跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 16:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝易廷
研究生(外文):HSIEH, YI-TING
論文名稱:Cu2Zn1-xFexSnSe4奈米晶液相合成及可調控能隙研究
論文名稱(外文):Solution-phase synthesis and tunable bandgaps of Cu2Zn1-xFexSnSe4 nanocrystals
指導教授:傅耀賢傅耀賢引用關係
指導教授(外文):Fu,Yaw-Shyan
口試委員:方得華徐國欽傅耀賢
口試委員(外文):Fang,Te-HuaHsu,Kuo-ChinFu,Yaw-Shyan
口試日期:2022-01-28
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:綠色能源科技學系碩士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:77
中文關鍵詞:Fe摻雜CZTSe能隙調控溶劑熱法
外文關鍵詞:Fe-doped CZTSetunable bandgapsolvothermal sythesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用溶劑熱法合成Cu2Zn1-xFexSnSe4粉末。透過更改不同的合成條件,例如:溶熱法反應時間、反應溫度、不同溶劑等。並透過一系列分析來觀察粉末的特性並從中取得最佳化的製備參數。反應物中的金屬陽離子分別來自氯化亞銅、醋酸鋅、醋酸亞鐵、四氯化錫,陰離子硒則來自硒粉。溶劑熱法方面的反應時間是24小時到96小時,反應溫度分別為160°C與180°C。溶劑方面則是將氯化亞銅、醋酸鋅、醋酸亞鐵、四氯化錫溶於乙二胺,硒粉溶於聯胺,並觀察有無聯胺添加對整體四元相產物合成的影響。根據以上實驗的最佳參數以不同醋酸鋅及醋酸亞鐵的比例摻雜並分析其光學特性。
In this study, Cu2Zn1-xFexSnSe4 powders were synthesized by solvothermal method. By changing different synthesis conditions, such as: solvothermal reaction time, reaction temperature, different solvents, etc. And through a series of analysis to observe the characteristics of the powder and obtain the optimized preparation parameters. The metal cations in the reactants come from cuprous chloride, zinc acetate, ferrous acetate, and tin tetrachloride, respectively, and the anion selenium comes from selenium powder. The reaction time in the solvothermal method is 24 hours to 96 hours, and the reaction temperatures are 160°C and 180°C, respectively. In terms of solvent, cuprous chloride, zinc acetate, ferrous acetate, and tin tetrachloride were dissolved in ethylenediamine, and selenium powder was dissolved in hydrazine. According to the best parameters of the above experiments, the ratios of zinc acetate and ferrous acetate were doped and their optical properties were analyzed.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
第一章 緒論 1
第二章 文獻回顧 3
2.1太陽電池原理 3
2.1.1光傳導效應 (Photoconductive effect) 3
2.1.2光伏特效應 (Photovoltaic effect) 3
2.2太陽能的材料介紹 5
2.2.1太陽能材料在物理特性上的發展限制[5] 5
2.2.2太陽能電池的種類[5] 6
2.2.4可調控能隙材料 8
2.2.5 CFTSe與CZTSe合成與調控能隙文獻 9
2.2.6應力效應在光學能隙中的影響 11
2.3合成CZTSe系列粉體的方法 12
2.4研究動機 13
第三章:實驗方法與步驟 14
3.1實驗設計 14
3.2以溶劑熱法製備Cu2ZnSnSe4與Cu2FeSnSe4粉末 19
3.3溶熱法合成Cu2Zn1-xFexSnSe4粉末 24
3.4分析材料特性 25
第四章 結果討論 32
4.1合成Cu2ZnSnSe4(CZTSe)與Cu2FeSnSe4(CFTSe)的反應動力研究 32
4.2反應時間對合成Cu2ZnSnSe4(CZTSe)與Cu2FeSnSe4(CFTSe)粉末的影響 35
4.3反應溫度對以溶劑熱法合成CFTSe與CZTSe的影響 38
4.4有無加入聯胺對合成CFTSe與CZTSe的影響 40
4.5 不同摻雜比Cu2Zn1-xFexSnSe4(x=0.3、0.5、0.7)的性質探討 44
4.6表面型態與化學組成 46
4.6.1探討Cu2FeSnSe4(CFTSe)純相與Cu2ZnSnSe4(CZTSe)純相之表面型態與化學組成 46
4.6.2 不同反應時間合成Cu2FeSnSe4(CFTSe)與Cu2ZnSnSe4(CZTSe)之表面型態與化學組成探討 49
4.6.3 低溫及無添加聯胺對合成Cu2ZnSnSe4(CZTSe)與Cu2FeSnSe4(CFTSe)之表面形態與元素組成探討 52
4.6.4 Cu2Zn1-xFexSnSe4(x=0.3、0.5、0.7)的表面形態與化學組成 54
4.7光學能隙探討 55
第五章 結論 60
參考文獻 62
JCPDS Cards No. 01-070-8930 (Cu2ZnSnSe4) 70
JCPDS Cards No. 00-037-1463 (ZnSe) 71
JCPDS Cards No. 01-072-8034 (Cu2(SnSe3)) 72
JCPDS Cards No. 01-072-7165 (Cu2(SnSe4)) 74
JCPDS Cards No. 01-088-2043 (Cu2Se) 75
JCPDS Card No. 00-052-0998 (Cu2FeSnSe4) 76
JCPDS Cards No. 00-006-0362 (Se) 77


[1] 賴麗蓉, "京都議定書之分析及未來發展勢," 能源季刊, vol. 28, 1998.
[2]黃秉鈞:生生不息的再生能源。科學發展,355,48-51, 2002.
[3]D. R. E. Adams. W. G, "The Action of Light on Selenium," Journal of the Society of Telegraph Engineers, vol. 167, pp. 313-349, 1877.
[4] C. T. Dervos, P. D. Skafidas, J. A. Mergos, and P. Vassiliou, "p-n junction photocurrent modelling evaluation under optical and electrical excitation," Sensors, vol. 4, pp. 58-70, 2004.
[5]莊嘉琛, 太陽能工程--太陽能電池篇 台北:全華圖書股份有限公司, 2008.
[6]R. Tena-Zaera, M. A. Ryan, A. Katty, G. Hodes, S. Bastide, and C. Levy-Clement, "Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell," C. R. Chim, vol. 9, pp. 717-729, 2006.
[7]S. Y. Chen, X. G. Gong, A. Walsh, and S. H. Wei, "Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights," Appl. Phys. Lette, vol. 94, pp. 041903, 2009.
[8]A. Devos, "Detailed balance limit of the efficiency of tandem solar-cells," J. Phys D. Appl. Phys., vol. 13, pp. 839-846, 1980.
[9]P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, et al., "New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%," Prog. Photovolt. Res. Appl., vol. 19, pp. 894-897, 2011.
[10]V. M. Andreev, V. A. Grilikhes, V. P. Khvostikov, O. A. Khvostikova, V. D. Rumyantsev, N. A. Sadchikov, et al., "Concentrator PV modules and solar cells for TPV systems," Sol. Energ. Mat. Sol. C., vol. 84, pp. 3-17, 2004.
[11]M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, "Multi-junction III-V solar cells: current status and future potential," Sol. Energy, vol. 79, pp. 78-85, 2005.
[12]V. Sholin, A. J. Breeze, I. E. Anderson, Y. Sahoo, D. Reddy, and S. A. Carter, "All-inorganic CdSe/PbSe nanoparticle solar cells," Sol. Energ. Mat. Sol. C., vol. 92, pp. 1706-1711, 2008.
[13]E. Barrios-Salgado, M. T. S. Nair, P. K. Nair, and R. A. Zingaro, "Chemically deposited thin films of PbSe as an absorber component in solar cell structures," Thin Solid Films, vol. 519, pp. 7432-7437, 2011.
[14]M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, "Determining the Internal Quantum Efficiency of PbSe Nanocrystal Solar Cells with the Aid of an Optical Model," Nano Lett., vol. 8, pp. 3904-3910, 2008.
[15]S. Kitada, E. Kikuchi, A. Ohno, S. Aramaki, and S. Maenosono, "Effect of diamine treatment on the conversion efficiency of PbSe colloidal quantum dot solar cells," Solid State Commun., vol. 149, pp. 1853-1855, 2009.
[16]X. F. Wang, W. Z. Lu, Z. K. Luo, and F. Wang, "Microwave Assisted Preparation and Characterization of Monodispersed PbSe Nanoparticles in Solar Cell," Rare Metal Mat. Eng., vol. 39, pp. 103-106, 2010.
[17]J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, M. Oh, B. R. Hyun, L. F. Sung, et al., "PbSe Nanocrystal Excitonic Solar Cells," Nano Letts., vol. 9, pp. 3749-3755, 2009.
[18]P. K. Nair, E. Barrios-Salgado, J. Capistran, M. L. Ramon, M. T. S. Nair, and R. A. Zingaro, "PbSe Thin Films in All-Chemically Deposited Solar Cells, " J. Electrochem. Soc., vol. 157, pp. D528-D537, 2010.
[19]R. A. Wibowo, E. S. Lee, B. Munir, and K. H. Kim, "Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films, physica status solidi", Phys. Status Solidi, vol. 204, pp. 3373-3379, 2007.
[20]G. Suresh Babu, Y. B. Kishore Kumar, P. Uday Bhaskar, and V Sundara Raja, "Growth and characterization of co-evaporated Cu2ZnSnSe4 thin films for photovoltaic applications", J. Phys. D Appl. Phy., vol. 41, pp. 205305, 2008.
[21]M. Grossberg, J. Krustok, K. Timmo, and M. Altosaar, "Radiative recombination in Cu2ZnSnSe4 monograins studied by photoluminescence spectroscopy", Thin Solid Films, vol. 517, pp. 2489-2492, 2009.
[22]T. K. Todorov, K. B. Reuter, and D. B. Mitzi, "High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber", Adv. Energy Mater., vol. 22, pp. E156-E159, 2010.
[23]A. Shavel, J. Arbiol, and A. Cabot, "Synthesis of Quaternary Chalcogenide Nanocrystals: Stannite Cu2ZnxSnySe1+x+2y", J. Am. Chem. Soc., vol. 132, pp. 4514-4515, 2010.
[24]S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, and Jae Ho Yun, "Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films:On the discrepancies of reported band gap values", Appl. Phys. Lett., vol. 97, pp. 021905, 2010.
[25]I. Repins, C. Beall, N. Vora, C. D. Hart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, and R. Noufi, "Co-evaporated Cu2ZnSnSe4 films anddevices", Sol. Energ. Mat. Sol. C., vol. 101, pp. 154–159, 2012.
[26]H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, "Development of thin film solar cell based on Cu2ZnSnS4 thin films," Sol. Energ. Mat. Sol. C., vol. 65, pp. 141-148, 2001.
[27]H. Katagiri, "Cu2ZnSnS4 thin film solar cells", Thin Solid Films, vol. 426, pp. 480-481, 2005.
[28]H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, "Development of CZTS-based thin film solar cells", Thin Solid Films, vol. 517, pp2455–2460, 2009.
[29]C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, "Synthesis of Cu2ZnSnS4 Nanocrystals for Use in Low-Cost Photovoltaics", J. Am. Chem. Soc., vol. 131, pp. 12554-12555, 2009.
[30]Q. Guo, G. M. Ford, W. C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, and R. Agrawal, "Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals", J. Am. Chem. Soc., vol. 132, pp. 17384-17386, 2010.
[31]X. Yu, R. J. Zhang, Z. J. Xu, D. X. Zhang, H. B. Zhao, Y. X. Zheng, and L. Y. Chen, "Optical constants and band gap expansion of size controlled silicon nanocrystals embedded in SiO2 matrix", J. Non-Cryst. Solids, vol. 357, pp. 3524–3527, 2011.
[32]S. Coe-Sullivan, W. K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, "Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices," Org. Electron., vol. 4, pp. 123-130, 2003.
[33]J. Sharma, G. Singh, A. Thakur, G. S. S. Saini, N. Goyal, and S. K. Tripathi, "Preperation and Characterization of SnSe nanocrystalline thin films", J. Optoelectron. Adv. M., vol. 7, pp. 2085–2094, 2005.
[34]M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, et al., "Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics," J. Am. Chem. Soc., vol. 130, pp. 16770-16777, 2008.
[35]W. N. Shafarman, R. Klenk, and B. E. McCandless, "Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap," J. Appl. Phys., vol. 79, pp. 7324-7328, 1996.
[36]J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, "Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles," Chem. Mater., vol. 20, pp. 6906-6910, 2008.
[37]D. G. Zhao, S. J. Xu, M. H. Xie, and S. Y. Tong, "Stress and its effects on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire", Appl. Phys. Lett., vol. 83, pp. 677-679, 2003.
[38]T. P. Gao, M. C. S. Kumar, S. A. Angayarknni, and M. Ashok, "Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis", J. Alloys Compd., vol. 485, pp. 413-417, 2009.
[39]B. C. Mohanty, Y. H. Jo, D. H. Yeon, L. J. Choi, and Y. S. Cho, "Stress-induced anomalous shift of optical band gap in ZnO:Al thin films", Appl. Phys. Lett., vol. 95, pp. 062103, 2009.
[40]R. A. Wibowo, W. H. Jung, M. H. Al-Faruqi, I. Amal, and K. H. Kim, "Crystallization of Cu2ZnSnSe4 compound by solid state reaction using elemental powders", Mater. Chem. Phys., vol. 124, pp. 1006-1010, 2010.
[41]S. Chen, X. G. Gong, A. Walsh, and S. H. Wei, "Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights", Appl. Phys. Lett., vol. 94, pp. 041903, 2009.
[42]X. Zhang, N. Bao, K. Ramasamy, Y. H. A. Wang, Y. Wang, B. Lin and A. Gupta,’’ Crystal phase-controlled synthesis of Cu2FeSnS4 nanocrystals with a band gap of around 1.5Ev,’’ Chem. Commun, vol.,48,pp.4956-8, 2012.
[43]C. Yan, C. Huang, J. Yang, F. Liu, J. Liu, Y. Lai, J. Li, and Y.Liu,’’Synthesis and characterizations of quaternary Cu2FeSnS4 nanocrystals,’’Chem. Commun ,vol. 48,pp. 2603-5, 2012.
[44]B. Zhang, M. Cao, L. Li, Y. Sun, Y. Shen, and L.Wang, ‘’Facile synthesis of Cu2FeSnSe4 sheets with a simple solvothermal method,’’Mater. Lett., vol.93,pp. 111-4, 2013.
[45]X. Meng, H.Deng, J. He, L.Zhu, L. Sun, P. Yang, and J.Chu,’’Synthesis of Cu2FeSnSe4 thin film by selenization of RF magnetron sputtered precursor,’’Mater. Lett, vol. 117, pp.1-3, 2014.
[46]Hong-Ming Lin (林鴻明) (2004) : 奈米材料合成技術。2022年1月6日,取自http://nano.mse.ttu.edu.tw/htmL/doc/Class02 produ/3.pdf
[47]汪建民等人, "材料分析," 中國材料科學學會, 1998.
[48]R. L. W. a. R. P. Ley, "Optical Properties of Indium Oxide," J. Appl. Phys., vol. 37,pp. 1-466, 1966.
[49]Y. S. Liu, W. Q. Luo, R. F. Li, G. K. Liu, M. R. Antonio, and X. Y. Chen, "Optical spectroscopy of Eu3+ doped ZnO nanocrystals," J. Phys. Chem. C, vol. 112, pp. 686-694, 2008.
[50]F. Ye and A. Ohmori, "The photocatalytic activity and photo-absorption of plasma sprayed TiO2–Fe3O4 binary oxide coatings," Surf. Coat. Technol., vol. 160, pp. 62-67, 2002.
[51]D. D. Vaughn, R. J. Patel, M. A. Hickner, and R. E. Schaak, "Single-Crystal Colloidal Nanosheets of GeS and GeSe," J. Am. Chem. Soc., vol. 132, pp. 15170-15172, 2010.
[52]A. Hagfeldt, and M. Gratzel, "Light-Induced Redox Reactions in Nanocrystalline Systems", Chem. Rev., vol. 95, pp. 49-68, 1995.
[53]W. N. Delgass, G. L. Haller, R. Kellerman, and J. H. Lunsford, "Spectroscopy in heterogeneous catalysis", ACADEIC PRESS INC, New York, pp. 86-129, 1979
[54]C. V. Raman, "A change of wave-length in light scattering," Nature, vol. 121, pp. 619, 1928.
[55]A. M. Kelley, "Resonance Raman and Resonance Hyper-Raman Intensities: Structure and Dynamics of Molecular Excited States in Solution," J. Phys. Chem. A, vol. 112, pp. 11975-11991, 2008.
[56] Y.-F. Du, J.-Q. Fan, W.-H. Zhou, Z.-J. Zhou, J. Jiao, S.-X. Wu, "One-Step Synthesis of Stoichiometric Cu2ZnSnSe4 as Counter Electrode for Dye-Sensitized Solar Cells", ACS Applied Materials & Interfaces, 40, 1796-1802 , 2012.
[57] D. B. Mitzi, "Solution processing of chalcogenide semiconductors via dimensional reduction", Advanced Materials, 210, 3141-3158 , 2009.
[58] D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline, A. G. Schrott, "A High‐Efficiency Solution‐Deposited Thin‐Film Photovoltaic Device", Advanced Materials, 200, 3657-3662 , 2008.
[59] D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac, A. G. Schrott, "Hydrazine-based deposition route for device-quality CIGS films", Thin Solid Films, 5170, 2158-2162 , 2009.
[60] T. K. Todorov, K. B. Reuter, D. B. Mitzi, "High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber", Advanced Materials, 220, E156-E159 , 2010.
[61] E. G. Tulsky, J. R. Long, "Dimensional Reduction:  A Practical Formalism for Manipulating Solid Structures", Chemistry of Materials, 130, 1149-1166 , 2001
[62] M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, "Cu2Zn1–xCdxSn(Se1–ySy)4 solid solutions as absorber materials for solar cells", Phys. Status Solidi, vol. 205, pp. 167-170, 2008.
[63]M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, and E. Mellikov, "Phase composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy", Thin Solid Films, vol. 519, pp. 7394-7398, 2011.
[64] G. Marcanoa, C. Rincon, S.A. Lopez, G. Sanchez Perez, J. L. Herrera-Perez, J. G. Mendoza-Alvarez, and P. Rodriguez, "Raman spectrum of monoclinic semiconductor Cu2SnSe3", Solid State Commun., vol. 151, pp. 84-86, 2011.
[65] M. H. Chiang, Y. S. Fu, C. H. Shih, C. C. Kuo, T. F. Guo, W. T. Lin, "Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films", Thin Solid Films, vol. 544, pp. 291-295, 2013.

電子全文 電子全文(網際網路公開日期:20270207)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top