跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 14:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王磊
研究生(外文):WANG, LEI
論文名稱:超臨界二氧化碳在加熱微流道內的熱傳與壓降特性之實驗研究
論文名稱(外文):Experimental studies on the heat transfer and pressure drop characteristics of supercritical carbon dioxide in miniature heating tubes
指導教授:潘欽李進得
指導教授(外文):Pan, ChinLee, Jin-Der
口試委員:趙吉運王啟川陳紹文
口試委員(外文):Zhao, JiyunWang, Chi-ChuanChen, Shao-Wen
口試日期:2022-01-20
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:113
中文關鍵詞:超臨界二氧化碳微型管熱傳均勻熱通量
外文關鍵詞:supercritical carbon dioxideminiature tubeheat transferuniform heat flux
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
相對於其他超臨界流體,超臨界二氧化碳流體作為環保型的天然材料具有相對較低的臨界壓力(73.8 bar)和接近室溫的臨界溫度(31.0℃)。由於其獨特的可壓縮性、儲量豐富、不易燃燒、無毒、零臭氧消耗潛勢值(ODP)和低全球變暖潛勢值(GWP),超臨界二氧化碳流體被認為是應對日益嚴重的環境問題和低能量轉換效率的理想工作流體。因此,超臨界二氧化碳流體被廣泛應用於許多現代工業領域,如食品、生物、醫療,紡織以及能源等。
首先,二氧化碳流體的熱物理性質接近假臨界點時會產生劇烈變化,進而顯著影響二氧化碳流體在超臨界狀態下的熱傳與壓降特性。其次,大量的文獻資料顯示,對於超臨界二氧化碳在加熱流道中,特別是管徑小於1.0 mm且測試段長度為200 mm的微型圓管,不同流動方向的局部熱傳和壓降特性的實驗研究非常有限,因此,開展超臨界二氧化碳流體在加熱微流道中的局部熱傳與壓降特性的實驗研究非常重要且意義重大。本實驗研究旨在探討超臨界二氧化碳流體在管徑為0.5 mm、0.75 mm和1.0 mm以及測試段長度只有200 mm的微型加熱管中,三種不同流動方向(水平流動、垂直向上流動和垂直向下流動)的局部熱傳和壓降特性。本研究以此建立相關的高壓實驗系統並通過不同的出口壓力、輸入加熱功率、質量通量、進口溫度等具體參數,詳細研究了超臨界二氧化碳流體在不同流動方向和不同管徑條件下的局部熱傳和壓降特性之影響。本研究有助於相關設備與部件的設計與研發,能夠為超臨界二氧化碳系統運行的穩定性及安全性提供寶貴的參考意見。
本研究首先針對實驗在不同流動方向(水平流動、垂直向上流動和垂直向下流動)是否滿足均勻加熱條件展開的驗證,並證明本實驗研究針對測試段的加熱設計,能夠合理滿足均勻熱通量的條件。其次,本研究針對不同的出口壓力、輸入加熱功率、質量通量、進口溫度等具體參數,詳細研究了超臨界二氧化碳流體在不同流動方向和不同管徑條件下的局部熱傳和壓降特性之影響。其主要結論如下所示:
對於水平流動方向而言,熱傳的實驗結果表明:在假臨界點之前,二氧化碳流體的溫度升高,熱傳效果增強,局部熱傳係數在假臨界點附近達到峰值,而當二氧化碳流體的溫度超過假臨界點時,熱傳效果減弱,從而導致局部熱傳係數出現一個局部最小值。隨後,當流體溫度遠高於假臨界溫度時,流體的粘度降低,雷諾數增加,熱傳效果再次增強。
實驗系統的出口壓力降低,二氧化碳流體的出口溫度隨之降低,相應的局部熱傳係數的峰值則越大。此外,隨著系統壓力的升高,假臨界溫度所對應的比熱峰值和普朗特數峰值相對較低,熱傳惡化程度則有所下降。
當二氧化碳流體的出口溫度接近對應的假臨界溫度時,實驗系統的熱傳效果最好,此時,二氧化碳流體的比熱和普朗特數均達到峰值。這一結果表明,最佳的熱傳效果所對應的最佳熱通量通常會發生在二氧化碳流體的出口溫度接近其對應的假臨界溫度之時。由於參數的影響導致二氧化碳流體的出口狀態偏離假臨界點,從而導致熱傳效果的降低。此外,較高的雷諾數能夠強化管內的湍流流動,因此,質量通量的增加明顯導致局部熱傳效果的增強。
在其他參數固定不變的條件下,二氧化碳流體的進口溫度的升高擴大了管內的假臨界區域,從而導致熱傳效果的減弱。小管徑的局部熱傳係數明顯高於大管徑的局部熱傳係數,這一結論與文獻所報導的結果相同。此外,基於目前水平流動的實驗數據提出了一個新的熱傳經驗式,該經驗式能夠合理地預測超臨界二氧化碳在水平加熱微流道內的局部努塞爾數,其相對誤差可控制在±20%以內。
對於水平流動方向而言,壓降的實驗結果表明:總壓降隨著質量通量和二氧化碳流體的進口溫度的增加而增大,隨著出口壓力和管徑的增加而減小。摩擦壓降在總壓降中所占的比例範圍為51%~ 90%。隨著管徑的增大,加速度壓降在總壓降中所占的比例可高達28%,而進出口的形狀損失在總壓降中所占的比例也可高達24%。基於實驗資料,本研究利用現有的摩擦係數經驗關係式能夠較好地預測摩擦壓降,其相對誤差在30%左右。
對於垂直向上流動方向而言,熱傳的實驗結果表明:超臨界二氧化碳流體在加熱管內的局部熱傳普遍為非熱傳惡化模式。最好的熱傳效果所對應的最佳熱通量同樣發生在二氧化碳流體的出口溫度接近出口壓力對應的假臨界溫度,與水平流動方向的結論保持一致。由於本研究的實驗條件範圍所限,浮力效應和流動加速度效應的影響可忽略不計。此外,超臨界二氧化碳流體的局部熱傳係數會隨著質量通量的增加而增強,而隨著二氧化碳流體的進口溫度和管徑的增加而降低。出口壓力的增加會導致流體溫度和壁面溫度的升高。此外,基於目前垂直向上流動的實驗數據提出了一個新的熱傳經驗式,該經驗式能夠合理地預測超臨界二氧化碳在加熱微流道內垂直向上流動的局部努塞爾數,其相對誤差可控制在±20%以內。
對於不同流動方向而言,熱傳的實驗結果表明:根據所有的實驗數據,超臨界二氧化碳流體在水平流動方向的熱傳效果明顯優於垂直向上流的熱傳效果。在垂直向下流動時,超臨界二氧化碳流體的局部壁面溫度沿流動方向逐漸降低,而局部熱傳係數沿流動方向始終增大,並在測試管出口處達到最大。這說明測試管內二氧化碳流體的浮力效應對垂直向下流動的局部熱傳有促進作用,而對垂直向上流動的局部熱傳有惡化影響,尤其是在假臨界區之後。當二氧化碳流體的出口溫度接近假臨界溫度時,水平流動是最優選擇,而當二氧化碳流體的出口溫度明顯高於假臨界溫度時,垂直向下流動則是最優選擇。
Relative to the other supercritical fluids, the environmentally-friendly natural material of supercritical carbon dioxide has a lower critical pressure (73.8 bar) and lower critical temperature (31.0°C) close to room temperature. Because of its unique features of compressibility, abundant reserve, nonflammable nature, nontoxicity, zero ozone depletion potential (ODP), and low global warming potential (GWP), supercritical carbon dioxide is considered to be an ideal working fluid to respond to the increasingly serious environmental issues and low energy conversion efficiency. Therefore, supercritical carbon dioxide has been extensively adopted in many modern industrial processes, including food, biological, medical, textile, energy and other fields.
Firstly, the thermo-physical properties of carbon dioxide fluid will change dramatically when it approaches the pseudo-critical point, which will significantly affect the heat transfer and pressure drop characteristics of carbon dioxide fluid in supercritical state. Secondly, a large number of literatures indicates that the experimental studies of local heat transfer and pressure drop characteristics in different flow directions are very limited for supercritical carbon dioxide in the heated channels, especially for the micro-tube with diameter less than 1.0 mm and the length of test section is only 200 mm. Therefore, it is very important to carry out the experimental research on the local heat transfer and pressure drop characteristics of supercritical carbon dioxide in miniature heating tubes. This experimental study aims to investigate the local heat transfer and pressure drop characteristics of supercritical carbon dioxide fluid in different flow directions (horizontal flow, vertical upward flow and vertical downward flow), different tube diameters (0.5 mm, 0.75 mm and 1.0 mm) and a fixed length of test section (200 mm) under uniform heating condition. In this study, a high-pressure experimental system is established and the effects of local heat transfer and pressure drop characteristics of supercritical carbon dioxide fluid in different flow directions and different tube diameters are studied in detail through different outlet pressures, input heating power, mass fluxes, inlet temperatures. This study is helpful for the design and development of relevant equipment and components, and can also provide valuable reference and assistance of the stability and safety of system operation for supercritical carbon dioxide.
This study firstly verifies whether or not the uniform heating condition is satisfied in different flow directions (horizontal flow, vertical upward flow and vertical downward flow), and proves that the design of heating test section can reasonably meet the uniform heat flux condition. Secondly, the effects of local heat transfer and pressure drop characteristics of supercritical carbon dioxide in different flow directions and different diameters is studied in detail according to different outlet pressures, input heating power, mass fluxes, inlet temperatures.
Some major conclusions are drawn as below:
For the horizontal flow, the experimental study on the heat transfer characteristics indicates that the heat transfer is enhanced when the fluid temperature is increased before the pseudocritical point, around which the local heat transfer coefficient reaches a peak value, whereas as the fluid temperature just exceeds the pseudocritical value, heat transfer declines, thus leading to a local minimum point of the local heat transfer coefficient. Subsequently, heat transfer is enhanced again due to a reduction in the dynamic viscosity and increase in the Reynolds number when the fluid temperature is sufficiently higher than the pseudocritical value.
The peak value of the local heat transfer coefficient is higher and takes place at a lower fluid temperature in the system with a lower system pressure. In addition, the deterioration in heat transfer becomes less pronounced when the system pressure is increased because of the lower peak values of specific heat and Prandtl number corresponding to the pseudocritical temperature.
The system demonstrates the optimal thermal performance when the outlet temperature of carbon dioxide fluid is close to the corresponding pseudo-critical point, where both specific heat and Prandtl number attain peak values. This finding suggests that the optimal heat flux for achieving the best heat transfer performance is corresponding to the fluid outlet temperature around the corresponding pseudo-critical value. The effects of parameters resulting in outlet fluid condition deviated from the pseudocritical point would reduce the heat transfer performance. A higher mass flux enhances the local heat transfer performance due to a higher Reynolds number strengthening the flow turbulence inside the tube.
When other parameters are fixed, an increase in the inlet fluid temperature leads to the extension of pseudocritical region, and therefore, poorer heat transfer performance. The tubes with smaller inner diameters exhibit a higher local heat transfer coefficient than those with larger diameters. This finding is consistent with the results reported in the literature. Furthermore, for the horizontal flow, a new empirical correlation developed based on the experimental data in the present study can reasonably predict the local Nusselt number of supercritical carbon dioxide along the flow path within a relative error of ±20%.
For the horizontal flow, the experimental study on the pressure drop characteristics indicates that the total would be enlarged with increases in mass flux and inlet fluid temperature, while it would decrease with increases in outlet pressure and tube diameter. Frictional pressure drop was the most dominant contributor (51 % to 90 %) for total pressure drop. With the increase of tube diameter due to significant reduction of fluid density at the tube outlet, accelerational pressure drop can be up to 28 %, and form loss can be up to 24 %. Based on the experimental data, this study can predict the frictional pressure drop well by using the existing correlation of friction factor within a relative error of 30%.
For the vertical upward flow, the experimental study on the heat transfer characteristics indicates that local heat transfer of supercritical carbon dioxide fluid in heating tubes is generally non-heat-transfer- deterioration (non-HTD) mode. The system demonstrates the best effect of heat transfer corresponding to the optimal heat flux when the outlet temperature of carbon dioxide fluid is close to the pseudo-critical temperature corresponding to the outlet pressure. This is consistent with the conclusion of the horizontal flow. Due to the limited range of experimental conditions in this study, the effects of buoyancy and flow acceleration can be negligible. In addition, the local heat transfer coefficient of supercritical carbon dioxide fluid will increase with the increase of mass flux, and decrease with the increase of inlet temperature and tube diameter. The increase of outlet pressure leads to the increase of fluid temperature and wall temperature. Furthermore, for the vertical upward flow, a new empirical correlation developed can reasonably predict the local Nusselt number of supercritical carbon dioxide along the flow path within a relative error of ±20% among the experimental data in the present study.
For different flow directions, the experimental study on the heat transfer characteristics indicates that the horizontal flows present a better heat transfer performance than that for vertical upward flows in nearly all studied cases. The local wall temperature in downward flow decreases along the flow direction and the local heat transfer coefficient in downward flow is always increasing along the flow path and reach the maximum at the tube outlet. This demonstrates that the buoyancy effect would promote the local heat transfer of downward flow but deteriorate that for vertical upward flow, particularly after the pseudo-critical region. The horizontal flow is the optimal option for the system with the outlet flow condition near the pseudo-critical point, while the vertical downward flow is superior for the system with the outlet fluid temperature substantially higher than the pseudo-critical point.
摘 要 i
Abstract iv
Acknowledgements vii
Table of Contents viii
List of Tables xi
List of Figures xiii
Nomenclature xvi
Chapter 1 1
Introduction 1
1.1 Motives and objective 1
1.2 Scope of the thesis 2
Chapter 2 3
Literature Review 3
2.1 Heat transfer in horizontal flow 4
2.2 Pressure drop in horizontal and vertical flow 5
2.3 Heat transfer in vertical upward flow 7
2.4 The effect of flow directions 10
2.5 Brief summary 12
Chapter 3 13
Experimental Apparatus and Procedures 13
3.1 Experimental apparatus and procedures 13
3.2 Experimental test section 16
3.3 Confirmation of tube diameter 18
3.4 Data reduction 19
3.5 Experimental verification of uniform heat flux condition 23
3.5.1 Experimental verification in horizontal flow condition 24
3.5.2 Experimental verification in vertical upward flow condition 24
3.5.3 Experimental verification in vertical downward flow condition 25
3.6 Uncertainty analysis 26
3.6.1 Uncertainty analysis of heat transfer characteristics in different flow directions 27
3.6.2 Uncertainty analysis of pressure drop characteristics in horizontal flow direction 29
Chapter 4 30
Heat Transfer Characteristics in Horizontal Flow1 30
4.1 Effect of outlet pressure 30
4.2 Effects of heat flux 35
4.3 Effects of mass flux in horizontal flow 37
4.4 Effect of inlet temperature in horizontal flow 38
4.5 Effect of tube diameter in horizontal flow 40
4.6 Effect of buoyancy in horizontal flow 40
4.7 Empirical correlation for local heat transfer coefficient 42
4.8 Brief summary 45
Chapter 5 47
Pressure Drop Characteristics in Horizontal Flow2 47
5.1 Effect of outlet pressure on total pressure drop of test tube 47
5.2 Effect of mass flux on total pressure drop of test tube 48
5.3 Effect of inlet temperature on total pressure drop of test tube 49
5.4 Effect of tube diameter on total pressure drop of test tube 50
5.5 Contribution of accelerational pressure drop to total pressure drop 50
5.6 Contribution of form loss to total pressure drop 53
5.7 Effect of frictional pressure drop on total pressure drop of test tube 54
5.8 Assessment of empirical equations for frictional factor 55
5.9 Brief summary 60
Chapter 6 61
Heat Transfer and Pressure Drop Characteristics in Vertical Flow3 61
6.1 Effect of buoyancy 61
6.2 Effect of flow acceleration 65
6.3 Heat transfer in vertical upward flow 66
6.3.1 Effects of heat flux and mass flux 66
6.3.2 Effect of outlet pressure 72
6.3.3 Effect of inlet temperature 76
6.3.4 Effect of tube diameter 78
6.3.5 Empirical correlation for local heat transfer 79
6.4 Pressure drop characteristics in vertical upward flow 85
6.4.1 Effect of outlet pressure 85
6.4.2 Effect of mass flux 86
6.4.3 Effect of inlet temperature 87
6.4.4 Effect of tube diameter 88
6.5 Effect of flow direction on heat transfer 89
6.6 Brief summary 96
Chapter 7 98
Conclusions and Recommendations for Future Work 98
7.1 Conclusions 98
7.1.1 Heat transfer characteristics in horizontal flows 98
7.1.2 Heat transfer characteristics in vertical upward flows 99
7.1.3 Flow direction effect on heat transfer 99
7.1.4 Pressure drop characteristics 100
7.2 Recommendations for future work 100
References 102
Publications 113
[1] D. Huang, Z. Wu, B. Sunden, W. Li, A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress, Applied Energy 162 (2016) 494-505.
[2] Z. Yang, X. Cheng, X.H. Zheng, H.S. Chen, Numerical investigation on heat transfer of the supercritical fluid upward in vertical tube with constant wall temperature, International Journal of Heat and Mass Transfer 128 (2019) 875-884.
[3] M. Raventós, S. Duarte, R. Alarcón, Application and possibilities of supercritical CO2 extraction in food processing industry: an overview, Food Science and Technology International 8 (2002) 269-284.
[4] Sandra R Rissato, Mário S Galhiane, Fátima R N Knoll, Bernhard M Apon, Supercritical fluid extraction for pesticide multiresidue analysis in honey: determination by gas chromatography with electron-capture and mass spectrometry detection, Journal of Chromatography A 1048 (2004) 153-159.
[5] K. Khosravi-Darani, E. Vasheghani-Farahani, Application of supercritical fluid extraction in biotechnology, Critical Reviews in Biotechnology 25 (2005) 231-242.
[6] M. N. Dadashev, G. V. Stepanov, Supercritical extraction in petroleum refining and petrochemistry, Chemistry and Technology of Fuels and Oils 36 (2000) 8-13.
[7] E. S. Demessie, A. Hassan, K. L. Levien, S. Kumar, J. J. Morrell, Supercritical carbon dioxide treatment: effect on permeability of douglas-fir heartwood, Wood and Fiber Science 27 (1995) 296-300.
[8] M. Masahiro, M. Hiroshi, K. Yutaka, M. Hiroaki, Improved water permeability of sugi heartwood by pretreatment with supercritical carbon dioxide, Journal of Wood Science 51 (2005) 195-197.
[9] E. S. Demessie, K. L. Levien, J. J. Morrell, Impregnation of wood with biocides using supercritical fluid carriers, American Chemical Society, 608 (1995) 415-428.
[10] M. Acda, J. J. Morrell, K. L. Levien, Effect of process variables on supercritical fluid impregnation of composites with tebuconazole, Wood and Fiber Science 29 (1997) 282-290.
[11] M. Muin, K. Tsunoda, Preservative treatment of wood-based composites with 3-iodo-2-propynyl butylcarbamate using supercritical carbon dioxide impregnation, Journal of Wood Science 49 (2003) 430-436.
[12] M. Musrizal, A. Akio, I. Masafumi, Feasibility of supercritical carbon dioxide as a carrier solvent for preservative treatment of wood-based composites, Journal of Wood Science 49 (2003) 65-72.
[13] S. M. Kang, M. W. Cho, K. M. Kim, D.Y. Kang, W. M. Koo, K. H. Kim, J. Y. Park, S. S. Lee, Cyproconazole impregnation into wood using sub-and supercritical carbon dioxide, Wood Science and Technology 46 (2012) 643-656.
[14] R. F. Gabitov, V. F. Khairutdinov, F. M. Gumerov, F. R. Gabitov, Z. I. Zaripov, R. Gaifullina, M. I. Farakhov, Drying and impregnation of wood with propiconazole using supercritical carbon dioxide, Russian Journal of Physical Chemistry B 11 (2017) 1223-1230.
[15] J. S. Wang, K. H. Chiu, Extraction of chromated copper arsenate from wood wastes using green solvent supercritical carbon dioxide, Journal of Hazardous Materials 158 (2008) 384-391.
[16] C. Tsioptsias, C. Panayiotou, Thermal stability and hydrophobicity enhancement of wood through impregnation with aqueous solutions and supercritical carbon dioxide, Journal of Materials Science 46 (2011) 5406-5411.
[17] G. Oberdorfer, J. J. Morrell, Deformation of wood-based material during supercritical carbon dioxide treatment, Wood and Fiber Science, 36 (2004) 511-519.
[18] S. H. Soh, A. Jain, L. Y. Lee, Optimized extraction of patchouli essential oil from Pogostemon cablin Benth. with supercritical carbon dioxide, Journal of Applied Research on Medicinal and Aromatic Plants 19 (2020) 100272.
[19] E. Ellington, J. Bastida, F. Viladomat, C. Codina, Supercritical carbon dioxide extraction of colchicine and related alkaloids from seeds of Colchicum autumnale L, Phytochemical Analysis 14 (2003) 164-169.
[20] U. Braumann, H. Haendel, K. Albert, R. Ecker, M. Spraul, Online monitoring of the supercritical fluid extraction process with proton nuclear magnetic resonance spectroscopy, Analytical Chemistry, 67 (1995) 930-935.
[21] C. M. Liu, J. M. Zhao, H. M. Li, F. R. Song, Supercritical fluid extraction of total flavonoids from leaves of Acanthopanax Senticosus Harms, Chemical Research in Chinese Universities, 23 (2007) 233-236.
[22] I. Okamoto, X. Li, T. Ohsumi, Effect of supercritical CO2 as the organic solvent on cap rock sealing performance for underground storage, Energy 30 (2005): 2344-2351.
[23] T. W. Zhang, G. Ellis, S. Ruppel, K. Milliken, R. S. Yang, Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems, Organic Geochemistry, 47 (2012) 120-131.
[24] M. Godec, G. Koperna, R. Petrusak, A. Oudinot, Potential for enhanced gas recovery and CO2 storage in the Marcellus Shale in the Eastern United States, International Journal of Coal Geology 118 (2013) 95-104.
[25] F. Y. Liu, K. Ellett, Y. T. Xiao, J. Rupp, Assessing the feasibility of CO2 storage in the New Albany Shale (Devonian-Mississippian) with potential enhanced gas recovery using reservoir simulation, International Journal of Greenhouse Gas Control 17 (2013) 111-126.
[26] R. Middleton, J. W. Carey, R. Currier, J. Hyman, Q. J. Kang, S. Karra, J. M. Jimnez, M. Porter, H. Viswanathan, Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2, Applied Energy 147 (2015) 500-509.
[27] T. Ishida, K. Aoyagi, T. Niwa, Y. Q. Chen, S. Murata, Q. Chen, Y. Nakayama, Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2, Geophysical Research Letters 39 (2012) L16309-L16314.
[28] T. Y. Chen, X. T. Feng, Z. J. Pan, Experimental study of swelling of organic rich shale in methane, International Journal of Coal Geology 150-151 (2015) 64-73.
[29] J. D. Cho, J. H. Kim, Global trends of unconventional CBM gas science information, Economic and Environmental Geology 46 (2013) 351-358.
[30] Y. X. Cao, J. S. Zhong, H. Zhai, G. T. Fu, L. Tian, S. M. Liu, CO2 gas fracturing: a novel reservoir stimulation technology in low permeability gassy coal seams, Fuel 203 (2017) 197-207.
[31] Y. N. Gao, F. Gao, Z. K. Wang, P. Hon, A comparative study on fracture characteristics of the red sandstone under water and nitrogen gas fracturing, Advances in Civil Engineering (2018) 1832431.
[32] D. L. Arnold, Liquid CO2-sand fracturing: the dry frac, Fuel and Energy Abstracts 39 (1998) 185.
[33] X. W. Zhang, Y. Y. Lu, J. R. Tang, Z. Zhou, Y. Liao, Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing, Fuel 190 (2017) 370-378.
[34] Y. Z. Jia, Y. Y. Lu, D. Elsworth, Y. Fang, J. R. Tang, Surface characteristics and permeability enhancement of shale fractures due to water and supercritical carbon dioxide fracturing, Journal of Petroleum Science and Engineering 165 (2018) 284-297.
[35] K. E. Laintz, C. M. Wai, C. R. Yonker, R. D. Smith, Extraction of metal ions from liquid and solid materials by supercritical carbon dioxide, Analytical Chemistry 64 (1992): 2875-2878.
[36] J. S. F. Wang, M. S. Koh, C. M. Wai, Nuclear laundry using supercritical fluid solutions, Industrial and Engineering Chemistry Research 43 (2004) 1580-1585.
[37] G. D. Porta, M.C. Volpe, E. Reverchon, Supercritical cleaning of rollers for printing and packaging industry, The Journal of Supercritical Fluids 37 (2007) 409-416.
[38] J. Zhang, T. A. Davis, M. A. Matthews, M. J. Drews, M. LaBerge, Sterilization using high-pressure carbon dioxide, The Journal of Supercritical Fluids 38 (2005) 354-372.
[39] Q. Q. Qiu, P. Leamy, J. Brittingham, J. Pomerleau, N. Kabaria, J. Connor, Inactivation of bacterial spores and viruses in biological material using supercritical carbon dioxide with sterilant, Journal of Biomedical Materials Research Part B, Applied Biomaterials 91 (2009) 572-578.
[40] J. L. Balestrini, A. Liu, A. L. Gard, Sterilization of lung matrices by supercritical carbon dioxide, Tissue Engineering Part C-Methods 22 (2016) 260-269.
[41] D. Bui, V. Lovric, R. Oliver, N. Bertollo, D. Broe, W. R. Walsh, Meniscal allograft sterilisation: Effect on biomechanical and histological properties, Cell and Tissue Banking 16 (2015) 467-475.
[42] A. White, Da. Burns, T. W. Christensen, Effective terminal sterilization using supercritical carbon dioxide, Journal of Biotechnology 123 (2006) 504-515.
[43] J. Zhang, S. Burrows, C. Gleason, M. A. Matthews, M. J. Drews, M. LaBerge, Y. H. An, Sterilizing bacillus pumilus spores using supercritical carbon dioxide, Journal of Microbiological Methods 66 (2006) 479-485.
[44] D. Aslanidou, C. Tsioptsias, C. Panayiotou, A novel approach for textile cleaning based on supercritical CO2 and pickering emulsions, Journal of Supercritical Fluids 76 (2013) 83-93.
[45] D. Aslanidou, I. Karapanagiotis, C. Panayiotou, Tunable textile cleaning and disinfection process based on supercritical CO2 and pickering emulsions, Journal of Supercritical Fluids 118 (2016) 128-139.
[46] F. Crespi, G. Gavagnin, D. Sa´nchez, G. S. Marti´nez, Supercritical carbon dioxide cycles for power generation: A review, Applied Energy 195 (2017) 152-183.
[47] L. M. Yann, Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle, Energy 49 (2013) 32-46.
[48] A. Sulaiman, A. Fahad, A. Maimoon, Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower, Energy 82 (2015) 61-71.
[49] X. D. Niu, H. Yamaguchi, X. R. Zhang, Y. Iwamoto, N. Hashitani, Experimental study of heat transfer characteristics of supercritical CO2 fluid in collectors of solar Rankine cycle system, Applied Thermal Engineering 31 (2011) 1279-1285.
[50] X. R. Zhang, H. Yamaguchi, D. Uneno, K. Fujima, M. Enomoto, N. Sawada, Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide, Renew Energy 31 (2006) 839-1854.
[51] H. Yamaguchi, X. R. Zhang, K. Fujima, M. Enomoto, Solar energy powered Rankine cycle using supercritical CO2, Applied Thermal Engineering 26 (2006) 2345-2354.
[52] X. R. Zhang, H. Yamaguchi, An experimental study on evacuated tube solar collector using supercritical CO2, Applied Thermal Engineering 28 (2008) 1225-1233.
[53] X. R. Zhang, H. Yamaguchi, D. Uneno, Experimental study on the performance of solar rankine system using supercritical CO2, Renew Energy 32 (2008) 2617-2628.
[54] K. Wang, S. R. SANDERS, S. Dubey, F. H. Choo, F. Duan, Stirling cycle engines for recovering low and moderate temperature heat: A review, Renewable and Sustainable Energy Reviews 62 (2016) 89-108.
[55] Y. H. Ahn, S. J. Bae, M. Kim, S. K. Cho, S. J. Baik, J. I. Lee, J. E. Cha, Review of supercritical CO2 power cycle technology and current status of research and development, Nuclear Engineering and Technology 147 (2015) 647-661.
[56] R. B. Duffey, I. L. Pioro, Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey), Nuclear Engineering and Design 235 (2005) 913-924.
[57] N. T. Rao, A. N. Oumer, U. K. Jamaludin, State-of-the-art on flow and heat transfer characteristics of supercritical CO2 in various channels, The Journal of Supercritical Fluids 116 (2016) 132-147.
[58] L. F. Cabeza, A. D. Gracia, A. I. Fernández, M. M. Farid, Supercritical CO2 as heat transfer fluid: A review, Applied Thermal Engineering 125 (2017) 799-810.
[59] M. M. Ehsan, Z. Q. Guan, A. Y. Klimenko, A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications, Renewable and Sustainable Energy Reviews 92 (2018) 658-675.
[60] J. Z. Xie, D. C. Liu, H. B. Yan, G. N. Xie, S. K. S. Boetcher, A review of heat transfer deterioration of supercritical carbon dioxide flowing in vertical tubes Heat transfer behaviors, identification methods, critical heat fluxes, and heat transfer correlations, International Journal of Heat and Mass Transfer 149 (2020) 119233.
[61] C. Dang, E. Hihara, In-tube cooling heat transfer of supercritical carbon dioxide, Part 1. Experimental measurement, International Journal of Refrigeration 27 (2004) 736-747.
[62] C. Dang, K. Iino, K. Fukuoka, E. Hihara, Effect of lubricating oil on cooling heat transfer of supercritical carbon dioxide, International Journal of Refrigeration 30 (2007) 724-731.
[63] X. Huai, S. Koyama, T. S. Zhao, An experimental study of flow and heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions, Chemical Engineering Science 60 (2005) 3337-3345.
[64] M. S. Liao, T. S. Zhao, Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels, Journal of Heat Transfer 124 (2002) 413-420.
[65] H. K. Oh, C. H. Son, New correlation to predict the heat transfer coefficient in-tube cooling of supercritical CO2 in horizontal macro-tubes, Experimental Thermal and Fluid Science 34 (2010) 1230-1241.
[66] S. S. Pitla, E. A. Groll, S. Ramadhyani, Convective heat transfer from in-tube cooling of turbulent supercritical carbon dioxide: part 2-experimental data and numerical predictions, HVAC&R Research 7 (2001) 367-382.
[67] S. S. Pitla, E. A. Groll, S. Ramadhyani, New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2, International Journal of Refrigeration 25 (2002) 887-895.
[68] C. H. Son, S. J. Park, An experimental study on heat transfer and pressure drop characteristics of carbon dioxide during gas cooling process in a horizontal tube, International Journal of Refrigeration 29 (2006) 539-546.
[69] S. H. Yoon, J. H. Kim, Y. W. Hwang, M. S. Kim, K. Min, Y. Kim, Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region, International Journal of Refrigeration 26 (2003) 857-864.
[70] Z. B. Liu, Y. L. He, Y. F. Yang, J. Y. Fei, Experimental study on heat transfer and pressure drop of supercritical CO2 cooled in a large tube, Applied Thermal Engineering 70 (2014) 307-315.
[71] G. A. Adebiyi, W. B. Hall, Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe, International Journal of Heat and Mass Transfer 19 (1976) 715-720.
[72] M. S. Liao, T. S. Zhao, An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes, International Journal of Heat and Mass Transfer 45 (2002) 5025-5034.
[73] R. Yun, Y. Hwang, R. Radermacher, Convective gas cooling heat transfer and pressure drop characteristics of supercritical CO2/oil mixture in a minichannel tube, International Journal of Heat and Mass Transfer 50 (2007) 4796-4804.
[74] C. Y. Yang, K. C. Liao, Effect of experimental method on the heat transfer performance of supercritical carbon dioxide in microchannel, Journal of Heat Transfer 139 (2017) 112404-1-7.
[75] P. X. Jiang, C. R. Zhao, R. F. Shi, Y. Chen, W. Ambrosini, Experimental and numerical study of convection heat transfer of CO2 at supercritical pressures during cooling in small vertical tube, International Journal of Heat and Mass Transfer 52 (2009) 4748-4756.
[76] P. X. Jiang, R. F. Shi, Y. J. Xu, S. He, J. Jackson, Experimental investigation of flow resistance and convection heat transfer of CO2 at supercritical pressures in a vertical porous tube, The Journal of Supercritical Fluids 38 (2006) 339-346.
[77] H. Wang, Q. Bi, G. Wu, Z. Yang, Experimental investigation on pressure drop of supercritical water in an annular channel, The Journal of Supercritical Fluids 131 (2018) 47-57.
[78] A. Taklifi, A. Aliabadi, P. Hanafizadeh, M. A. Akhavan-Behabadi, Effect of inclination on frictional pressure drop of supercritical water flows in internally ribbed tubes: An experimental study, The Journal of Supercritical Fluids 125 (2017) 56-65.
[79] I. L. Pioro, R. B. Duffey, T. J. Dumouchel, Hydraulic resistance of fluids flowing in channels at supercritical pressures (survey), Nuclear Engineering and Design 231 (2004) 187-197.
[80] I. L. Pioro, R. B. Duffey, Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications, ASME Press, 2007.
[81] N. V. Tarasova, A. I. Leont’ev, Hydraulic resistance during flow of water in heated pipes at supercritical pressures, High Temperature 6 (1968) 721.
[82] N. S. Kondrat’ev, Heat transfer and hydraulic resistance with supercritical water flowing in tubes, Thermal Engineering 16 (1969) 73-77.
[83] X. Fang, Y. Xu, X. Su, R. Shi, Pressure drop and friction factor correlations of supercritical flow, Nuclear Engineering and Design 242 (2012) 323-330.
[84] T. Yamshita, H. Mori, S. Yoshida, M. Ohno, Heat transfer and pressure drop of a supercritical pressure fluid flowing in a tube of small diameter, Memoirs of the Faculty of Engineering, Kyushu University 63 (2003) 227-244.
[85] P. L. Kirillov, S. Yu, Yur’ev, V. P. Bobkov, “Flow hydraulic resistance of the working fluids with significantly changing properties.” Handbook of Thermal-Hydraulics Calculations, Energoatomizdat Publ. House, Moscow, Russia, 1990.
[86] P. X. Jiang, Y. Zhang, Y. J. Xu, R. F. Shi, Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers, International Journal of Thermal Sciences 47 (2008) 998-1011.
[87] P. X. Jiang, Y. Zhang, C. R. Zhao, R. F. Shi, Convection heat transfer of CO2 at supercritical pressures in a vertical mini tube at relatively low Reynolds numbers, Experimental Thermal and Fluid Science 32 (2008) 1628-1637.
[88] P. X. Jiang, R. F. Shi, C. R. Zhao, Y. J. Xu, Experimental and numerical study of convection heat transfer of CO2 at supercritical pressures in vertical porous tubes, International Journal of Heat and Mass Transfer 51 (2008): 6283-6293.
[89] P. X. Jiang, Y. J. Xu, J. Lv, R. F. Shi, S. He, J. D. Jackson, Experimental investigation of convection heat transfer of CO2 at supercritical pressures in vertical mini-tubes and in porous media, Applied Thermal Engineering 24 (2004) 1255-1270.
[90] P. X. Jiang, B. Liu, C. R. Zhao, F. Luo, Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro-tube from transition to turbulent flow regime, International Journal of Heat and Mass Transfer 56 (2013) 741-749.
[91] P. X. Jiang, Y. Zhang, R. F. Shi, Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical mini-tube, International Journal of Heat and Mass Transfer 51 (2008) 3052-3056.
[92] Z. H. Li, P. X. Jiang, C. R. Zhao, Y. Zhang, Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube, Experimental Thermal and Fluid Science 34 (2010) 1162-1171.
[93] R. N. Xu, F. Luo, P. X. Jiang, Buoyancy effects on turbulent heat transfer of supercritical CO2 in a vertical mini-tube based on continuous wall temperature measurements, International Journal of Heat and Mass Transfer 110 (2017) 576-586.
[94] C. R. Zhao, Z. Zhang, P.X. Jiang, R.N. Xu, H. L. Bo, Influence of channel scale on the convective heat transfer of CO2 at supercritical pressure in vertical tubes, International Journal of Heat and Mass Transfer 126 (2018) 201-210.
[95] Q. Zhang, H.X. Li, X. F. Kong, J. L. Liu, X. L. Lei, Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux, International Journal of Heat and Mass Transfer 122 (2018) 469-482.
[96] S. J. Zhang, X. X. Xu, C. Liu, X. X. Liu, C.B. Dang, Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube, Applied Thermal Engineering 157 (2019) 113687.
[97] A. Bruch, A. Bontemps, S. Colasson, Experimental investigation of heat transfer of supercritical carbon dioxide flowing in a cooled vertical tube, International Journal of Heat and Mass Transfer 52 (2009) 2589-2598.
[98] Y. Y. Bae, H. Y. Kim, D. J. Kang, Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube, Experimental Thermal and Fluid Science 34 (2010) 1295-1308.
[99] Y. Y. Bae, H. Y. Kim, Convective heat transfer to CO2 at a supercritical pressure flowing vertically upward in tubes and an annular channel, Experimental Thermal and Fluid Science 33 (2009) 329-339.
[100] J. H. Song, H. Y. Kim, H. Kim, Y. Y. Bae, Heat transfer characteristics of a supercritical fluid flow in a vertical pipe, The Journal of Supercritical Fluids 44 (2008) 164-171.
[101] S. H. Liu, Y. P. Huang, G. X. Liu, J. F. Wang, L. K. H. Leung, Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes, International Journal of Heat and Mass Transfer 106 (2017) 1144-1156.
[102] D. E. Kim, M. H. Kim, Two layer heat transfer model for supercritical fluid flow in a vertical tube, The Journal of Supercritical Fluids 58 (2011) 15-25.
[103] D. E. Kim, M. H. Kim, Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube, International Journal of Heat and Fluid Flow 32 (2011) 176-191.
[104] D. E. Kim, M. H. Kim, Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube, Nuclear Engineering and Design 240 (2010) 3336-3349.
[105] H. Y. Kim, H. Kim, J. H. Song, B. H. Cho, Y. Y. Bae, Heat transfer test in a vertical tube using CO2 at supercritical pressures, Journal of Nuclear Science and Technology 44 (2007) 285-293.
[106] J. K. Kim, H. K. Jeon, J. S. Lee, Wall temperature measurements with turbulent flow in heated vertical circular/non-circular channels of supercritical pressure carbon dioxide, International Journal of Heat and Mass Transfer 50 (2007) 4908-4911.
[107] S. Gupta, E. Saltanov, S.J. Mokry, I. Pioro, L. Trevani, D. McGillivray, Developing empirical heat-transfer correlations for supercritical CO2 flowing in vertical bare tubes, Nuclear Engineering and Design 261 (2013) 116-131.
[108] H. Zahlan, D. Groeneveld, S. Tavoularis, Measurements of convective heat transfer to vertical upward flows of CO2 in circular tubes at near-critical and supercritical pressures, Nuclear Engineering and Design 289 (2015) 92-107.
[109] A. Eter, D. Groeneveld, S. Tavoularis, Convective heat transfer in supercritical flows of CO2 in tubes with and without flow obstacles, Nuclear Engineering and Design 313 (2017) 162-176.
[110] J. F. Guo, M. R. Xiang, H. Y. Zhang, X. L. Huai, K. Y. Cheng, X. Y. Cui, Thermal-hydraulic characteristics of supercritical pressure CO2 in vertical tubes under cooling and heating conditions, Energy 170 (2019) 1067-1081.
[111] N. Kline, F. Feuerstein, S. Tavoularis, Onset of heat transfer deterioration in vertical pipe flows of CO2 at supercritical pressures, International Journal of Heat and Mass Transfer 118 (2018) 1056-1068.
[112] Q. Zhang, H.X. Li, X.L. Lei, J. Zhang, X.F. Kong, Study on identification method of heat transfer deterioration of supercritical fluids in vertically heated tubes, International Journal of Heat and Mass Transfer 127 (2018) 674-686.
[113] S. Yildiz, D. C. Groeneveld, Diameter effect on supercritical heat transfer, International Communications in Heat and Mass Transfer 54 (2014) 27-32.
[114] J. D. Jackson, Models of heat transfer to fluids at supercritical pressure with influences of buoyancy and acceleration, Applied Thermal Engineering 124 (2017) 1481-1491.
[115] D. M. McEligot, C. W. Coon, H.C. Perkins, Relaminarization in tubes, International Journal of Heat and Mass Transfer 13 (1970) 431-433.
[116] E. Lemmon, M. Huber, M. McLinden (Eds.), NIST Reference Fluid Thermodynamic and Transport Properties-REFPROP, NIST Standard Reference Database 23, Ver. 9.0, U.S. Department of Commerce, 2010.
[117] F. M. White, Fluids Mechanics, seventh ed., McGraw-Hill, 2011.
[118] R. J. Moffat, Describing the uncertainties in experimental results, Experimental Thermal and Fluid Science 1 (1988) 3-17.
[119] D. Huang, W. Li, Heat transfer deterioration of aviation kerosene flowing in mini tubes at supercritical pressures, International Journal of Heat and Mass Transfer 111 (2017) 266-278.
[120] S. Gupta, E. Saltanov, S. J. Mokry, I. Pioro, L. Trevani, D. McGillivray, Developing empirical heat-transfer correlations for supercritical CO2 flowing in vertical bare tubes, Nuclear Engineering and Design 261 (2013) 116-131.
[121] S. Mokry, I. L. Pioro, B. Duffey, Experimental heat transfer to supercritical CO2 flowing upward in a bare vertical tube, in: Proceedings of SCCO2 Power Cycle symposium, 2009.
[122] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, Fundamentals of Heat and Mass Transfer, sixth ed., John Wiley & Sons, 2007.
[123] W. C. Williams, If the Dittus and Boelter equation is really the McAdams equation, then should not the McAdams equation really be the Koo equation? International Journal of Heat and Mass Transfer 54 (2011) 1682-1683.
[124] L. X. Cheng, G. Ribatskia, J. R. Thome, Analysis of supercritical CO2 cooling in macro- and micro-channels, International Journal of Refrigeration 31 (2008) 1301-1316.
[125] P. K. Swamee, A. K. Jain, Explicit equations for pipe-flow problems, Journal of Hydrologic Engineering 102 (1976) 657-664.
[126] S. W. Churchill, Friction factor equation spans all fluid flow regimes, Chemical Engineering 84 (1977) 91-92.
[127] S. E. Haaland, Simple and explicit formulas for the friction factor in turbulent pipe flow, Journal of Fluids Engineering 105 (1983) 89-90.
[128] L. Wang, Y. C. Pan, J. D. Lee, Y. Wang, B. R. Fu, C. Pan, Experimental investigation in the local heat transfer of supercritical carbon dioxide in the uniformly heated horizontal miniature tubes, International Journal of Heat and Mass Transfer 159 (2020) 120136.
[129] J. D. Jackson, W. B. Hall, Influences of buoyancy on heat transfer to fluids in vertical tubes under turbulent conditions, 1979.
[130] J. H. Bae, J. Y. Yoo, Direct numerical simulation of turbulent supercritical flows with heat transfer, Physics of Fluids 17 (2005) 1-24.
[131] J. D. Jackson, M. A. Cotton, B. P. Axcell, Studies of mixed convection in vertical tubes, International Journal of Heat and Fluid Flow 10 (1989) 2-15.
[132] P. M. Moretti, W. M. Kays, Heat transfer to a turbulent boundary layer with varying free-stream velocity and varying surface temperature-an experimental study, International Journal of Heat and Mass Transfer 8 (1965) 1187-1202.
[133] J. D. Jackson, Fluid flow and convective heat transfer to fluids at supercritical pressure, Nuclear Engineering and Design 264 (2013) 24-40.
[134] H. Kim, Y. Y. Bae, H. Y. Kim, J. H. Song, B. H. Cho, Experimental investigation on the heat transfer characteristics in upward flow of supercritical carbon dioxide, Nuclear Technology 164 (2008) 119-129.
[135] S. Liu, Y. Huang, G. Liu, J. Wang, L. K. H. Leung, Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes, International Journal of Heat and Mass Transfer 106 (2017) 1144-1156.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top