|
[1] E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nature photonics, vol. 7, no. 2, pp. 93–101, 2013. [2] J. Shah, Ultrafast spectroscopy of semiconductors and semiconductor nanostructures, vol. 115. Springer Science & Business Media, 2013. [3] N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” Nature Photonics, vol. 13, no. 3, pp. 146–157, 2019. [4] A. H. Zewail, “Femtochemistry: Atomic-scale dynamics of the chemical bond,” The Journal of Physical Chemistry A, vol. 104, no. 24, pp. 5660–5694, 2000. [5] T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature, vol. 416, no. 6877, pp. 233–237, 2002. [6] O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing,” New Journal of Physics, vol. 6, no. 1, p. 183, 2004. [7] F. Blanchard, L. Razzari, H. C. Bandulet, G. Sharma, R. Morandotti, J. C. Kieffer, T. Ozaki, M. Reid, H. Tiedje, H. Haugen, and others, “Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Optics Express, vol. 15, no. 20, pp. 13212–13220, 2007. [8] P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser & Photonics Reviews, vol. 5, no. 1, pp. 124–166, 2011 [9] C. L. Hoy, O. Ferhanoğlu, M. Yildirim, K. H. Kim, S.S. Karajanagi, K. M. C. Chan, J. B. Kobler, S. M. Zeitels, A. Ben-Yakar, “Clinical ultrafast laser surgery: recent advances and future directions,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 2, pp. 242–255, 2013. [10] H. K. Soong and J. B. Malta, “Femtosecond lasers in ophthalmology,” American journal of ophthalmology, vol. 147, no. 2, pp. 189–197, 2009. [11] B. Pecholt, M. Vendan, Y. Dong, and P. Molian, “Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication,” The International Journal of Advanced Manufacturing Technology, vol. 39, no. 3, pp. 239–250, 2008. [12] K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light: Science & Applications, vol. 3, no. 4, pp. e149–e149, 2014. [13] K. C. Phillips, H. H. Gandhi, E. Mazur, and S. Sundaram, “Ultrafast laser processing of materials: a review,” Advances in Optics and Photonics, vol. 7, no. 4, pp. 684–712, 2015. [14] U. Keller, “Recent developments in compact ultrafast lasers,” nature, vol. 424, no. 6950, pp. 831–838, 2003. [15] J. C. Diels and W. Rudolph, Ultrashort laser pulse phenomena. Elsevier, 2006. [16] A. Weiner, Ultrafast optics, vol. 72. John Wiley & Sons, 2011. [17] R. W. Boyd, Nonlinear optics. Academic press, 2020. [18] G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century, Springer, pp. 195–211, 2000. [19] F. Krausz, M. E. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, C. Spielmann, E. Wintner, A. Schmidt, “Femtosecond solid-state lasers,” IEEE Journal of Quantum Electronics, vol. 28, no. 10, pp. 2097–2122, 1992. [20] N. Sarukura, Y. Ishida, H. Nakano, Generation of 50-fsec pulses from a pulse-compressed, cw, passively mode-locked Ti: sapphire laser, Optics Letters. 16 (1991) 153–155. [21] Y. Chen, F. Kärtner, U. Morgner, S. Cho, H. Haus, E. Ippen, J. Fujimoto, “Dispersion-managed mode locking,” JOSA B, vol. 16, no. 11, 1999. [22] E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE Journal of quantum Electronics, vol. 5, no. 9, pp. 454–458, 1969. [23] O. Martinez, J. Gordon, and R. Fork, “Negative group-velocity dispersion using refraction,” JOSA A, vol. 1, no. 10, pp. 1003–1006, 1984. [24] G. Steinmeyer, “Femtosecond dispersion compensation with multilayer coatings: toward the optical octave,” Applied optics, vol. 45, no. 7, pp. 1484–1490, 2006. [25] H. A. Macleod, Thin-film optical filters. CRC press, 2010. [26] C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE Journal of quantum electronics, vol. 30, no. 4, pp. 1100–1114, 1994. [27] R. A. Negres, C. J. Stolz, M. D. Thomas, and M. Caputo, “1064-nm, nanosecond laser mirror thin film damage competition,” in Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, vol. 10805, p. 108050Y, 2018. [28] M. DiDomenico Jr, “Small-signal analysis of internal (coupling-type) modulation of lasers,” Journal of Applied Physics, vol. 35, no. 10, pp. 2870–2876, 1964. [29] A. Yariv, “Internal modulation in multimode laser oscillators,” Journal of Applied Physics, vol. 36, no. 2, pp. 388–391, 1965. [30] H. W. Mocker and R. Collins, “Mode competition and self-locking effects in aq-switched ruby laser,” Applied Physics Letters, vol. 7, no. 10, pp. 270–273, 1965. [31] A. DeMaria, D. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Applied Physics Letters, vol. 8, no. 7, pp. 174–176, 1966. [32] D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti: sapphire laser,” Optics letters, vol. 16, no. 1, pp. 42–44, 1991. [33] M. Stern, J. P. Heritage, and E. Chase, “Grating compensation of third-order fiber dispersion,” IEEE journal of quantum electronics, vol. 28, no. 12, pp. 2742–2748, 1992. [34] N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Advances in Optics and Photonics, vol. 8, no. 1, pp. 156–199, 2016. [35] F. Gires and P. Tournois, “Interferometre utilisable pour la compression dimpulsions lumineuses modulees en frequence,” Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, vol. 258, no. 25, p. 6112, 1964. [36] M. Duguay and J. Hansen, “Compression of pulses from a mode-locked He–Ne laser,” Applied Physics Letters, vol. 14, no. 1, pp. 14–16, 1969. [37] R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Optics letters, vol. 19, no. 3, pp. 201–203, 1994. [38] A. Stingl, C. Spielmann, F. Krausz, and R. Szipöcs, “Generation of 11-fs pulses from a Ti: sapphire laser without the use of prisms,” Optics letters, vol. 19, no. 3, pp. 204–206, 1994. [39] J. Kuhl and J. Heppner, “Compression of femtosecond optical pulses with dielectric multilayer interferometers,” IEEE journal of quantum electronics, vol. 22, no. 1, pp. 182–185, 1986. [40] F. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, T. Tschudi, “Design and fabrication of double-chirped mirrors,” Optics letters, vol. 22, no. 11, pp. 831–833, 1997. [41] F. Kärtner, U. Morgner, R. Ell, T. Schibli, J. Fujimoto, E. Ippen, V. Scheuer, G. Angelow, T. Tschudi, “Ultrabroadband double-chirped mirror pairs for generation of octave spectra,” JOSA B, vol. 18, no. 6, pp. 882–885, 2001. [42] V. Pervak, A. Tikhonravov, M. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Applied Physics B, vol. 87, no. 1, pp. 5–12, 2007. [43] D. T. Wei, H. R. Kaufman, and C.-C. Lee, Ion beam sputtering. Marcel Dekker, New York, 1995. [44] P. J. Kelly and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum, vol. 56, no. 3, pp. 159–172, 2000. [45] J. L. Zhang, X. B. Cheng, Z. S. Wang, H. F. Jiao, and T. Ding, “HfO 2/SiO 2 chirped mirrors manufactured by electron beam evaporation,” Applied optics, vol. 50, no. 9, pp. C388–C391, 2011. [46] M. Bischoff, O. Stenzel, D. Gäbler, and N. Kaiser, “Properties of chirped mirrors manufactured by plasma ion assisted electron beam evaporation,” in Advances in Optical Thin Films II, vol. 5963, p. 59631N, 2005. [47] Q. Ma, Y. Zhang, C. Xie, W. Shen, M. Hu, S. Zhang, Y. Song, Y. Li, Q. Wang, X. Liu, “Design and fabrication of Gires–Tournois interferometers for Yb-doped photonic crystal fiber laser system,” Applied Physics B, vol. 105, no. 2, pp. 277–284, 2011. [48] J. Oliver, J. Bromage, C. Smith, D. Sadowski, C. Dorrer, and A. Rigatti, “Plasma-ion-assisted coatings for 15 femtosecond laser systems,” Applied optics, vol. 53, no. 4, pp. A221–A228, 2014. [49] D. J. Griffiths and D. F. Schroeter, Introduction to quantum mechanics. Cambridge University Press, 2018. [50] F. A. Jenkins and H. E. White, “Fundamentals of optics,” Indian Journal of Physics, vol. 25, pp. 265–266, 1957. [51] N. Matuschek, F. X. Kartner, and U. Keller, “Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE Journal of Quantum Electronics, vol. 35, no. 2, pp. 129–137, 1999. [52] I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” Josa, vol. 55, no. 10, pp. 1205–1209, 1965. [53] I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” in Journal Of The Optical Society Of America, vol. 62, no. 11, pp. 1405–1405, 1972. [54] D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm,” Applied optics, vol. 37, no. 21, pp. 4933–4935, 1998. [55] P. Baumeister, “Design of multilayer filters by successive approximations,” JOSA, vol. 48, no. 12, pp. 955–958, 1958. [56] A. V. Tikhonravov, “Synthesis of optical coatings using optimality conditions,” Vestnik MGU, physics and astronomy series, vol. 23, no. 6, pp. 91–93, 1982. [57] A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Applied optics, vol. 35, no. 28, pp. 5493–5508, 1996. [58] S. A. Furman and A. V. Tikhonravov, Basics of optics of multilayer systems. Atlantica Séguier Frontieres, 1992. [59] S. Larouche and L. Martinu, “OpenFilters: open-source software for the design, optimization, and synthesis of optical filters,” Applied optics, vol. 47, no. 13, pp. C219–C230, 2008. [60] A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Applied optics, vol. 46, no. 5, pp. 704–710, 2007. [61] M. Tilsch and K. Hendrix, “Optical interference coatings design contest 2007: triple bandpass filter and nonpolarizing beam splitter,” Applied optics, vol. 47, no. 13, pp. C55–C69, 2008. [62] J. J. Moré, “The Levenberg-Marquardt algorithm: implementation and theory,” in Numerical analysis, Springer, pp. 105–116, 1978. [63] V. Pervak, O. Razskazovskaya, I. B. Angelov, K. L. Vodopyanov, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Advanced Optical Technologies, vol. 3, no. 1, pp. 55–63, 2014. [64] N. Oudini, G. Hagelaar, J.-P. Boeuf, and L. Garrrigues, “Physics and modeling of an end-Hall (gridless) ion source,” Journal of Applied Physics, vol. 109, no. 7, p. 073310, 2011. [65] M. Ohring, Materials science of thin films. Elsevier, 2001. [66] M. Asghar, F. Placido, and S. Naseem, “Characterization of Ta2O5 thin films prepared by reactive evaporation,” The European Physical Journal-Applied Physics, vol. 36, no. 2, pp. 119–124, 2006. [67] N. Sidqi, C. Clark, G. S. Buller, G. K. V. Thalluri, J. Mitrofanov, and Y. Noblet, “Comparative study of dielectric coating materials for micro-cavity applications,” Optical Materials Express, vol. 9, no. 8, pp. 3452–3468, 2019. [68] J. A. Woollam, B. D. Johs, C. M. Herzinger, J. N. Hilfiker, R. A. Synowicki, and C. L. Bungay, “Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications,” in Optical Metrology: A Critical Review, vol. 10294, p. 1029402, 1999. [69] L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Optics express, vol. 20, no. 14, pp. 15734–15751, 2012. [70] R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” JOSA A, vol. 10, no. 5, pp. 1101–1111, 1993. [71] D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan., “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Applied surface science, vol. 243, no. 1–4, pp. 232–237, 2005. [72] V. Pervak, M. Trubetskov, and A. Tikhonravov, “Robust synthesis of dispersive mirrors,” Optics Express, vol. 19, no. 3, pp. 2371–2380, 2011.
|