跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 18:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李俊廷
研究生(外文):Lee, Chun-Ting
論文名稱:基於基因演算法且具有錯誤率保證的近似邏輯合成的研究
論文名稱(外文):Approximate Logic Synthesis by Genetic Algorithm with an Error Rate Guarantee
指導教授:王俊堯王俊堯引用關係
指導教授(外文):Wang, Chun-Yao
口試委員:江介宏温宏斌
口試委員(外文):Jiang, Jie-HongWen, Hung-Pin
口試日期:2022-07-19
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:28
中文關鍵詞:近似計算電路最佳化基因演算法
外文關鍵詞:Approximate ComputingCircuit OptimizationGenetic Algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近似計算是一種針對可容忍錯誤之應用的新興設計技術,它可以透過換取電路的正確性來改善電路的面積、延遲或功耗。我們於此論文提出一種基於基因演算法的近似邏輯合成方法,該方法在保證錯誤率的情況下顯著地減少了電路的面積及深度。我們在IWLS2005和MCNC的電路上進行實驗,實驗結果顯示在5%的錯誤率限制下,我們提出的方法能夠減少多達80%的面積和50%的深度。與最新的方法相比,我們提出的方法在相同的5%錯誤率限制下平均能夠多減少11%的面積和188%的深度。
Approximate computing is an emerging design technique for error-tolerant applications, which may improve circuit area, delay, or power consumption by trading off a circuit's correctness. In this paper, we propose a novel approximate logic synthesis approach based on genetic algorithm, and the approach significantly reduces circuit sizes and depths with an error rate guarantee. We conduct experiments on a set of IWLS 2005 and MCNC benchmarks. The experimental results demonstrate that the area and depth can be reduced by up to 80% and 50% under a 5% error rate constraint, respectively. As compared with the state-of-the-art method, our approach can achieve an average of 11% more area savings and 188% more depth reduction under the same 5% error rate constraint.
中文摘要
Abstract
Acknowledgement
Contents
List of Tables
List of Figures
1 Introduction 1
2 Preliminaries 3
2.1 Error Metrics 3
2.2 And-Inverter-Graphs 3
2.3 Genetic Algorithm 4
3 Proposed Approach 5
3.1 Node to Constant 5
3.2 Circuit Partitioning 6
3.3 Genetic Algorithm Design 7
3.4 Subcircuit Selection and Combination 15
3.5 Overall Flow 17
4 Experimental Results 19
5 Conclusion 25
[1] M. Barbareschi et al., “A Catalog-based AIG-Rewriting Approach to the Design of Approximate Components,” IEEE Trans. Emerg. Topics Comput., 2022.
[2] J. Echavarria et al., “Probabilistic Error Propagation through Approximated Boolean Networks,” Proc. DAC, 2020, pp. 1-6.
[3] C. M. Fiduccia et al., “A Linear-Time Heuristic for Improving Network Parti- tions,” Proc. DAC, 1982, pp. 175-181.
[4] J. Han et al., “Approximate Computing: An Emerging Paradigm for Energy- Efficient Design,” Proc. ETS, 2013, pp. 1-6.
[5] J. H. Holland, “Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence,” MIT Press, 1992.
[6] S. Karakatic et al., “Optimization of Combinational Logic Circuits with Genetic Programming,” Elektronika ir Elektrotechnika, 2013.
[7] B. W. Kernighan et al., “An Efficient Heuristic Procedure for Partitioning Graphs,” The Bell System Technical Journal, 1970, pp. 291-307.
[8] Y. Kim et al., “An Energy Efficient Approximate Adder with Carry Skip for Error Resilient Neuromorphic VLSI Systems,” Proc. ICCAD, 2013, pp. 130-137.
[9] P. Kulkarni et al., “Trading Accuracy for Power with an Underdesigned Multi- plier Architecture,” Proc. VLSID, 2011, pp. 346-351.
[10] K. Y. Kyaw et al., “Low-Power High-Speed Multiplier for Error-Tolerant Ap- plication,” Proc. EDSSC, 2010, pp. 1-4.
[11] Y.-A Lai et al., “Efficient Synthesis of Approximate Threshold Logic Circuits with an Error Rate Guarantee,” Proc. DATE, 2018, pp. 773-778.
[12] J. Liang et al., “New Metrics for the Reliability of Approximate and Proba- bilistic Adders,” IEEE Trans. Comput., 2013, pp. 1760-1771.
[13] C. Liu et al., “A Low-Power, High-Performance Approximate Multiplier with Configurable Partial Error Recovery,” Proc. DATE, 2014, pp. 1-4.
[14] C. Meng et al., “ALSRAC: Approximate Logic Synthesis by Resubstitution with Approximate Care Set,” Proc. DAC, 2020, pp. 1-6.
[15] L. Hellerman, “A Catalog of Three-Variable Or-Invert and And-Invert Logical Circuits,” IEEE Trans. Electron. Comput., 1963, pp. 198-223.
[16] I. Scarabottolo et al., “Partition and Propagate: an Error Derivation Algorithm for the Design of Approximate Circuits,” Proc. DAC, 2019, pp. 1-6.
[17] S. Su et al., “Efficient Batch Statistical Error Estimation for Iterative Multi- level Approximate Logic Synthesis,” Proc. DAC, 2018, pp. 1-6.
[18] K. S. Tam et al., “An Efficient Approximate Node Merging with an Error Rate Guarantee,” Proc. ASP-DAC, 2021, pp. 266-271.
[19] Z. Vasicek et al., “Evolutionary Approach to Approximate Digital Circuits De- sign,” IEEE Trans. Evol. Comput., 2015, pp. 432-444.
[20] S. Venkataramani et al., “Substitute-and-Simplify: A Unified Design Paradigm for Approximate and Quality Configurable Circuits,” Proc. DATE, 2013, pp. 1367-1372.
[21] A. Wendler et al., “A fast BDD Minimization Framework for Approximate Computing,” Proc. DATE, 2020, pp. 1372-1377.
[22] S. Yang, “Logic Synthesis and Optimization Benchmarks,” Microelectronics Center of North Carolina, Tech. Rep., 1991.
[23] N. Zhu et al., “An Enhanced Low-Power High-Speed Adder for Error-Tolerant Application,” Proc. ISIC, 2009, pp. 69-72.
[24] Berkeley Logic Synthesis and Verification Group. ABC: A Sys- tem for Sequential Synthesis and Verification [Online]. Available: http://www.eecs.berkeley.edu/ alanmi/abc
[25] http://iwls.org/iwls2005/benchmarks.html
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top