[1] R. Winston, E. Ghali., Uhlig's Corrosion Handbook, Aluminum and Aluminum Alloys, New Jersey, 2011
[2] The Aluminum Association
Available:
https://www.aluminum.org/sites/default/files/Teal%20Sheet.pdf , 2021
[3] R. Singh, Aluminum—Rolling (Process, Principles, & Applications) The Minerals, Metals, & Materials Society, Warrendale, pp. 126-137, 2000
[4] 鄭元愷, AA7075 鋁合金與Ti-6Al-4V合金摩擦攪拌銲接微觀組織與機械性質研究, 國立臺灣師範大學科技與工程學院機電工程學系碩士論文,民國 110年,pp. 7-13[5] 梁寶庭, 晶向結構及溫度在7075-T6鋁合金動態塑變行為與結構特性之效應分析, 國立成功大學機械工程學系碩士論文, 民國103年,pp. 3-7[6] J. E. Hatch, Aluminum: properties and physical metallurgy , ASM International, 1984.
[7] K.S. Chan, Roles of microstructure in fatigue crack initiation, International Journal of Fatigue, Vo.l32, pp. 1428–1447, 2010
[8] A.D. Isadare, B. Aremo, M.O. Adeoye, O.J. Olawale, M.D. Shittuc, Effect of Heat Treatment on Some Mechanical Properties of 7075 Aluminium Alloy, Materials Research, Vol.16,pp. 190-194, 2013
[9] 洪榮德, 吳灝展, 劉正賢, 林昆明, 林新智, 7075鋁合金時效處理之研究, pp. 2-4
[10] W. F. Smith, N. J. Grant, The Effect of Multiple-Step Aging on the Strength Properties and Precipitate-Free Zone Widths in AI-Zn-Mg Alloys, Metallurgical Transactions, Vol.1,pp. 2-3, 1970
[11] 李溢芸, 王文雄, 超高強度Al-Zn-Mg-Cu合金的時效析出、機械性質與應力腐蝕特性研究, 台灣大學材料科學與工程學研究所碩士論文, 民國97年, pp. 27-28[12] S. Baragettia, E. Borzini, Ž. Božic, E.V. Arcieri., On the fatigue strength of uncoated and DLC coated 7075-T6 aluminum alloy, Engineering Failure Analysis, Vol.102,pp. 219-228, 2019
[13] B.E. Bodger, R.T.R. Mcgrann, D.A. Somerville, Plat Surf Finish, pp. 28–31, 1997
[14] 呂承恩, 電鍍鉻-碳表面鍍層之研究, 國防大學理工學院國防科學研究所博士學位論文, 民國102年,pp. 1-7[15] 方冠權, 郭晃銘, 蔡森南, 鍍膜強化元件機械性質之探討, 經濟部標準檢驗 局台南局, 民國92年, pp. 6
[16] C.E. Lu, N.W. Pu, K.H. Hou, C.C. Tseng, M.D. Ger, The Effect of Formic Acid Concentration on The Conductivity and Corrosion resistance of Chromium Carbide Coatings Electroplated with Trivalent Chromium, Applied Surface Science, Vol. 282, pp. 544-551, 2013
[17] R.P. Renz, J.J. Fortman, E.J. Taylor, M.E. Inman, Electrically Mediated Process for Functional Trivalent Chromium to Replace Hexavalent Chromium: Scale-up for Manufacturing Insertion, Faraday Technology, Vol.315,pp. 383-385, 2002
[18] Y.B. Song, D.T. Chin, Current Efficiency and Polarization Behavior of Trivalent Chromium Electrodeposition Process, Electrochimica Acta, Vol.48,pp. 349-355,2002
[19] Z.M. Tu, Z.L. Yang, J.S. Zhang, M.Z. An, W.L. Li, Cathode Polarization in Trivalent Chromium Plating, Plating and Surface Finishing, Vol.79,pp 79-80,1993
[20] 陳復勝, 螯合劑對三價鉻化成膜影響之研究, 國防大學理工學院化學及材料工程學系化學工程碩士班碩士學位論文, 民國101年, pp. 20-25[21] L.Maria, J. Irudaya, J. Sathishkumar, B.Kumaragurubaran, P.Gopal, Analysis of Hard Chromium Coating Defects and its Prevention Methods, International Journal of Engineering and Advanced Technology, Vol.2,pp. 427,2013
[22] V.P. Nguyen, T.N. Dang, C.C. Le, D.A. Wang, Effect of Coating Thickness on Fatigue Behavior of AISI 1045 Steel with HVOF Thermal Spray and Hard Chrome Electroplating, Springer, Vol.29,pp. 1968-1981,2020
[23] P.N. Vinh, N.D. Thien, C.L. Chi, Study the Effect of Chrome Coating Thickness to Fatigue Strength of the Axle-Shaped Machine Parts, International Conference on Green Technology and Sustainable Development, 4th, pp. 221-227,2018
[24] J.K. Dennis, T.E. Such, Nickel and chromium plating, 3rd edn. Woodheah Publishing Ltd., Sawston, pp. 218,1993
[25] A. Almotairi, A. Warkentin, Z. Farhat, Mechanical Damage of Hard Chrome Coatings on 416 Stainless Steel, Engineering Failure Analysis,Vol.66,pp. 130-140,2016
[26] 吳翰英, 化學拋光對於7075-T6鋁合金陽極膜層影響之研究, 大同大學
材料工程研究所碩士論文, 民國101年,pp. 6-10
[27] S.Y. Chiu, Y.L. Wang, C.P. Liu, J.K. Lan, C. Ay, M.S. Feng, M.S. Tsai, B.T. Dai, The Application of Electrochemical Metrologies for Investigating Chemical Mechanical Polishing of Al with a Ti Barrier Layer, Materials Chemistry and Physics, Vol.82, pp.444-457,2003
[28] A.W. Fligier, K. Labisz, M.P. Rubiniec, J. Konieczny, Application of Anodization Process for Cast Aluminium Surface Properties Enhancement, Archives of Metallurgy and Materials, Vol.61,pp. 1351-1356,2016
[29] D. Elabar, G.R.L. Monica, M. Santamaria, F.D. Quarto, Anodizing of Aluminium and AA 2024-T3 Alloy in Chromic Acid: Effects of Sulphate on Film Growth, Surface and Coatings Technology, Vol.309, pp. 480-489,2016
[30] W.S. Mare, Anodizing—Its Development, Status, and Future Challenges, Metal Finishing, Vol.100,pp. 59-70,2002
[31] 陳進興, 利用陽極處理法製備氧化鋁奈米管應用於染料敏化太陽能電池, 國立交通大學理學院應用科技學程碩士論文, 民國九十七年,pp. 34[32] D.A.Wragg, D.P. Davies, S.L. Jenkins, Influence of and Differences between Chromic and Sulphuric Acid Anodising on the Fatigue Properties of 7050 T7451 Aluminium Alloy, International Journal of Fatigue, Vol.163,2022
[33] 朱晨維, 探討多孔陽極氧化鋁薄膜應用於分離溶液回收之研究, 國立台灣科技大學機械工程系 碩士學位論文, 民國110年,pp. 14-15[34] T.X. Ma, L.Zhao, Y.Yang, L.W. Hu, S.F. Zhang, M.L. Hu, Influence of Anode Current Density on Carbon Parasitic Reactions during Electrolysis, Chinese Journal of Chemical Engineering, Vol.39, pp. 314-319,2021
[35] J. Phys, Theoretical Modelling of Porous Oxide Growth on Aluminium, IOP Science, Vol.25, pp. 1258-1264,1992
[36] O. Jessensky, F. Müller, U. Gösele, Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina, Applied Physics Letters, Vol.72,pp. 1173-1175,1998
[37] 陳晉宇, 陽極氧化參數對陽極氧化鋁微結構影響之研究, 國立高雄第一科技大學電機工程研究所碩士論文, 民國106年, pp. 11[38] A. P. Li, F. Muller, A. Birner, K. Nielsch, Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by Self-Organization in Anodic Alumina, J. Appl. Phys. Vol.84, pp. 6023-6026,1998
[39] M. Kim, H. Yoo, J. Choi, Non-Nickel-Based Sealing of Anodic Porous Aluminum Oxide in NaAlO2, Surface & Coatings Technology, pp. 1-25,2016
[40] 鄭宗杰, 鋁合金陽極表面處理機能設計與研發研究成果報告, 國立高雄應用科技大學機械工程系碩士班, 民國100年, pp. 7-8
[41] C. Wang, Y.B. Lai, L. Wang, C.L. Wang, Dislocation-Based Study on the Influences of Shot Peening on Fatigue Resistance, Surface & Coatings Technology, Vol.383,pp. 1-15,2020
[42] 鍾宇軒, 微粒子珠擊對304L及316L不銹鋼疲勞及應力腐蝕特性研究,國立臺灣海洋大學光電與材料科技學系碩士班, 民國109年, pp. 15[43] X.S. Zhang, Y. Ma, M. Yang, W. Huang, Y.L. Peng, Z.H. Wang, Effects of Biaxial Residual Stress Components on Mixed-Mode Fatigue Crack Propagation Behavior in Friction Stir Welded 7075-T6 Aluminium Alloy Panel, Theoretical and Applied Fracture Mechanics, Vol.121,2022
[44] M. Benedetti, V. Fontanari, M. Bandini, E. Savio, High- and Very High-Cycle Plain Fatigue Resistance of Shot Peened High-Strength Aluminum Alloys: The Role of Surface Morphology, International Journal of Fatigue, Vol.70, pp. 451-462, 2015
[45] L.R. Resendiz, V.A. Borrás, A.V. Escuder, S. Elizalde, J.M. Cabrera, D.P. Ruiz, I.A. Figueroa, G. Gonzalez, Effect of the Microstructure Generated by Repetitive Corrugation and Straightening (RCS) Process on the Mechanical Properties and Stress Corrosion Cracking of Al-7075 Alloy, Journal of Materials Research and Technology, Vol.15,pp. 4564-4572,2021
[46] 李思衛, 珠擊加工對 6061-T651、7075-T7351 鋁合金表面形貌及物理特性影響之研究, 崑山科技大學機工程系碩士論文, 民國109年, pp. 6[47] L.C. Cuong, Development of Automated X-Ray Stress Analyzer and Its Appications in Stress Mesurement of Textured Materials, 長岡技術科技大學博士論文, 2004