|
[1] D. Huang, Z. Wu, B. Sunden, W. Li, A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress, Applied Energy 162 (2016) 494-505. [2] Z. Yang, X. Cheng, X.H. Zheng, H.S. Chen, Numerical investigation on heat transfer of the supercritical fluid upward in vertical tube with constant wall temperature, International Journal of Heat and Mass Transfer 128 (2019) 875-884. [3] M. Raventós, S. Duarte, R. Alarcón, Application and possibilities of supercritical CO2 extraction in food processing industry: an overview, Food Science and Technology International 8 (2002) 269-284. [4] Sandra R Rissato, Mário S Galhiane, Fátima R N Knoll, Bernhard M Apon, Supercritical fluid extraction for pesticide multiresidue analysis in honey: determination by gas chromatography with electron-capture and mass spectrometry detection, Journal of Chromatography A 1048 (2004) 153-159. [5] K. Khosravi-Darani, E. Vasheghani-Farahani, Application of supercritical fluid extraction in biotechnology, Critical Reviews in Biotechnology 25 (2005) 231-242. [6] M. N. Dadashev, G. V. Stepanov, Supercritical extraction in petroleum refining and petrochemistry, Chemistry and Technology of Fuels and Oils 36 (2000) 8-13. [7] E. S. Demessie, A. Hassan, K. L. Levien, S. Kumar, J. J. Morrell, Supercritical carbon dioxide treatment: effect on permeability of douglas-fir heartwood, Wood and Fiber Science 27 (1995) 296-300. [8] M. Masahiro, M. Hiroshi, K. Yutaka, M. Hiroaki, Improved water permeability of sugi heartwood by pretreatment with supercritical carbon dioxide, Journal of Wood Science 51 (2005) 195-197. [9] E. S. Demessie, K. L. Levien, J. J. Morrell, Impregnation of wood with biocides using supercritical fluid carriers, American Chemical Society, 608 (1995) 415-428. [10] M. Acda, J. J. Morrell, K. L. Levien, Effect of process variables on supercritical fluid impregnation of composites with tebuconazole, Wood and Fiber Science 29 (1997) 282-290. [11] M. Muin, K. Tsunoda, Preservative treatment of wood-based composites with 3-iodo-2-propynyl butylcarbamate using supercritical carbon dioxide impregnation, Journal of Wood Science 49 (2003) 430-436. [12] M. Musrizal, A. Akio, I. Masafumi, Feasibility of supercritical carbon dioxide as a carrier solvent for preservative treatment of wood-based composites, Journal of Wood Science 49 (2003) 65-72. [13] S. M. Kang, M. W. Cho, K. M. Kim, D.Y. Kang, W. M. Koo, K. H. Kim, J. Y. Park, S. S. Lee, Cyproconazole impregnation into wood using sub-and supercritical carbon dioxide, Wood Science and Technology 46 (2012) 643-656. [14] R. F. Gabitov, V. F. Khairutdinov, F. M. Gumerov, F. R. Gabitov, Z. I. Zaripov, R. Gaifullina, M. I. Farakhov, Drying and impregnation of wood with propiconazole using supercritical carbon dioxide, Russian Journal of Physical Chemistry B 11 (2017) 1223-1230. [15] J. S. Wang, K. H. Chiu, Extraction of chromated copper arsenate from wood wastes using green solvent supercritical carbon dioxide, Journal of Hazardous Materials 158 (2008) 384-391. [16] C. Tsioptsias, C. Panayiotou, Thermal stability and hydrophobicity enhancement of wood through impregnation with aqueous solutions and supercritical carbon dioxide, Journal of Materials Science 46 (2011) 5406-5411. [17] G. Oberdorfer, J. J. Morrell, Deformation of wood-based material during supercritical carbon dioxide treatment, Wood and Fiber Science, 36 (2004) 511-519. [18] S. H. Soh, A. Jain, L. Y. Lee, Optimized extraction of patchouli essential oil from Pogostemon cablin Benth. with supercritical carbon dioxide, Journal of Applied Research on Medicinal and Aromatic Plants 19 (2020) 100272. [19] E. Ellington, J. Bastida, F. Viladomat, C. Codina, Supercritical carbon dioxide extraction of colchicine and related alkaloids from seeds of Colchicum autumnale L, Phytochemical Analysis 14 (2003) 164-169. [20] U. Braumann, H. Haendel, K. Albert, R. Ecker, M. Spraul, Online monitoring of the supercritical fluid extraction process with proton nuclear magnetic resonance spectroscopy, Analytical Chemistry, 67 (1995) 930-935. [21] C. M. Liu, J. M. Zhao, H. M. Li, F. R. Song, Supercritical fluid extraction of total flavonoids from leaves of Acanthopanax Senticosus Harms, Chemical Research in Chinese Universities, 23 (2007) 233-236. [22] I. Okamoto, X. Li, T. Ohsumi, Effect of supercritical CO2 as the organic solvent on cap rock sealing performance for underground storage, Energy 30 (2005): 2344-2351. [23] T. W. Zhang, G. Ellis, S. Ruppel, K. Milliken, R. S. Yang, Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems, Organic Geochemistry, 47 (2012) 120-131. [24] M. Godec, G. Koperna, R. Petrusak, A. Oudinot, Potential for enhanced gas recovery and CO2 storage in the Marcellus Shale in the Eastern United States, International Journal of Coal Geology 118 (2013) 95-104. [25] F. Y. Liu, K. Ellett, Y. T. Xiao, J. Rupp, Assessing the feasibility of CO2 storage in the New Albany Shale (Devonian-Mississippian) with potential enhanced gas recovery using reservoir simulation, International Journal of Greenhouse Gas Control 17 (2013) 111-126. [26] R. Middleton, J. W. Carey, R. Currier, J. Hyman, Q. J. Kang, S. Karra, J. M. Jimnez, M. Porter, H. Viswanathan, Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2, Applied Energy 147 (2015) 500-509. [27] T. Ishida, K. Aoyagi, T. Niwa, Y. Q. Chen, S. Murata, Q. Chen, Y. Nakayama, Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2, Geophysical Research Letters 39 (2012) L16309-L16314. [28] T. Y. Chen, X. T. Feng, Z. J. Pan, Experimental study of swelling of organic rich shale in methane, International Journal of Coal Geology 150-151 (2015) 64-73. [29] J. D. Cho, J. H. Kim, Global trends of unconventional CBM gas science information, Economic and Environmental Geology 46 (2013) 351-358. [30] Y. X. Cao, J. S. Zhong, H. Zhai, G. T. Fu, L. Tian, S. M. Liu, CO2 gas fracturing: a novel reservoir stimulation technology in low permeability gassy coal seams, Fuel 203 (2017) 197-207. [31] Y. N. Gao, F. Gao, Z. K. Wang, P. Hon, A comparative study on fracture characteristics of the red sandstone under water and nitrogen gas fracturing, Advances in Civil Engineering (2018) 1832431. [32] D. L. Arnold, Liquid CO2-sand fracturing: the dry frac, Fuel and Energy Abstracts 39 (1998) 185. [33] X. W. Zhang, Y. Y. Lu, J. R. Tang, Z. Zhou, Y. Liao, Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing, Fuel 190 (2017) 370-378. [34] Y. Z. Jia, Y. Y. Lu, D. Elsworth, Y. Fang, J. R. Tang, Surface characteristics and permeability enhancement of shale fractures due to water and supercritical carbon dioxide fracturing, Journal of Petroleum Science and Engineering 165 (2018) 284-297. [35] K. E. Laintz, C. M. Wai, C. R. Yonker, R. D. Smith, Extraction of metal ions from liquid and solid materials by supercritical carbon dioxide, Analytical Chemistry 64 (1992): 2875-2878. [36] J. S. F. Wang, M. S. Koh, C. M. Wai, Nuclear laundry using supercritical fluid solutions, Industrial and Engineering Chemistry Research 43 (2004) 1580-1585. [37] G. D. Porta, M.C. Volpe, E. Reverchon, Supercritical cleaning of rollers for printing and packaging industry, The Journal of Supercritical Fluids 37 (2007) 409-416. [38] J. Zhang, T. A. Davis, M. A. Matthews, M. J. Drews, M. LaBerge, Sterilization using high-pressure carbon dioxide, The Journal of Supercritical Fluids 38 (2005) 354-372. [39] Q. Q. Qiu, P. Leamy, J. Brittingham, J. Pomerleau, N. Kabaria, J. Connor, Inactivation of bacterial spores and viruses in biological material using supercritical carbon dioxide with sterilant, Journal of Biomedical Materials Research Part B, Applied Biomaterials 91 (2009) 572-578. [40] J. L. Balestrini, A. Liu, A. L. Gard, Sterilization of lung matrices by supercritical carbon dioxide, Tissue Engineering Part C-Methods 22 (2016) 260-269. [41] D. Bui, V. Lovric, R. Oliver, N. Bertollo, D. Broe, W. R. Walsh, Meniscal allograft sterilisation: Effect on biomechanical and histological properties, Cell and Tissue Banking 16 (2015) 467-475. [42] A. White, Da. Burns, T. W. Christensen, Effective terminal sterilization using supercritical carbon dioxide, Journal of Biotechnology 123 (2006) 504-515. [43] J. Zhang, S. Burrows, C. Gleason, M. A. Matthews, M. J. Drews, M. LaBerge, Y. H. An, Sterilizing bacillus pumilus spores using supercritical carbon dioxide, Journal of Microbiological Methods 66 (2006) 479-485. [44] D. Aslanidou, C. Tsioptsias, C. Panayiotou, A novel approach for textile cleaning based on supercritical CO2 and pickering emulsions, Journal of Supercritical Fluids 76 (2013) 83-93. [45] D. Aslanidou, I. Karapanagiotis, C. Panayiotou, Tunable textile cleaning and disinfection process based on supercritical CO2 and pickering emulsions, Journal of Supercritical Fluids 118 (2016) 128-139. [46] F. Crespi, G. Gavagnin, D. Sa´nchez, G. S. Marti´nez, Supercritical carbon dioxide cycles for power generation: A review, Applied Energy 195 (2017) 152-183. [47] L. M. Yann, Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle, Energy 49 (2013) 32-46. [48] A. Sulaiman, A. Fahad, A. Maimoon, Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower, Energy 82 (2015) 61-71. [49] X. D. Niu, H. Yamaguchi, X. R. Zhang, Y. Iwamoto, N. Hashitani, Experimental study of heat transfer characteristics of supercritical CO2 fluid in collectors of solar Rankine cycle system, Applied Thermal Engineering 31 (2011) 1279-1285. [50] X. R. Zhang, H. Yamaguchi, D. Uneno, K. Fujima, M. Enomoto, N. Sawada, Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide, Renew Energy 31 (2006) 839-1854. [51] H. Yamaguchi, X. R. Zhang, K. Fujima, M. Enomoto, Solar energy powered Rankine cycle using supercritical CO2, Applied Thermal Engineering 26 (2006) 2345-2354. [52] X. R. Zhang, H. Yamaguchi, An experimental study on evacuated tube solar collector using supercritical CO2, Applied Thermal Engineering 28 (2008) 1225-1233. [53] X. R. Zhang, H. Yamaguchi, D. Uneno, Experimental study on the performance of solar rankine system using supercritical CO2, Renew Energy 32 (2008) 2617-2628. [54] K. Wang, S. R. SANDERS, S. Dubey, F. H. Choo, F. Duan, Stirling cycle engines for recovering low and moderate temperature heat: A review, Renewable and Sustainable Energy Reviews 62 (2016) 89-108. [55] Y. H. Ahn, S. J. Bae, M. Kim, S. K. Cho, S. J. Baik, J. I. Lee, J. E. Cha, Review of supercritical CO2 power cycle technology and current status of research and development, Nuclear Engineering and Technology 147 (2015) 647-661. [56] R. B. Duffey, I. L. Pioro, Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey), Nuclear Engineering and Design 235 (2005) 913-924. [57] N. T. Rao, A. N. Oumer, U. K. Jamaludin, State-of-the-art on flow and heat transfer characteristics of supercritical CO2 in various channels, The Journal of Supercritical Fluids 116 (2016) 132-147. [58] L. F. Cabeza, A. D. Gracia, A. I. Fernández, M. M. Farid, Supercritical CO2 as heat transfer fluid: A review, Applied Thermal Engineering 125 (2017) 799-810. [59] M. M. Ehsan, Z. Q. Guan, A. Y. Klimenko, A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications, Renewable and Sustainable Energy Reviews 92 (2018) 658-675. [60] J. Z. Xie, D. C. Liu, H. B. Yan, G. N. Xie, S. K. S. Boetcher, A review of heat transfer deterioration of supercritical carbon dioxide flowing in vertical tubes Heat transfer behaviors, identification methods, critical heat fluxes, and heat transfer correlations, International Journal of Heat and Mass Transfer 149 (2020) 119233. [61] C. Dang, E. Hihara, In-tube cooling heat transfer of supercritical carbon dioxide, Part 1. Experimental measurement, International Journal of Refrigeration 27 (2004) 736-747. [62] C. Dang, K. Iino, K. Fukuoka, E. Hihara, Effect of lubricating oil on cooling heat transfer of supercritical carbon dioxide, International Journal of Refrigeration 30 (2007) 724-731. [63] X. Huai, S. Koyama, T. S. Zhao, An experimental study of flow and heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions, Chemical Engineering Science 60 (2005) 3337-3345. [64] M. S. Liao, T. S. Zhao, Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal mini/micro channels, Journal of Heat Transfer 124 (2002) 413-420. [65] H. K. Oh, C. H. Son, New correlation to predict the heat transfer coefficient in-tube cooling of supercritical CO2 in horizontal macro-tubes, Experimental Thermal and Fluid Science 34 (2010) 1230-1241. [66] S. S. Pitla, E. A. Groll, S. Ramadhyani, Convective heat transfer from in-tube cooling of turbulent supercritical carbon dioxide: part 2-experimental data and numerical predictions, HVAC&R Research 7 (2001) 367-382. [67] S. S. Pitla, E. A. Groll, S. Ramadhyani, New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2, International Journal of Refrigeration 25 (2002) 887-895. [68] C. H. Son, S. J. Park, An experimental study on heat transfer and pressure drop characteristics of carbon dioxide during gas cooling process in a horizontal tube, International Journal of Refrigeration 29 (2006) 539-546. [69] S. H. Yoon, J. H. Kim, Y. W. Hwang, M. S. Kim, K. Min, Y. Kim, Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region, International Journal of Refrigeration 26 (2003) 857-864. [70] Z. B. Liu, Y. L. He, Y. F. Yang, J. Y. Fei, Experimental study on heat transfer and pressure drop of supercritical CO2 cooled in a large tube, Applied Thermal Engineering 70 (2014) 307-315. [71] G. A. Adebiyi, W. B. Hall, Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe, International Journal of Heat and Mass Transfer 19 (1976) 715-720. [72] M. S. Liao, T. S. Zhao, An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes, International Journal of Heat and Mass Transfer 45 (2002) 5025-5034. [73] R. Yun, Y. Hwang, R. Radermacher, Convective gas cooling heat transfer and pressure drop characteristics of supercritical CO2/oil mixture in a minichannel tube, International Journal of Heat and Mass Transfer 50 (2007) 4796-4804. [74] C. Y. Yang, K. C. Liao, Effect of experimental method on the heat transfer performance of supercritical carbon dioxide in microchannel, Journal of Heat Transfer 139 (2017) 112404-1-7. [75] P. X. Jiang, C. R. Zhao, R. F. Shi, Y. Chen, W. Ambrosini, Experimental and numerical study of convection heat transfer of CO2 at supercritical pressures during cooling in small vertical tube, International Journal of Heat and Mass Transfer 52 (2009) 4748-4756. [76] P. X. Jiang, R. F. Shi, Y. J. Xu, S. He, J. Jackson, Experimental investigation of flow resistance and convection heat transfer of CO2 at supercritical pressures in a vertical porous tube, The Journal of Supercritical Fluids 38 (2006) 339-346. [77] H. Wang, Q. Bi, G. Wu, Z. Yang, Experimental investigation on pressure drop of supercritical water in an annular channel, The Journal of Supercritical Fluids 131 (2018) 47-57. [78] A. Taklifi, A. Aliabadi, P. Hanafizadeh, M. A. Akhavan-Behabadi, Effect of inclination on frictional pressure drop of supercritical water flows in internally ribbed tubes: An experimental study, The Journal of Supercritical Fluids 125 (2017) 56-65. [79] I. L. Pioro, R. B. Duffey, T. J. Dumouchel, Hydraulic resistance of fluids flowing in channels at supercritical pressures (survey), Nuclear Engineering and Design 231 (2004) 187-197. [80] I. L. Pioro, R. B. Duffey, Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications, ASME Press, 2007. [81] N. V. Tarasova, A. I. Leont’ev, Hydraulic resistance during flow of water in heated pipes at supercritical pressures, High Temperature 6 (1968) 721. [82] N. S. Kondrat’ev, Heat transfer and hydraulic resistance with supercritical water flowing in tubes, Thermal Engineering 16 (1969) 73-77. [83] X. Fang, Y. Xu, X. Su, R. Shi, Pressure drop and friction factor correlations of supercritical flow, Nuclear Engineering and Design 242 (2012) 323-330. [84] T. Yamshita, H. Mori, S. Yoshida, M. Ohno, Heat transfer and pressure drop of a supercritical pressure fluid flowing in a tube of small diameter, Memoirs of the Faculty of Engineering, Kyushu University 63 (2003) 227-244. [85] P. L. Kirillov, S. Yu, Yur’ev, V. P. Bobkov, “Flow hydraulic resistance of the working fluids with significantly changing properties.” Handbook of Thermal-Hydraulics Calculations, Energoatomizdat Publ. House, Moscow, Russia, 1990. [86] P. X. Jiang, Y. Zhang, Y. J. Xu, R. F. Shi, Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers, International Journal of Thermal Sciences 47 (2008) 998-1011. [87] P. X. Jiang, Y. Zhang, C. R. Zhao, R. F. Shi, Convection heat transfer of CO2 at supercritical pressures in a vertical mini tube at relatively low Reynolds numbers, Experimental Thermal and Fluid Science 32 (2008) 1628-1637. [88] P. X. Jiang, R. F. Shi, C. R. Zhao, Y. J. Xu, Experimental and numerical study of convection heat transfer of CO2 at supercritical pressures in vertical porous tubes, International Journal of Heat and Mass Transfer 51 (2008): 6283-6293. [89] P. X. Jiang, Y. J. Xu, J. Lv, R. F. Shi, S. He, J. D. Jackson, Experimental investigation of convection heat transfer of CO2 at supercritical pressures in vertical mini-tubes and in porous media, Applied Thermal Engineering 24 (2004) 1255-1270. [90] P. X. Jiang, B. Liu, C. R. Zhao, F. Luo, Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro-tube from transition to turbulent flow regime, International Journal of Heat and Mass Transfer 56 (2013) 741-749. [91] P. X. Jiang, Y. Zhang, R. F. Shi, Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical mini-tube, International Journal of Heat and Mass Transfer 51 (2008) 3052-3056. [92] Z. H. Li, P. X. Jiang, C. R. Zhao, Y. Zhang, Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube, Experimental Thermal and Fluid Science 34 (2010) 1162-1171. [93] R. N. Xu, F. Luo, P. X. Jiang, Buoyancy effects on turbulent heat transfer of supercritical CO2 in a vertical mini-tube based on continuous wall temperature measurements, International Journal of Heat and Mass Transfer 110 (2017) 576-586. [94] C. R. Zhao, Z. Zhang, P.X. Jiang, R.N. Xu, H. L. Bo, Influence of channel scale on the convective heat transfer of CO2 at supercritical pressure in vertical tubes, International Journal of Heat and Mass Transfer 126 (2018) 201-210. [95] Q. Zhang, H.X. Li, X. F. Kong, J. L. Liu, X. L. Lei, Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux, International Journal of Heat and Mass Transfer 122 (2018) 469-482. [96] S. J. Zhang, X. X. Xu, C. Liu, X. X. Liu, C.B. Dang, Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube, Applied Thermal Engineering 157 (2019) 113687. [97] A. Bruch, A. Bontemps, S. Colasson, Experimental investigation of heat transfer of supercritical carbon dioxide flowing in a cooled vertical tube, International Journal of Heat and Mass Transfer 52 (2009) 2589-2598. [98] Y. Y. Bae, H. Y. Kim, D. J. Kang, Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube, Experimental Thermal and Fluid Science 34 (2010) 1295-1308. [99] Y. Y. Bae, H. Y. Kim, Convective heat transfer to CO2 at a supercritical pressure flowing vertically upward in tubes and an annular channel, Experimental Thermal and Fluid Science 33 (2009) 329-339. [100] J. H. Song, H. Y. Kim, H. Kim, Y. Y. Bae, Heat transfer characteristics of a supercritical fluid flow in a vertical pipe, The Journal of Supercritical Fluids 44 (2008) 164-171. [101] S. H. Liu, Y. P. Huang, G. X. Liu, J. F. Wang, L. K. H. Leung, Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes, International Journal of Heat and Mass Transfer 106 (2017) 1144-1156. [102] D. E. Kim, M. H. Kim, Two layer heat transfer model for supercritical fluid flow in a vertical tube, The Journal of Supercritical Fluids 58 (2011) 15-25. [103] D. E. Kim, M. H. Kim, Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube, International Journal of Heat and Fluid Flow 32 (2011) 176-191. [104] D. E. Kim, M. H. Kim, Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube, Nuclear Engineering and Design 240 (2010) 3336-3349. [105] H. Y. Kim, H. Kim, J. H. Song, B. H. Cho, Y. Y. Bae, Heat transfer test in a vertical tube using CO2 at supercritical pressures, Journal of Nuclear Science and Technology 44 (2007) 285-293. [106] J. K. Kim, H. K. Jeon, J. S. Lee, Wall temperature measurements with turbulent flow in heated vertical circular/non-circular channels of supercritical pressure carbon dioxide, International Journal of Heat and Mass Transfer 50 (2007) 4908-4911. [107] S. Gupta, E. Saltanov, S.J. Mokry, I. Pioro, L. Trevani, D. McGillivray, Developing empirical heat-transfer correlations for supercritical CO2 flowing in vertical bare tubes, Nuclear Engineering and Design 261 (2013) 116-131. [108] H. Zahlan, D. Groeneveld, S. Tavoularis, Measurements of convective heat transfer to vertical upward flows of CO2 in circular tubes at near-critical and supercritical pressures, Nuclear Engineering and Design 289 (2015) 92-107. [109] A. Eter, D. Groeneveld, S. Tavoularis, Convective heat transfer in supercritical flows of CO2 in tubes with and without flow obstacles, Nuclear Engineering and Design 313 (2017) 162-176. [110] J. F. Guo, M. R. Xiang, H. Y. Zhang, X. L. Huai, K. Y. Cheng, X. Y. Cui, Thermal-hydraulic characteristics of supercritical pressure CO2 in vertical tubes under cooling and heating conditions, Energy 170 (2019) 1067-1081. [111] N. Kline, F. Feuerstein, S. Tavoularis, Onset of heat transfer deterioration in vertical pipe flows of CO2 at supercritical pressures, International Journal of Heat and Mass Transfer 118 (2018) 1056-1068. [112] Q. Zhang, H.X. Li, X.L. Lei, J. Zhang, X.F. Kong, Study on identification method of heat transfer deterioration of supercritical fluids in vertically heated tubes, International Journal of Heat and Mass Transfer 127 (2018) 674-686. [113] S. Yildiz, D. C. Groeneveld, Diameter effect on supercritical heat transfer, International Communications in Heat and Mass Transfer 54 (2014) 27-32. [114] J. D. Jackson, Models of heat transfer to fluids at supercritical pressure with influences of buoyancy and acceleration, Applied Thermal Engineering 124 (2017) 1481-1491. [115] D. M. McEligot, C. W. Coon, H.C. Perkins, Relaminarization in tubes, International Journal of Heat and Mass Transfer 13 (1970) 431-433. [116] E. Lemmon, M. Huber, M. McLinden (Eds.), NIST Reference Fluid Thermodynamic and Transport Properties-REFPROP, NIST Standard Reference Database 23, Ver. 9.0, U.S. Department of Commerce, 2010. [117] F. M. White, Fluids Mechanics, seventh ed., McGraw-Hill, 2011. [118] R. J. Moffat, Describing the uncertainties in experimental results, Experimental Thermal and Fluid Science 1 (1988) 3-17. [119] D. Huang, W. Li, Heat transfer deterioration of aviation kerosene flowing in mini tubes at supercritical pressures, International Journal of Heat and Mass Transfer 111 (2017) 266-278. [120] S. Gupta, E. Saltanov, S. J. Mokry, I. Pioro, L. Trevani, D. McGillivray, Developing empirical heat-transfer correlations for supercritical CO2 flowing in vertical bare tubes, Nuclear Engineering and Design 261 (2013) 116-131. [121] S. Mokry, I. L. Pioro, B. Duffey, Experimental heat transfer to supercritical CO2 flowing upward in a bare vertical tube, in: Proceedings of SCCO2 Power Cycle symposium, 2009. [122] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, Fundamentals of Heat and Mass Transfer, sixth ed., John Wiley & Sons, 2007. [123] W. C. Williams, If the Dittus and Boelter equation is really the McAdams equation, then should not the McAdams equation really be the Koo equation? International Journal of Heat and Mass Transfer 54 (2011) 1682-1683. [124] L. X. Cheng, G. Ribatskia, J. R. Thome, Analysis of supercritical CO2 cooling in macro- and micro-channels, International Journal of Refrigeration 31 (2008) 1301-1316. [125] P. K. Swamee, A. K. Jain, Explicit equations for pipe-flow problems, Journal of Hydrologic Engineering 102 (1976) 657-664. [126] S. W. Churchill, Friction factor equation spans all fluid flow regimes, Chemical Engineering 84 (1977) 91-92. [127] S. E. Haaland, Simple and explicit formulas for the friction factor in turbulent pipe flow, Journal of Fluids Engineering 105 (1983) 89-90. [128] L. Wang, Y. C. Pan, J. D. Lee, Y. Wang, B. R. Fu, C. Pan, Experimental investigation in the local heat transfer of supercritical carbon dioxide in the uniformly heated horizontal miniature tubes, International Journal of Heat and Mass Transfer 159 (2020) 120136. [129] J. D. Jackson, W. B. Hall, Influences of buoyancy on heat transfer to fluids in vertical tubes under turbulent conditions, 1979. [130] J. H. Bae, J. Y. Yoo, Direct numerical simulation of turbulent supercritical flows with heat transfer, Physics of Fluids 17 (2005) 1-24. [131] J. D. Jackson, M. A. Cotton, B. P. Axcell, Studies of mixed convection in vertical tubes, International Journal of Heat and Fluid Flow 10 (1989) 2-15. [132] P. M. Moretti, W. M. Kays, Heat transfer to a turbulent boundary layer with varying free-stream velocity and varying surface temperature-an experimental study, International Journal of Heat and Mass Transfer 8 (1965) 1187-1202. [133] J. D. Jackson, Fluid flow and convective heat transfer to fluids at supercritical pressure, Nuclear Engineering and Design 264 (2013) 24-40. [134] H. Kim, Y. Y. Bae, H. Y. Kim, J. H. Song, B. H. Cho, Experimental investigation on the heat transfer characteristics in upward flow of supercritical carbon dioxide, Nuclear Technology 164 (2008) 119-129. [135] S. Liu, Y. Huang, G. Liu, J. Wang, L. K. H. Leung, Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes, International Journal of Heat and Mass Transfer 106 (2017) 1144-1156.
|