|
[1] M. Barbareschi et al., “A Catalog-based AIG-Rewriting Approach to the Design of Approximate Components,” IEEE Trans. Emerg. Topics Comput., 2022. [2] J. Echavarria et al., “Probabilistic Error Propagation through Approximated Boolean Networks,” Proc. DAC, 2020, pp. 1-6. [3] C. M. Fiduccia et al., “A Linear-Time Heuristic for Improving Network Parti- tions,” Proc. DAC, 1982, pp. 175-181. [4] J. Han et al., “Approximate Computing: An Emerging Paradigm for Energy- Efficient Design,” Proc. ETS, 2013, pp. 1-6. [5] J. H. Holland, “Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence,” MIT Press, 1992. [6] S. Karakatic et al., “Optimization of Combinational Logic Circuits with Genetic Programming,” Elektronika ir Elektrotechnika, 2013. [7] B. W. Kernighan et al., “An Efficient Heuristic Procedure for Partitioning Graphs,” The Bell System Technical Journal, 1970, pp. 291-307. [8] Y. Kim et al., “An Energy Efficient Approximate Adder with Carry Skip for Error Resilient Neuromorphic VLSI Systems,” Proc. ICCAD, 2013, pp. 130-137. [9] P. Kulkarni et al., “Trading Accuracy for Power with an Underdesigned Multi- plier Architecture,” Proc. VLSID, 2011, pp. 346-351. [10] K. Y. Kyaw et al., “Low-Power High-Speed Multiplier for Error-Tolerant Ap- plication,” Proc. EDSSC, 2010, pp. 1-4. [11] Y.-A Lai et al., “Efficient Synthesis of Approximate Threshold Logic Circuits with an Error Rate Guarantee,” Proc. DATE, 2018, pp. 773-778. [12] J. Liang et al., “New Metrics for the Reliability of Approximate and Proba- bilistic Adders,” IEEE Trans. Comput., 2013, pp. 1760-1771. [13] C. Liu et al., “A Low-Power, High-Performance Approximate Multiplier with Configurable Partial Error Recovery,” Proc. DATE, 2014, pp. 1-4. [14] C. Meng et al., “ALSRAC: Approximate Logic Synthesis by Resubstitution with Approximate Care Set,” Proc. DAC, 2020, pp. 1-6. [15] L. Hellerman, “A Catalog of Three-Variable Or-Invert and And-Invert Logical Circuits,” IEEE Trans. Electron. Comput., 1963, pp. 198-223. [16] I. Scarabottolo et al., “Partition and Propagate: an Error Derivation Algorithm for the Design of Approximate Circuits,” Proc. DAC, 2019, pp. 1-6. [17] S. Su et al., “Efficient Batch Statistical Error Estimation for Iterative Multi- level Approximate Logic Synthesis,” Proc. DAC, 2018, pp. 1-6. [18] K. S. Tam et al., “An Efficient Approximate Node Merging with an Error Rate Guarantee,” Proc. ASP-DAC, 2021, pp. 266-271. [19] Z. Vasicek et al., “Evolutionary Approach to Approximate Digital Circuits De- sign,” IEEE Trans. Evol. Comput., 2015, pp. 432-444. [20] S. Venkataramani et al., “Substitute-and-Simplify: A Unified Design Paradigm for Approximate and Quality Configurable Circuits,” Proc. DATE, 2013, pp. 1367-1372. [21] A. Wendler et al., “A fast BDD Minimization Framework for Approximate Computing,” Proc. DATE, 2020, pp. 1372-1377. [22] S. Yang, “Logic Synthesis and Optimization Benchmarks,” Microelectronics Center of North Carolina, Tech. Rep., 1991. [23] N. Zhu et al., “An Enhanced Low-Power High-Speed Adder for Error-Tolerant Application,” Proc. ISIC, 2009, pp. 69-72. [24] Berkeley Logic Synthesis and Verification Group. ABC: A Sys- tem for Sequential Synthesis and Verification [Online]. Available: http://www.eecs.berkeley.edu/ alanmi/abc [25] http://iwls.org/iwls2005/benchmarks.html
|