯均勻分佈。
所觀察到的動態軌跡和集體激發模式提供了豐富的量子動態物理,可進一步進行理 論研究和數值模擬的探討。
This thesis studies BEC non-equilibrium dynamics in anharmonic trap and the implement of a principal component analysis (PCA) technique to enhance the images' quality.
In our experiment, we produced a BEC of $^{87}$Rb atoms in a hybrid trap, a combination of magnetic trap and optical dipole trap, with a typical temperature below 100nK. Subsequently, dynamics of BEC was investigated further.
Firstly, we turned off optical dipole trap and kept quadrupole magnetic field on with low magnitude just enough to slow down the speed of BEC under gravity force.
We introduce the principal component analysis (PCA) to get rid of the fringes coming from small intensity fluctuations and interference effects of many optical elements before beam path gets to the CCD camera. Subsequently, a Kernel low-pass filter was applied to remove the high frequency noise generated during computing calculation.
We observed that the oscillation of BEC in the horizontal direction is consistent for two conditions (high number: 1.2x10^5 atoms, low number: 3x10^4 atoms), while the effect of atom-atom interactions on the dynamics of BEC is compared under various atomic densities. Additionally, the inhomogeneous shapes of BEC and its asymmetrical density distributions are observed as well. On the other hand, such peculiar dynamic and density distribution are only observed under quantum degeneracy. The thermal cloud falling under magnetic field was observed to expand in all directions, and the cloud's distributions are Gaussian and homogeneous.
The observed dynamic trajectories and collective excitation modes provide fruitful quantum dynamic physics that acquires further theoretical investigation and numerical simulation.
Contents
Abstract -------------------------------------------------------I
Abstract (Chinese) ---------------------------------------------II
Acknowledgements -----------------------------------------------III
Contents -------------------------------------------------------IV
List of Figures ------------------------------------------------VII
List of Tables -------------------------------------------------IX
1 Introduction -------------------------------------------------1
1.1 Motivation -------------------------------------------------1
1.2 Outline ----------------------------------------------------2
2 Theoretical background ---------------------------------------3
2.1 Atomic Structure -------------------------------------------3
2.2 Laser Cooling ----------------------------------------------5
2.2.1 Laser (Doppler) Cooling ----------------------------------5
2.2.2 Polarization Gradient Cooling ----------------------------7
2.3 Magneto-Optical Trap (MOT) ---------------------------------8
2.3.1 Principle of Operation -----------------------------------8
2.3.2 MOT Compression ------------------------------------------11
2.4 Magnetic Trap ----------------------------------------------11
2.5 Optical Dipole Trap ----------------------------------------14
2.6 Evaporation Cooling ----------------------------------------18
2.6.1 RF Evaporation from Magnetic Trap ------------------------18
2.6.2 Evaporation from ODT -------------------------------------20
2.7 Bose-Einstein Condensation ---------------------------------20
2.7.1 Time-independent Gross-Pitaevskii equation ---------------21
2.7.2 Time-dependent Gross-Pitaevskii equation -----------------23
2.7.3 Mean-field theory of spinor-1 condenstates ---------------24
2.7.4 Miscibility and immiscibility of spinor condensate components-26
3 Experimental Apparatus----------------------------------------28
3.1 Vaccum system ----------------------------------------------28
3.1.1 MOT chamber ----------------------------------------------29
3.1.2 Science cell----------------------------------------------30
3.2 Laser system -----------------------------------------------31
3.2.1 Frequencies ----------------------------------------------32
3.2.2 Lasers ---------------------------------------------------33
3.2.3 Power amplifier and beam shaping -------------------------34
3.3 Optics around the MOT chamber ------------------------------34
3.4 Coils-------------------------------------------------------39
3.4.1 MOT coils ------------------------------------------------40
3.4.2 Balance coils --------------------------------------------40
3.4.3 RF coil---------------------------------------------------40
3.5 Magnetic transfer ------------------------------------------41
3.6 Optical dipole trap ----------------------------------------41
3.7 Detecting system -------------------------------------------43
3.7.1 Fluorescence imaging -------------------------------------44
3.7.2 Absorption imaging ---------------------------------------45
4 Improvement of imaging system --------------------------------48
4.1 The addition of new slave laser ----------------------------48
4.2 Absorption imaging setup with new camera -------------------49
4.3 Principal component analysis Background Subtraction --------52
4.3.1 Training data --------------------------------------------54
4.3.2 Predicting step ------------------------------------------54
4.3.3 Reconstructed image --------------------------------------54
4.3.4 Kernel low-pass filter -----------------------------------55
5 Polarization of BEC ------------------------------------------57
5.1 Unexpected Components --------------------------------------57
5.2 Manipulation of mixed components ---------------------------59
5.3 Single F = 1,mF = −1 component -----------------------------61
5.3.1 Principle of the Stern-Gerlach separation ----------------61
5.3.2 Stern-Gerlach experiment ---------------------------------62
6 BEC non-equilibrium dynamics in anharmonic potential ---------64
6.1 Magnetic trap potential ------------------------------------64
6.2 Breathing Mode and Trap frequency --------------------------68
6.3 Scissor Mode -----------------------------------------------71
6.4 Comparison to Thermal expansion ----------------------------74
7 Conclusion and future work -----------------------------------76
7.1 Conclusion -------------------------------------------------76
7.2 Future work ------------------------------------------------77
[1] Bose. Plancks Gesetz und Lichtquantenhypothese. Zeitschrift fur Physik, 26(1):178–181, 1924.
[2] D. M. Stamper-Kurn and W. Ketterle. Spinor Condensates and Light Scattering from Bose-Einstein Condensates. Coherent atomic matter waves, pages 139–217, 2007.
[3] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A.Cornell. Observation of bose-einstein condensation in a dilute atomic vapor. Collected Papers of Carl Wieman, 269(JULY):453–456, 2008.
[4] Ketterle. Bose-Einstein condensation in a gas of sodium atoms. Hysical .Review, 75(November), 1995.
[5] Mark Edwards. Collective excitations of atomic Bose-Einstein condensates. Physical Review Letters, 77(2):1–4, 1996.
[6] G. Hechenblaikner, O. M. Marago, E. Hodby, J. Arlt, S. Hopkins, and C. J. Foot. Observation of harmonic generation and nonlinear coupling in the collective dynamics of a Bose-Einstein condensate. Physical Review Letters, 85(4):692–695, 2000.
[7] D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Collective excitations of a bose-einstein condensate in a dilute gas. Collected Papers of Carl Wieman, pages 457–460, 2008.
[8] D. S. Jin, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell. Temperature-Dependent Damping and Frequency Shifts in Collective Excitations of a Dilute Bose-Einstein Condensate. Physical Review Letters,78(5):764–767, 1997.
[9] O. M. Marago, S. A. Hopkins, J. Arlt, E. Hodby, G.Hechenblaikner, and C. J. Foot. Observation of the scissors mode and evidence for superfluidity of a trapped bose-einstein condensed gas. Physical Review Letters, 84(10):2056–2059, 2000.
[10] K. G. Singh and D. S. Rokhsar. Collective excitations of a confined bose condensate. Physical Review Letters, 77(9):1667–1670, 1996.
[11] Andrei Tretiakov. Versatile apparatus for ultracold atomic hybrid systems, 2016.
[12] Kaushal SK and Wetherill GW. Rubidium 87- strontium 87 age of carbonaceous chondrites. J Geophys Res, 75(2):463–468, 1970.
[13] August-wilhelm Scheer, Helmut Kruppke, and Ralf Heib. Springer-Verlag Berlin Heidelberg GmbH. 2001.
[14] William H. Wing. On neutral particle trapping in quasistatic electromagnetic fields. Progress in Quantum Electronics, 8(3-4):181–199, 1984.
[15] C.J.Foot. Atomic physics. Oxford University Press, 7, 2005.
[16] J. Dalibard and C. Cohen-Tannoudji. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models. Journal of the Optical Society of America B, 6(11):2023, 1989.
[17] G. L. Gattobigio, T. Pohl, G. Labeyrie, and R. Kaiser. Scaling laws for large magneto-optical traps. Physica Scripta, 81(2), 2010.
[18] Titels Diplomphysikerin. Magnetic Trapping Apparatus and Frequency Stabilization of a Ring Cavity Laser for Bose-Einstein Condensation Experiments Ina B. Kinski. Master Thesis, (April), 2005.
[19] Benjamin Thomas Sheard. Magnetic Transport and. pages 1–47, 2010.
[20] Rudolf Grimm, Matthias Weidemuller, and Yurii B. Ovchinnikov. Optical Dipole Traps for Neutral Atoms. Advances in Atomic, Molecular and Optical Physics, 42(C):95–170, 2000.
[21] A. L. Marchant, S. Handel, S. A. Hopkins, T. P. Wiles, and S. L. Cornish. Bose-Einstein condensation of 85Rb by direct evaporation in an optical dipole trap. Physical Review A - Atomic, Molecular, and Optical Physics, 85(5):1–5, 2012.
[22] Benjamin Thomas Sheard. Magnetic Transport and. pages 1–47, 2010.
[23] Y. Castin. Bose-Einstein Condensates in Atomic Gases: Simple Theoretical Results. Coherent atomic matter waves, pages 1–136, 2007.
[24] D. M. Stamper-Kurn and W. Ketterle. Spinor Condensates and Light Scattering from Bose-Einstein Condensates. Coherent atomic matter waves, pages 139–217, 2007.
[25] S. Stringari. Collective Excitations of a Trapped Bose-Condensed Gas. Physical Review Letters, 77(12):2360–2363, 1996.
[26] S . D. Chen. Quantum Quenching in Two-Dimensional Spin-1 Bose Gases. (September), 2013.
[27] Mikhail Egorov. Precision measurement of Rb-87 scattering lengths (PRA). pages 1–11, 2013.
[28] J.Perez-Rıos and A. S. Sanz. How does a magnetic trap work? American Journal of Physics, 81(11):836–843, 2013.
[29] Dubessy Romain, Karina Merloti, Laurent Longchambon, Paul-eric Pottie, Thomas Liennard, Aurelien Perrin, Vincent Lorent, and Helene.s Perrin. Rubidium 87 Bose-Einstein condensate in an optically plugged quadrupole trap To cite this version : HAL Id : hal-00647857. 2012.
[30] Y. J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto. Rapid production of R 87 b Bose-Einstein condensates in a combined magnetic and optical potential. Physical Review A - Atomic, Molecular, and Optical Physics, 79(6):1–8, 2009.
[31] D. M. Stamper-Kurn and W. Ketterle. Spinor Condensates and Light Scattering from Bose-Einstein Condensates. Coherent atomic matter waves, pages 139–217, 2007.
[32] D. Guery-Odelin and S. Stringari. Scissors mode and superfluidity of a trapped Bose-Einstein condensed gas. Physical Review Letters, 83(22):4452–4455,1999.
電子全文 電子全文(網際網路公開日期:20240209)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top