|
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473. Baytas, I. M., Xiao, C., Zhang, X., Wang, F., Jain, A. K., & Zhou, J. (2017). Patient subtyping via time-aware LSTM networks. Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The long-document transformer. arXiv preprint arXiv:2004.05150. Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the association for computational linguistics, 5, 135-146. Cao, L., Zhang, H., Feng, L., Wei, Z., Wang, X., Li, N., & He, X. (2019). Latent suicide risk detection on microblog via suicide-oriented word embeddings and layered attention. arXiv preprint arXiv:1910.12038. Centers for Disease Control and Prevention. (2022, February 25, 2022). Suicide Prevention. Retrieved June 27 from https://www.cdc.gov/suicide/index.html Coppersmith, G., Leary, R., Crutchley, P., & Fine, A. (2018). Natural language processing of social media as screening for suicide risk. Biomedical informatics insights, 10, 1178222618792860. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6111391/pdf/10.1177_1178222618792860.pdf De Choudhury, M., Kiciman, E., Dredze, M., Coppersmith, G., & Kumar, M. (2016). Discovering shifts to suicidal ideation from mental health content in social media. Proceedings of the 2016 CHI conference on human factors in computing systems. Domino, G. (1996). Test-retest reliability of the Suicide Opinion Questionnaire. Psychological Reports, 78(3), 1009-1010. Eichstaedt, J. C., Smith, R. J., Merchant, R. M., Ungar, L. H., Crutchley, P., Preoţiuc-Pietro, D., Asch, D. A., & Schwartz, H. A. (2018). Facebook language predicts depression in medical records. Proceedings of the National Academy of Sciences, 115(44), 11203-11208. Gaur, M., Alambo, A., Sain, J. P., Kursuncu, U., Thirunarayan, K., Kavuluru, R., Sheth, A., Welton, R., & Pathak, J. (2019). Knowledge-aware assessment of severity of suicide risk for early intervention. The world wide web conference. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. Jashinsky, J., Burton, S. H., Hanson, C. L., West, J., Giraud-Carrier, C., Barnes, M. D., & Argyle, T. (2014). Tracking suicide risk factors through Twitter in the US. Crisis: The Journal of Crisis Intervention and Suicide Prevention, 35(1), 51. Klonsky, E. D., & May, A. M. (2015). The three-step theory (3ST): A new theory of suicide rooted in the “ideation-to-action” framework. International Journal of Cognitive Therapy, 8(2), 114-129. Leavey, G., Mallon, S., Rondon-Sulbaran, J., Galway, K., Rosato, M., & Hughes, L. (2017). The failure of suicide prevention in primary care: family and GP perspectives–a qualitative study. BMC psychiatry, 17(1), 1-10. Lim, M., Lee, S. U., & Park, J.-I. (2014). Difference in suicide methods used between suicide attempters and suicide completers. International journal of mental health systems, 8(1), 1-4. Liu, Z., Wang, Z., Liang, P. P., Salakhutdinov, R. R., Morency, L.-P., & Ueda, M. (2019). Deep gamblers: Learning to abstain with portfolio theory. Advances in neural information processing systems, 32. Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101. Masuda, N., Kurahashi, I., & Onari, H. (2013). Suicide ideation of individuals in online social networks. PloS one, 8(4), e62262. Matero, M., Idnani, A., Son, Y., Giorgi, S., Vu, H., Zamani, M., Limbachiya, P., Guntuku, S. C., & Schwartz, H. A. (2019). Suicide risk assessment with multi-level dual-context language and BERT. Proceedings of the sixth workshop on computational linguistics and clinical psychology. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., & Joulin, A. (2017). Advances in pre-training distributed word representations. arXiv preprint arXiv:1712.09405. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26. Mishra, R., Sinha, P. P., Sawhney, R., Mahata, D., Mathur, P., & Shah, R. R. (2019). SNAP-BATNET: Cascading author profiling and social network graphs for suicide ideation detection on social media. Proceedings of the 2019 conference of the North American Chapter of the association for computational linguistics: student research workshop. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., & Antiga, L. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems, 32. Posner, K., Brent, D., Lucas, C., Gould, M., Stanley, B., Brown, G., Fisher, P., Zelazny, J., Burke, A., & Oquendo, M. (2008). Columbia-suicide severity rating scale (C-SSRS). New York, NY: Columbia University Medical Center, 10. Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084. Renberg, E. S., & Jacobsson, L. (2003). Development of a questionnaire on attitudes towards suicide (ATTS) and its application in a Swedish population. Suicide and Life-Threatening Behavior, 33(1), 52-64. Sap, M., Park, G., Eichstaedt, J., Kern, M., Stillwell, D., Kosinski, M., Ungar, L., & Schwartz, H. A. (2014). Developing age and gender predictive lexica over social media. Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). Sawhney, R., Joshi, H., Gandhi, S., & Shah, R. (2020). A time-aware transformer based model for suicide ideation detection on social media. Proceedings of the 2020 conference on empirical methods in natural language processing (EMNLP). Sawhney, R., Joshi, H., Gandhi, S., & Shah, R. R. (2021). Towards ordinal suicide ideation detection on social media. Proceedings of the 14th ACM International Conference on Web Search and Data Mining. Sawhney, R., Manchanda, P., Singh, R., & Aggarwal, S. (2018). A computational approach to feature extraction for identification of suicidal ideation in tweets. Proceedings of ACL 2018, Student Research Workshop. Sawhney, R., Neerkaje, A. T., & Gaur, M. (2022). A Risk-Averse Mechanism for Suicidality Assessment on Social Media. Association for Computational Linguistics 2022 (ACL 2022). Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M., Shah, A., Kosinski, M., Stillwell, D., & Seligman, M. E. (2013). Personality, gender, and age in the language of social media: The open-vocabulary approach. PloS one, 8(9), e73791. Shing, H.-C., Nair, S., Zirikly, A., Friedenberg, M., Daumé III, H., & Resnik, P. (2018). Expert, crowdsourced, and machine assessment of suicide risk via online postings. Proceedings of the fifth workshop on computational linguistics and clinical psychology: from keyboard to clinic. Shing, H.-C., Resnik, P., & Oard, D. W. (2020). A prioritization model for suicidality risk assessment. Proceedings of the 58th annual meeting of the association for computational linguistics. Smucker, M. D., & Clarke, C. L. (2012). Time-based calibration of effectiveness measures. Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. Wang, N., Luo, F., Shivtare, Y., Badal, V. D., Subbalakshmi, K., Chandramouli, R., & Lee, E. (2021). Learning Models for Suicide Prediction from Social Media Posts. arXiv preprint arXiv:2105.03315. Yang, C., Zhang, Y., & Muresan, S. (2021). Weakly-Supervised Methods for Suicide Risk Assessment: Role of Related Domains. arXiv preprint arXiv:2106.02792. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016). Hierarchical attention networks for document classification. Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies. Zirikly, A., Resnik, P., Uzuner, O., & Hollingshead, K. (2019). CLPsych 2019 shared task: Predicting the degree of suicide risk in Reddit posts. Proceedings of the sixth workshop on computational linguistics and clinical psychology. 李明濱. (2020). 109年自殺防治年報. https://www.tsos.org.tw/media/4591#doc-tabs-detail
|