跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/06 18:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱龍
研究生(外文):Chen, Yu-Long
論文名稱:離子輔助電子槍真空鍍膜製程於啁啾鏡之研究
論文名稱(外文):Study of Ion-Assisted E-beam Evaporation Coating Process on Chirped Mirrors
指導教授:王培仁
指導教授(外文):Wang, Pei-Jen
口試委員:陳政寰羅丞曜
口試委員(外文):Chen, Cheng-HuanLo, Cheng-Yao
口試日期:2021-12-13
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:英文
論文頁數:92
中文關鍵詞:飛秒雷射色散補償啁啾反射鏡光學薄膜離子輔助電子槍蒸鍍
外文關鍵詞:femtosecond laserdispersion compensationchirped mirroroptical thin filmion-assisted deposition (IAD)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
近年來基於超快光學原理之飛秒雷射已成眾多應用領域之關鍵技術,包含科學研究、工程製造、通訊、醫學診療設備等。於飛秒雷射系統中,因增益介質與其他光學元件中之材料色散與非線性效應導致脈衝變寬,不利超短脈衝之特性。為完全消除或減低此效應,必須在飛秒雷射光路中導入負色散光學元件以抵銷材料之正色散,此機制稱為色散補償。相較於其它色散補償元件,如光柵對及稜鏡對,負色散鏡具有低損耗、低非線性效應、超寬頻寬、低元件體積、安裝及調整簡單等優點,成為現今主流之色散補償元件。
本論文採用光學薄膜濾光片設計軟體,進行優化設計波長範圍700nm~900nm之群延遲色散於-60fs^2及反射率大於97.5%之啁啾反射鏡,並以商用離子輔助電子槍蒸鍍系統進行此啁啾鏡之鍍膜製備。先對於特定製程參數下沉積之薄膜,進行光學常數之校正測定導入光學設計軟體,並實際鍵入光學監控系統之設定參數,達成所設計之高精度膜厚控制。
經過鍍膜製成啁啾鏡採用PG-FROG方法進行頻譜相位數據量測,再以分光光度計進行鏡面反射率量測,分析得出鏡面實驗頻譜數據非常接近設計值,直接驗證以離子輔助電子槍蒸鍍製程技術用於啁啾反射鏡生產製造之可行性,開拓未來質借設計製造此類反射鏡片之研究潛力。
Femtosecond laser based on ultrafast optics has become a prominent and advanced technology in many applications in recent years, including scientific studies, engineering devices, communications methods, medical instruments and etc. In femtosecond laser systems, due to the material dispersion and the nonlinear effects of the gain medium and nominal optical components, the optical pulses in the systems will be broadened to disadvantageous characteristics in the ultra-short pulses. To eventually reduce or eliminate the effects, an optical element with negative dispersion must be introduced into the optical path to cancel out the positive dispersion of the materials. This is called the dispersion compensation mechanism. Compared to other dispersion compensation elements such as grating and prism pairs, a negative dispersion mirror exhibits the advantages with low losses, less nonlinear effects, ultra-broadband, high compactness, simple installation and adjustment, and etc. so that it becomes the mainstream dispersion compensation device today.
In this thesis, a chirped mirror with -60fs^2 GDD and reflectance > 97.5% in the bandwidth of 700nm to 900nm was designed by the optical thin film filter design software. The chirped mirror was then fabricated by an ion-assisted deposition (IAD) coating system. The optical constants of the thin films deposited with process parameters are calibrated for the chirped mirrors and re-entered into the coating systems to adjust the control of film thickness. Then the spectral phase of the fabricated was measured by PG-FROG whereas the reflectance is measured by a spectrophotometer. Finally, the measurements indicate a reasonable match with the design results showing the effectiveness of the methodology. Therefore, the results have shown that the uses of an ion-assisted electron gun evaporation coating system are very feasible for the manufacture of chirped mirrors applied for femtosecond laser applications.
中文摘要..............................I
Abstract.............................II
Acknowledgment.......................IV
Table of Content.....................V
List of Tables and Figures...........VII
Chapter 1 Introduction...............1
1-1 Background Descriptions..........1
1-2 Objectives of Study..............4
1-3 Literatures Review...............5
1-3-1 Ultrafast Mode-Locked Lasers and Dispersion Compensation Devices......5
1-3-2 Multilayers Dispersive Mirror......7
1-3-3 Optical Thin-Film Coating Technology......8
Chapter 2 Fundamental Optics Theory......15
2-1 Dispersion.......................15
2-1-1 Material Dispersion............15
2-1-2 Pulse Broadening Due to GDD......21
2-2 Theory of Optical Thin Film......26
2-2-1 Optical Admittance of Homogeneous Medium......26
2-2-2 Reflection and Transmission at Interface......28
2-2-3 Characteristic Matrix of Thin-Film Layer......30
2-2-4 Reflection and Transmission of Assembly of Thin-Films......32
2-3 Dispersive Mirrors...............33
2-3-1 Gires-Tournois Interferometer..........35
2-3-2 Chirped Mirror.................38
Chapter 3 Optical Mirror Design......48
3-1 Merit Functions..................48
3-2 Needle Optimization..............49
3-3 Mirror Design....................51
3-3-1 Design Target..................52
3-3-2 Design Results.................53
3-3-3 Error Analysis.................54
Chapter 4 Design Verifications and Results......59
4-1 Ion-assisted Electron Beam Evaporation......59
4-1-1 System and Components..........60
4-1-2 Film Thickness Monitoring......62
4-2 Tooling Factors and Material Optical Constants......63
4-2-1 Process Parameters.............64
4-2-2 Ellipsometer Measurements......65
4-2-3 Tooling Factor and Deposition Rate......66
4-2-4 Optical Constants..............67
4-3 Preparation and Fabrication......69
4-4 Experimental Results.............70
Chapter 5 Conclusion and Perspectives......83
Bibliography.........................87
[1] E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nature photonics, vol. 7, no. 2, pp. 93–101, 2013.
[2] J. Shah, Ultrafast spectroscopy of semiconductors and semiconductor nanostructures, vol. 115. Springer Science & Business Media, 2013.
[3] N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nature Photonics, vol. 13, no. 3, pp. 146–157, 2019.
[4] A. H. Zewail, “Femtochemistry: Atomic-scale dynamics of the chemical bond,” The Journal of Physical Chemistry A, vol. 104, no. 24, pp. 5660–5694, 2000.
[5] T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature, vol. 416, no. 6877, pp. 233–237, 2002.
[6] O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New Journal of Physics, vol. 6, no. 1, p. 183, 2004.
[7] F. Blanchard, L. Razzari, H. C. Bandulet, G. Sharma, R. Morandotti, J. C. Kieffer, T. Ozaki, M. Reid, H. Tiedje, H. Haugen, and others, “Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Optics Express, vol. 15, no. 20, pp. 13212–13220, 2007.
[8] P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser & Photonics Reviews, vol. 5, no. 1, pp. 124–166, 2011
[9] C. L. Hoy, O. Ferhanoğlu, M. Yildirim, K. H. Kim, S.S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 2, pp. 242–255, 2013.
[10] H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” American journal of ophthalmology, vol. 147, no. 2, pp. 189–197, 2009.
[11] B. Pecholt, M. Vendan, Y. Dong, and P. Molian, “Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication,” The International Journal of Advanced Manufacturing Technology, vol. 39, no. 3, pp. 239–250, 2008.
[12] K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Science & Applications, vol. 3, no. 4, pp. e149–e149, 2014.
[13] K. C. Phillips, H. H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Advances in Optics and Photonics, vol. 7, no. 4, pp. 684–712, 2015.
[14] U. Keller, “Recent developments in compact ultrafast lasers,” nature, vol. 424, no. 6950, pp. 831–838, 2003.
[15] J. C. Diels and W. Rudolph, Ultrashort laser pulse phenomena. Elsevier, 2006.
[16] A. Weiner, Ultrafast optics, vol. 72. John Wiley & Sons, 2011.
[17] R. W. Boyd, Nonlinear optics. Academic press, 2020.
[18] G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century, Springer, pp. 195–211, 2000.
[19] F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, A. Schmidt, “Femtosecond solid-state lasers,” IEEE Journal of Quantum Electronics, vol. 28, no. 10, pp. 2097–2122, 1992.
[20] N. Sarukura, Y. Ishida, H. Nakano, Generation of 50-fsec pulses from a pulse-compressed, cw, passively mode-locked Ti: sapphire laser, Optics Letters. 16 (1991) 153–155.
[21] Y. Chen, F. Kärtner, U. Morgner, S. Cho, H. Haus, E. Ippen, J. Fujimoto, “Dispersion-managed mode locking,” JOSA B, vol. 16, no. 11, 1999.
[22] E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE Journal of quantum Electronics, vol. 5, no. 9, pp. 454–458, 1969.
[23] O. Martinez, J. Gordon, and R. Fork, “Negative group-velocity dispersion using refraction,” JOSA A, vol. 1, no. 10, pp. 1003–1006, 1984.
[24] G. Steinmeyer, “Femtosecond dispersion compensation with multilayer coatings: toward the optical octave,” Applied optics, vol. 45, no. 7, pp. 1484–1490, 2006.
[25] H. A. Macleod, Thin-film optical filters. CRC press, 2010.
[26] C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE Journal of quantum electronics, vol. 30, no. 4, pp. 1100–1114, 1994.
[27] R. A. Negres, C. J. Stolz, M. D. Thomas, and M. Caputo, “1064-nm, nanosecond laser mirror thin film damage competition,” in Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, vol. 10805, p. 108050Y, 2018.
[28] M. DiDomenico Jr, “Small-signal analysis of internal (coupling-type) modulation of lasers,” Journal of Applied Physics, vol. 35, no. 10, pp. 2870–2876, 1964.
[29] A. Yariv, “Internal modulation in multimode laser oscillators,” Journal of Applied Physics, vol. 36, no. 2, pp. 388–391, 1965.
[30] H. W. Mocker and R. Collins, “Mode competition and self-locking effects in aq-switched ruby laser,” Applied Physics Letters, vol. 7, no. 10, pp. 270–273, 1965.
[31] A. DeMaria, D. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Applied Physics Letters, vol. 8, no. 7, pp. 174–176, 1966.
[32] D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti: sapphire laser,” Optics letters, vol. 16, no. 1, pp. 42–44, 1991.
[33] M. Stern, J. P. Heritage, and E. Chase, “Grating compensation of third-order fiber dispersion,” IEEE journal of quantum electronics, vol. 28, no. 12, pp. 2742–2748, 1992.
[34] N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Advances in Optics and Photonics, vol. 8, no. 1, pp. 156–199, 2016.
[35] F. Gires and P. Tournois, “Interferometre utilisable pour la compression dimpulsions lumineuses modulees en frequence,” Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, vol. 258, no. 25, p. 6112, 1964.
[36] M. Duguay and J. Hansen, “Compression of pulses from a mode-locked He–Ne laser,” Applied Physics Letters, vol. 14, no. 1, pp. 14–16, 1969.
[37] R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Optics letters, vol. 19, no. 3, pp. 201–203, 1994.
[38] A. Stingl, C. Spielmann, F. Krausz, and R. Szipöcs, “Generation of 11-fs pulses from a Ti: sapphire laser without the use of prisms,” Optics letters, vol. 19, no. 3, pp. 204–206, 1994.
[39] J. Kuhl and J. Heppner, “Compression of femtosecond optical pulses with dielectric multilayer interferometers,” IEEE journal of quantum electronics, vol. 22, no. 1, pp. 182–185, 1986.
[40] F. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, T. Tschudi, “Design and fabrication of double-chirped mirrors,” Optics letters, vol. 22, no. 11, pp. 831–833, 1997.
[41] F. Kärtner, U. Morgner, R. Ell, T. Schibli, J. Fujimoto, E. Ippen, V. Scheuer, G. Angelow, T. Tschudi, “Ultrabroadband double-chirped mirror pairs for generation of octave spectra,” JOSA B, vol. 18, no. 6, pp. 882–885, 2001.
[42] V. Pervak, A. Tikhonravov, M. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Applied Physics B, vol. 87, no. 1, pp. 5–12, 2007.
[43] D. T. Wei, H. R. Kaufman, and C.-C. Lee, Ion beam sputtering. Marcel Dekker, New York, 1995.
[44] P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum, vol. 56, no. 3, pp. 159–172, 2000.
[45] J. L. Zhang, X. B. Cheng, Z. S. Wang, H. F. Jiao, and T. Ding, “HfO 2/SiO 2 chirped mirrors manufactured by electron beam evaporation,” Applied optics, vol. 50, no. 9, pp. C388–C391, 2011.
[46] M. Bischoff, O. Stenzel, D. Gäbler, and N. Kaiser, “Properties of chirped mirrors manufactured by plasma ion assisted electron beam evaporation,” in Advances in Optical Thin Films II, vol. 5963, p. 59631N, 2005.
[47] Q. Ma, Y. Zhang, C. Xie, W. Shen, M. Hu, S. Zhang, Y. Song, Y. Li, Q. Wang, X. Liu, “Design and fabrication of Gires–Tournois interferometers for Yb-doped photonic crystal fiber laser system,” Applied Physics B, vol. 105, no. 2, pp. 277–284, 2011.
[48] J. Oliver, J. Bromage, C. Smith, D. Sadowski, C. Dorrer, and A. Rigatti, “Plasma-ion-assisted coatings for 15 femtosecond laser systems,” Applied optics, vol. 53, no. 4, pp. A221–A228, 2014.
[49] D. J. Griffiths and D. F. Schroeter, Introduction to quantum mechanics. Cambridge University Press, 2018.
[50] F. A. Jenkins and H. E. White, “Fundamentals of optics,” Indian Journal of Physics, vol. 25, pp. 265–266, 1957.
[51] N. Matuschek, F. X. Kartner, and U. Keller, “Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE Journal of Quantum Electronics, vol. 35, no. 2, pp. 129–137, 1999.
[52] I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” Josa, vol. 55, no. 10, pp. 1205–1209, 1965.
[53] I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” in Journal Of The Optical Society Of America, vol. 62, no. 11, pp. 1405–1405, 1972.
[54] D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm,” Applied optics, vol. 37, no. 21, pp. 4933–4935, 1998.
[55] P. Baumeister, “Design of multilayer filters by successive approximations,” JOSA, vol. 48, no. 12, pp. 955–958, 1958.
[56] A. V. Tikhonravov, “Synthesis of optical coatings using optimality conditions,” Vestnik MGU, physics and astronomy series, vol. 23, no. 6, pp. 91–93, 1982.
[57] A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Applied optics, vol. 35, no. 28, pp. 5493–5508, 1996.
[58] S. A. Furman and A. V. Tikhonravov, Basics of optics of multilayer systems. Atlantica Séguier Frontieres, 1992.
[59] S. Larouche and L. Martinu, “OpenFilters: open-source software for the design, optimization, and synthesis of optical filters,” Applied optics, vol. 47, no. 13, pp. C219–C230, 2008.
[60] A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Applied optics, vol. 46, no. 5, pp. 704–710, 2007.
[61] M. Tilsch and K. Hendrix, “Optical interference coatings design contest 2007: triple bandpass filter and nonpolarizing beam splitter,” Applied optics, vol. 47, no. 13, pp. C55–C69, 2008.
[62] J. J. Moré, “The Levenberg-Marquardt algorithm: implementation and theory,” in Numerical analysis, Springer, pp. 105–116, 1978.
[63] V. Pervak, O. Razskazovskaya, I. B. Angelov, K. L. Vodopyanov, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Advanced Optical Technologies, vol. 3, no. 1, pp. 55–63, 2014.
[64] N. Oudini, G. Hagelaar, J.-P. Boeuf, and L. Garrrigues, “Physics and modeling of an end-Hall (gridless) ion source,” Journal of Applied Physics, vol. 109, no. 7, p. 073310, 2011.
[65] M. Ohring, Materials science of thin films. Elsevier, 2001.
[66] M. Asghar, F. Placido, and S. Naseem, “Characterization of Ta2O5 thin films prepared by reactive evaporation,” The European Physical Journal-Applied Physics, vol. 36, no. 2, pp. 119–124, 2006.
[67] N. Sidqi, C. Clark, G. S. Buller, G. K. V. Thalluri, J. Mitrofanov, and Y. Noblet, “Comparative study of dielectric coating materials for micro-cavity applications,” Optical Materials Express, vol. 9, no. 8, pp. 3452–3468, 2019.
[68] J. A. Woollam, B. D. Johs, C. M. Herzinger, J. N. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” in Optical Metrology: A Critical Review, vol. 10294, p. 1029402, 1999.
[69] L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Optics express, vol. 20, no. 14, pp. 15734–15751, 2012.
[70] R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” JOSA A, vol. 10, no. 5, pp. 1101–1111, 1993.
[71] D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan., “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Applied surface science, vol. 243, no. 1–4, pp. 232–237, 2005.
[72] V. Pervak, M. Trubetskov, and A. Tikhonravov, “Robust synthesis of dispersive mirrors,” Optics Express, vol. 19, no. 3, pp. 2371–2380, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top