跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/21 10:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇致航
研究生(外文):Su, Chih-Hang
論文名稱:微粒子珠擊對提升鍍硬鉻及硬陽處理7075-T6鋁合金疲勞性質之研究
論文名稱(外文):Improved Fatigue Strength of Hard-Chroming and Hard-Anodizing 7075-T6 Al by Micro-Shot Peening
指導教授:蔡履文
指導教授(外文):Tsay, Leu-Wen
口試委員:薛人愷鄭勝隆丁逸勳
口試委員(外文):Shiue, Ren-KaeJeng, Sheng-LongDing, Yi-Shiun
口試日期:2022-07-04
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電與材料科技學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:82
中文關鍵詞:鋁合金珠擊加工鍍硬鉻硬質陽極
外文關鍵詞:Aluminum alloyshot peening processhard chromium platinghard anoding
相關次數:
  • 被引用被引用:1
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討AA 7075-T6鋁合金及經微粒子珠擊試件評估後續鍍硬鉻以及硬質陽極處理對其機械性質的影響。實驗內容包括:研究使用SEM觀察珠擊後塑性變形的表面形貌、鍍硬鉻和硬陽層的組織便用EBSD分析珠擊層晶粒尺寸變化並進行應變量分析;研究使用TEM進一步確認細晶組織的形貌和尺寸;並以微小維克氏硬度機及奈米壓痕試驗機進行硬度量測。白光干涉儀量測珠擊前後粗糙度的差異,實驗藉由XRD量測珠擊過後試片表面的殘留應力,並且進行旋轉疲勞試驗測試不同條件下試棒的疲勞強度,最後進行破斷面觀察及探討破損原因。
實驗結果顯示:AA 7075-T6鋁合金經過珠擊後表面產生巨大殘留壓應力,並且伴隨晶粒細化的現象,不僅表面硬度提升且疲勞強度也大幅的升高。珠擊表層和鍍硬鉻層間有良好的結合性,即使鍍鉻層有著許多垂直裂紋,疲勞裂紋的生長也會受到珠擊層的有效阻擋,珠擊後鍍硬鉻試件兼具高表面硬度抗磨耗能力及高疲勞強度。然而珠擊後再經過硬陽處理,陽極氧化層會侵蝕珠擊表層,表層殘留應力降低而影響其疲勞強度,但仍具和未陽極處理試件相當之疲勞強度。而未珠擊之7075-T6試件經硬陽處理後,其疲勞強度大幅降低。
In this study, the effects of micro-shot peening on the rotating bending fatigue resistance of Cr-electroplated and hard anodized AA 7075-T6 alloy were evaluated. The surface morphology of bombarded dents as well as the microstructure of the Cr-plated and anodized samples were examined by using SEM. EBSD was applied to determine the grain size of the shot-peened layer and change in strain within the peened depth. The detailed microstructure of the shot-peened layer was inspected by TEM. Micro Vickers and nanoindenter were used for hardness measurement in different zones of the shot-peened sample. Surface roughness of the tested sample with or without shot peening was inspected by white light interferometer. The change in residual stress with the depth of the shot-peened sample was determined by XRD. Rotating bending fatigue was performed to determine the fatigue strength/life of the tested sample.
The experimental results show that shot-peening introduced high residual stress into AA 7075-T6 aluminum alloy and caused a significant grain refinement within the shot-peened layer. The bombarded surface of the shot-peened sample showed a noticed strain-hardening, resulting in a great increase in hardness. Hard-Cr layer consisted of numerous fine cracks aligned in the direction normal to the external surface. Without the need of crack initiation, the Cr-plated sample showed a much lower fatigue strength/life than the un-plated one. With the introduced compressive residual stress in the shot-peened layer, the growth of fatigue cracks will be effectively retarded. The results indicated that the hard anodizing would sacrifice or damage the shot peened layer, thus, the residual stress of the shot-peened layer will be reduced. Such event caused a decrease in fatigue strength, However, the shot-peened anodized sample still had the similar fatigue strength to that of the original substrate. Without shot-peening, hard anodizing led to a significant decrease in fatigue strength of 7075-T6 alloy.
摘要 I
Abstract II
第一章 前言 1
第二章 文獻回顧 2
2-1 鋁合金簡介 2
2-1-1 鋁合金種類介紹 2
2-1-2 熱處理對鋁合金性能之影響 4
2-1-3 7075 疲勞性質 5
2-2 鍍硬鉻簡介 5
2-2-1 鍍硬鉻製程 6
2-2-2 鍍硬鉻對疲勞性質之影響 7
2-3 硬質陽極簡介 7
2-3-1 硬質陽極製程 8
2-3-2 硬質陽極對疲勞性質之影響 10
2-4 微粒子珠擊法簡介 10
2-4-1 微粒子珠擊法對材料之機械性質影響 10
第三章 實驗流程與方法 26
3-1 實驗材料 26
3-2 實驗流程 26
3-3 拉伸試驗 26
3-4 旋轉疲勞試驗 27
3-5 金相顯微組織觀察(OM、SEM) 27
3-6 奈米壓痕量測(Nanoindenter) 27
3-7 微小維克式硬度機量測(Vickers hardness tester) 28
3-8 表面粗糙度量測(White Light Interferometer) 28
3-9 電子背向散射繞射(EBSD)分析 28
3-10 穿透式電子顯微鏡(TEM)觀察 29
3-11 殘留應力量測 29
第四章 結果與討論 44
4-1 拉伸試驗 44
4-2旋轉疲勞試驗 45
4-3顯微組織觀察 47
4-4 奈米壓痕量測(Nanoindenter) 48
4-5 微小維克式硬度機量測(Vickers hardness tester) 48
4-6 表面粗糙度量測(White Light Interferometer) 48
4-7 電子背向散射繞射(EBSD)分析 49
4-8 穿透式電子顯微鏡(TEM)觀察 50
4-9 殘留應力量測 50
第五章 結論 77
第六章 參考文獻 78
[1] R. Winston, E. Ghali., Uhlig's Corrosion Handbook, Aluminum and Aluminum Alloys, New Jersey, 2011

[2] The Aluminum Association
Available:
https://www.aluminum.org/sites/default/files/Teal%20Sheet.pdf , 2021

[3] R. Singh, Aluminum—Rolling (Process, Principles, & Applications) The Minerals, Metals, & Materials Society, Warrendale, pp. 126-137, 2000

[4] 鄭元愷, AA7075 鋁合金與Ti-6Al-4V合金摩擦攪拌銲接微觀組織與機械性質研究, 國立臺灣師範大學科技與工程學院機電工程學系碩士論文,民國 110年,pp. 7-13

[5] 梁寶庭, 晶向結構及溫度在7075-T6鋁合金動態塑變行為與結構特性之效應分析, 國立成功大學機械工程學系碩士論文, 民國103年,pp. 3-7

[6] J. E. Hatch, Aluminum: properties and physical metallurgy , ASM International, 1984.

[7] K.S. Chan, Roles of microstructure in fatigue crack initiation, International Journal of Fatigue, Vo.l32, pp. 1428–1447, 2010

[8] A.D. Isadare, B. Aremo, M.O. Adeoye, O.J. Olawale, M.D. Shittuc, Effect of Heat Treatment on Some Mechanical Properties of 7075 Aluminium Alloy, Materials Research, Vol.16,pp. 190-194, 2013

[9] 洪榮德, 吳灝展, 劉正賢, 林昆明, 林新智, 7075鋁合金時效處理之研究, pp. 2-4

[10] W. F. Smith, N. J. Grant, The Effect of Multiple-Step Aging on the Strength Properties and Precipitate-Free Zone Widths in AI-Zn-Mg Alloys, Metallurgical Transactions, Vol.1,pp. 2-3, 1970

[11] 李溢芸, 王文雄, 超高強度Al-Zn-Mg-Cu合金的時效析出、機械性質與應力腐蝕特性研究, 台灣大學材料科學與工程學研究所碩士論文, 民國97年, pp. 27-28

[12] S. Baragettia, E. Borzini, Ž. Božic, E.V. Arcieri., On the fatigue strength of uncoated and DLC coated 7075-T6 aluminum alloy, Engineering Failure Analysis, Vol.102,pp. 219-228, 2019

[13] B.E. Bodger, R.T.R. Mcgrann, D.A. Somerville, Plat Surf Finish, pp. 28–31, 1997

[14] 呂承恩, 電鍍鉻-碳表面鍍層之研究, 國防大學理工學院國防科學研究所博士學位論文, 民國102年,pp. 1-7

[15] 方冠權, 郭晃銘, 蔡森南, 鍍膜強化元件機械性質之探討, 經濟部標準檢驗 局台南局, 民國92年, pp. 6

[16] C.E. Lu, N.W. Pu, K.H. Hou, C.C. Tseng, M.D. Ger, The Effect of Formic Acid Concentration on The Conductivity and Corrosion resistance of Chromium Carbide Coatings Electroplated with Trivalent Chromium, Applied Surface Science, Vol. 282, pp. 544-551, 2013

[17] R.P. Renz, J.J. Fortman, E.J. Taylor, M.E. Inman, Electrically Mediated Process for Functional Trivalent Chromium to Replace Hexavalent Chromium: Scale-up for Manufacturing Insertion, Faraday Technology, Vol.315,pp. 383-385, 2002

[18] Y.B. Song, D.T. Chin, Current Efficiency and Polarization Behavior of Trivalent Chromium Electrodeposition Process, Electrochimica Acta, Vol.48,pp. 349-355,2002

[19] Z.M. Tu, Z.L. Yang, J.S. Zhang, M.Z. An, W.L. Li, Cathode Polarization in Trivalent Chromium Plating, Plating and Surface Finishing, Vol.79,pp 79-80,1993

[20] 陳復勝, 螯合劑對三價鉻化成膜影響之研究, 國防大學理工學院化學及材料工程學系化學工程碩士班碩士學位論文, 民國101年, pp. 20-25

[21] L.Maria, J. Irudaya, J. Sathishkumar, B.Kumaragurubaran, P.Gopal, Analysis of Hard Chromium Coating Defects and its Prevention Methods, International Journal of Engineering and Advanced Technology, Vol.2,pp. 427,2013

[22] V.P. Nguyen, T.N. Dang, C.C. Le, D.A. Wang, Effect of Coating Thickness on Fatigue Behavior of AISI 1045 Steel with HVOF Thermal Spray and Hard Chrome Electroplating, Springer, Vol.29,pp. 1968-1981,2020

[23] P.N. Vinh, N.D. Thien, C.L. Chi, Study the Effect of Chrome Coating Thickness to Fatigue Strength of the Axle-Shaped Machine Parts, International Conference on Green Technology and Sustainable Development, 4th, pp. 221-227,2018

[24] J.K. Dennis, T.E. Such, Nickel and chromium plating, 3rd edn. Woodheah Publishing Ltd., Sawston, pp. 218,1993

[25] A. Almotairi, A. Warkentin, Z. Farhat, Mechanical Damage of Hard Chrome Coatings on 416 Stainless Steel, Engineering Failure Analysis,Vol.66,pp. 130-140,2016

[26] 吳翰英, 化學拋光對於7075-T6鋁合金陽極膜層影響之研究, 大同大學
材料工程研究所碩士論文, 民國101年,pp. 6-10

[27] S.Y. Chiu, Y.L. Wang, C.P. Liu, J.K. Lan, C. Ay, M.S. Feng, M.S. Tsai, B.T. Dai, The Application of Electrochemical Metrologies for Investigating Chemical Mechanical Polishing of Al with a Ti Barrier Layer, Materials Chemistry and Physics, Vol.82, pp.444-457,2003

[28] A.W. Fligier, K. Labisz, M.P. Rubiniec, J. Konieczny, Application of Anodization Process for Cast Aluminium Surface Properties Enhancement, Archives of Metallurgy and Materials, Vol.61,pp. 1351-1356,2016

[29] D. Elabar, G.R.L. Monica, M. Santamaria, F.D. Quarto, Anodizing of Aluminium and AA 2024-T3 Alloy in Chromic Acid: Effects of Sulphate on Film Growth, Surface and Coatings Technology, Vol.309, pp. 480-489,2016

[30] W.S. Mare, Anodizing—Its Development, Status, and Future Challenges, Metal Finishing, Vol.100,pp. 59-70,2002

[31] 陳進興, 利用陽極處理法製備氧化鋁奈米管應用於染料敏化太陽能電池, 國立交通大學理學院應用科技學程碩士論文, 民國九十七年,pp. 34

[32] D.A.Wragg, D.P. Davies, S.L. Jenkins, Influence of and Differences between Chromic and Sulphuric Acid Anodising on the Fatigue Properties of 7050 T7451 Aluminium Alloy, International Journal of Fatigue, Vol.163,2022

[33] 朱晨維, 探討多孔陽極氧化鋁薄膜應用於分離溶液回收之研究, 國立台灣科技大學機械工程系 碩士學位論文, 民國110年,pp. 14-15

[34] T.X. Ma, L.Zhao, Y.Yang, L.W. Hu, S.F. Zhang, M.L. Hu, Influence of Anode Current Density on Carbon Parasitic Reactions during Electrolysis, Chinese Journal of Chemical Engineering, Vol.39, pp. 314-319,2021

[35] J. Phys, Theoretical Modelling of Porous Oxide Growth on Aluminium, IOP Science, Vol.25, pp. 1258-1264,1992

[36] O. Jessensky, F. Müller, U. Gösele, Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina, Applied Physics Letters, Vol.72,pp. 1173-1175,1998

[37] 陳晉宇, 陽極氧化參數對陽極氧化鋁微結構影響之研究, 國立高雄第一科技大學電機工程研究所碩士論文, 民國106年, pp. 11

[38] A. P. Li, F. Muller, A. Birner, K. Nielsch, Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by Self-Organization in Anodic Alumina, J. Appl. Phys. Vol.84, pp. 6023-6026,1998

[39] M. Kim, H. Yoo, J. Choi, Non-Nickel-Based Sealing of Anodic Porous Aluminum Oxide in NaAlO2, Surface & Coatings Technology, pp. 1-25,2016

[40] 鄭宗杰, 鋁合金陽極表面處理機能設計與研發研究成果報告, 國立高雄應用科技大學機械工程系碩士班, 民國100年, pp. 7-8

[41] C. Wang, Y.B. Lai, L. Wang, C.L. Wang, Dislocation-Based Study on the Influences of Shot Peening on Fatigue Resistance, Surface & Coatings Technology, Vol.383,pp. 1-15,2020

[42] 鍾宇軒, 微粒子珠擊對304L及316L不銹鋼疲勞及應力腐蝕特性研究,國立臺灣海洋大學光電與材料科技學系碩士班, 民國109年, pp. 15

[43] X.S. Zhang, Y. Ma, M. Yang, W. Huang, Y.L. Peng, Z.H. Wang, Effects of Biaxial Residual Stress Components on Mixed-Mode Fatigue Crack Propagation Behavior in Friction Stir Welded 7075-T6 Aluminium Alloy Panel, Theoretical and Applied Fracture Mechanics, Vol.121,2022

[44] M. Benedetti, V. Fontanari, M. Bandini, E. Savio, High- and Very High-Cycle Plain Fatigue Resistance of Shot Peened High-Strength Aluminum Alloys: The Role of Surface Morphology, International Journal of Fatigue, Vol.70, pp. 451-462, 2015

[45] L.R. Resendiz, V.A. Borrás, A.V. Escuder, S. Elizalde, J.M. Cabrera, D.P. Ruiz, I.A. Figueroa, G. Gonzalez, Effect of the Microstructure Generated by Repetitive Corrugation and Straightening (RCS) Process on the Mechanical Properties and Stress Corrosion Cracking of Al-7075 Alloy, Journal of Materials Research and Technology, Vol.15,pp. 4564-4572,2021

[46] 李思衛, 珠擊加工對 6061-T651、7075-T7351 鋁合金表面形貌及物理特性影響之研究, 崑山科技大學機工程系碩士論文, 民國109年, pp. 6

[47] L.C. Cuong, Development of Automated X-Ray Stress Analyzer and Its Appications in Stress Mesurement of Textured Materials, 長岡技術科技大學博士論文, 2004
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊