|
[1] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y. Yuan, H. Wang, L. Yi, A. X. Chang, L. J. Guibas, and H. Su, “SAPIEN: A simulated part-based interactive environment,” in CVPR, 2020.
[2] X. Li, H. Wang, L. Yi, L. Guibas, A. L. Abbott, and S. Song, “Category-level articulated object pose estimation,” in CVPR, 2020.
[3] K. Desingh, S. Lu, A. Opipari, and O. C. Jenkins, “Factored pose estimation of articulated objects using efficient nonparametric belief propagation,” in ICRA, 2019.
[4] F. Michel, A. Krull, E. Brachmann, M. Y. Yang, S. Gumhold, and C. Rother, “Pose estimation of kinematic chain instances via object coordinate regression,” in BMVC, 2015.
[5] J. Mu, W. Qiu, A. Kortylewski, A. Yuille, N. Vasconcelos, and X. Wang, “A-SDF: Learning disentangled signed distance functions for articulated shape representation,” arXiv preprint arXiv: 2104.07645, 2021.
[6] J. J. Park, P. Florence, J. Straub, R. A. Newcombe, and S. Lovegrove, “DeepSDF: Learning continuous signed distance functions for shape representation,” in CVPR, 2019.
[7] A. Handa, A. Kurenkov, and M. Brundage, “Part I: Indexing datasets of 3d indoor objects.”
https://sim2realai.github.io/Synthetic-Datasets-of-Objects-Part-I/, 2019.
[8] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “NeRF: Representing scenes as neural radiance fields for view synthesis,” in ECCV, 2020.
[9] A. Yu, V. Ye, M. Tancik, and A. Kanazawa, “pixelNeRF: Neural radiance fields from one or few images,” in CVPR, 2021.
[10] Q. Wang, Z. Wang, K. Genova, P. Srinivasan, H. Zhou, J. T. Barron, R. Martin-Brualla, N. Snavely, and T. Funkhouser, “Ibrnet: Learning multi-view image-based rendering,” in CVPR, 2021.
[11] Y. Weng, H. Wang, Q. Zhou, Y. Qin, Y. Duan, Q. Fan, B. Chen, H. Su, and L. J. Guibas, “Captra: Category-level pose tracking for rigid and articulated objects from point clouds,” arXiv preprint arXiv:2104.03437, 2021.
[12] A. Jain, R. Lioutikov, C. Chuck, and S. Niekum, “Screwnet: Category-independent articulation model estimation from depth images using screw theory,” in arXiv preprint, 2020.
[13] B. Abbatematteo, S. Tellex, and G. Konidaris, “Learning to generalize kinematic models to novel objects,” in Proceedings of the Conference on Robot Learning, 2020.
[14] A. Jacobson, Z. Deng, L. Kavan, and J. Lewis, “Skinning: Real-time shape deformation,” in ACM SIGGRAPH 2014 Courses, 2014.
[15] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black, “SMPL: A skinned multi-person linear model,” ACM Trans. Graphics (Proc. SIGGRAPH Asia), 2015.
[16] Z. Zheng, T. Yu, Y. Wei, Q. Dai, and Y. Liu, “Deephuman: 3d human reconstruction from a single image,” in ICCV, 2019.
[17] B. L. Bhatnagar, G. Tiwari, C. Theobalt, and G. Pons-Moll, “Multi-garment net: Learning to dress 3d people from images,” in IEEE International Conference on Computer Vision (ICCV), IEEE, oct 2019.
[18] S. Peng, Y. Zhang, Y. Xu, Q. Wang, Q. Shuai, H. Bao, and X. Zhou, “Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans,” in CVPR, 2021.
[19] M. Kocabas, N. Athanasiou, and M. J. Black, “Vibe: Video inference for human body pose and shape estimation,” in CVPR, 2020.
[20] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik, “End-to-end recovery of human shape and pose,” in CVPR, 2018.
[21] J. Y. Zhang, S. Pepose, H. Joo, D. Ramanan, J. Malik, and A. Kanazawa, “Perceiving 3d human-object spatial arrangements from a single image in the wild,” in ECCV, 2020.
[22] M. Omran, C. Lassner, G. Pons-Moll, P. V. Gehler, and B. Schiele, “Neural body fitting:
Unifying deep learning and model-based human pose and shape estimation,” in 3DV, 2018.
[23] B. Deng, J. Lewis, T. Jeruzalski, G. Pons-Moll, G. Hinton, M. Norouzi, and A. Tagliasacchi, “Neural articulated shape approximation,” in ECCV, 2020.
[24] A. Noguchi, X. Sun, S. Lin, and T. Harada, “Neural articulated radiance field,” arXiv preprint arXiv:2104.03110, 2021.
[25] D. Katz and O. Brock, “Manipulating articulated objects with interactive perception,” in 2008 IEEE International Conference on Robotics and Automation, pp. 272–277, IEEE, 2008.
[26] D. Katz, M. Kazemi, J. A. Bagnell, and A. Stentz, “Interactive segmentation, tracking, and kinematic modeling of unknown 3d articulated objects,” in 2013 IEEE International Conference on Robotics and Automation, pp. 5003–5010, IEEE, 2013.
[27] R. M. Martin and O. Brock, “Online interactive perception of articulated objects with multi-level recursive estimation based on task-specific priors,” in IROS, 2014.
[28] R. Martín-Martín, S. Höfer, and O. Brock, “An integrated approach to visual perception of articulated objects,” in ICRA, 2016.
[29] K. Hausman, S. Niekum, S. Osentoski, and G. S. Sukhatme, “Active articulation model estimation through interactive perception,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3305–3312, IEEE, 2015.
[30] S. Pillai, M. R. Walter, and S. Teller, “Learning articulated motions from visual demonstration,” 2015.
[31] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas, “Normalized object coordinate space for category-level 6d object pose and size estimation,” in CVPR, 2019.
[32] A. Jain and S. Niekum, “Learning hybrid object kinematics for efficient hierarchical planning under uncertainty,” in IROS, 2020.
[33] J. Sturm, C. Stachniss, and W. Burgard, “A probabilistic framework for learning kinematic models of articulated objects,” 2011.
[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin, “Attention is all you need,” in NeurIPS (I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), 2017.
[35] J. T. Kajiya and B. P. V. Herzen, “Ray tracing volume densities,” SIGGRAPH, 1984.
[36] N. Max, “Optical models for direct volume rendering,” IEEE TVCG, 1995.
[37] K. Rematas, R. Martin-Brualla, and V. Ferrari, “ShaRF: Shape-conditioned radiance fields from a single view,” in ICML, 2021.
[38] L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and T.-Y. Lin, “iNeRF: Inverting neural radiance fields for pose estimation,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021.
[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in CVPR, 2016.
[40] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger, “Differentiable volumetric rendering: Learning implicit 3d representations without 3d supervision,” in CVPR, June 2020.
[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR, 2015.
[42] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese,
M. Savva, S. Song, H. Su, et al., “Shapenet: An information-rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.
[43] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su, “PartNet: A largescale benchmark for fine-grained and hierarchical part-level 3D object understanding,” in CVPR, June 2019.
[44] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games, robotics and machine learning.” http://pybullet.org, 2016–2021.
[45] B. O. Community, Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.
[46] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,” in CVPR, 2016.
[47] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixelwise view selection for unstructured multi-view stereo,” in ECCV, 2016.
[48] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in CVPR, 2018.
|