跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/30 18:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何恩綺
研究生(外文):Ho, En-Chi
論文名稱:高靜水壓輔助酵素水解臺灣鯛發酵魚片之水解物中 HMG-CoA 還原酶抑制胜肽的純化與分子對接分析及其降膽固醇的效果
論文名稱(外文):Purification and Molecular Docking Analysis of HMG-CoA Reductase Inhibitory Peptides and Hypocholesterolemic Effect of Hydrolysate from High Hydrostatic Pressure-Assisted Protease Hydrolysis of Fermented Tilapia Fillet
指導教授:陳冠文陳冠文引用關係
指導教授(外文):Chen, Guan-Wen
口試委員:林雨欣黃崇雄林泓廷林家驊
口試委員(外文):Lin, Yu-HsinHuang, Chung-HsiungLin, Hong-TingLin, Chia-Hua
口試日期:2022-07-28
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:110
中文關鍵詞:高靜水壓加工商業酵素混合乳酸發酵HMG-CoA reductase活性胜肽降血脂作用
外文關鍵詞:high hydrostatic pressure processinghypocholesterolemic effectactive peptideslactic acid fermentationHMG-CoA reductase
相關次數:
  • 被引用被引用:2
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
摘要……………………………………………………………………………………I
Abstract………………………………………………………………………………III
目錄………………………………………………………………………………...…V
圖目錄……………………………………………………………………………...VIII
表目錄………………………………………………………………………………..IX
附錄…………………………………………………………………………………...X
壹、前言 1
貳、文獻整理 3
一、臺灣鯛 3
1.1 臺灣鯛之簡介 3
1.2臺灣鯛之現狀 3
二、臺灣鯛之生理活性 3
2.1 抗氧化 3
2.2 降血壓 4
2.3 調節血糖 4
2.4 促進鈣吸收 4
三、備蛋白質之水解物………………………………………………………………4
3.1 蛋白質水解方法 4
3.1.1 化學水解法 4
3.1.2 酵素水解法 4
3.1.3 微生物發酵 5
四、乳酸菌發酵 5
五、高靜水壓加工技術 (High hydrostatic pressure, HHP) 6
5.1 保水性測試 6
5.2 抑制微生物 6
5.3活性胜肽之萃取 7
5.4 活性胜肽之生理活性 7
5.4.1 抗高血壓 7
5.4.2 抗氧化 7
5.4.3 降血脂 8
六、心血管疾病 9
6.1 血脂………………………………………………………………………………..9
6.2 高血脂症 (Hyperlipidemia) 10
6.3 高血脂症治療方式 10
6.4 食品中活性胜肽可能降血脂之機制 11
七、高脂飲食誘導肥胖之降血脂動物實驗 11
參、研究架構 13
肆、材料方法 14
一、實驗材料………………………………………………………………………..14
1.1 吳郭魚 (Oreochromis niloticus) 14
1.2 蛋白質分解酵素 14
1.3 乳酸菌 14
1.4 試劑 14
1.5實驗動物與飼料 15
二、實驗方法………………………………………………………………………..16
2.1 臺灣鯛魚漿的前製備……………………………………………………………16
2.2 常壓及高靜水壓輔助酵素水解臺灣鯛之水解物的製備………………………16
2.3 高壓輔助酵素水解臺灣鯛菲力的製備…………………………………………16
2.4 不同壓力短時間水解臺灣鯛菲力的製備………………………………………16
2.5 乳酸菌發酵之 pH 值及菌數的測定…………………………………………….16
2.6 pH 值之測定……………………………………………………………………..17
2.7 體外腸胃道消化試驗……………………………………………………………17
2.8 可溶性固形物含量測定…………………………………………………………17
2.9 利用率與凍乾產率………………………………………………………………17
2.10 游離胺基酸含量………………………………………………………………..18
2.11 可溶性蛋白含量………………………………………………………………..18
2.12 胜肽之測定……………………………………………………………………..18
2.12.1 o-Phthaldialdehyde 混合溶液的配製……………………………………..….18
2.12.2 胜肽含量測定………………………………………………………………...19
2.13 蛋白質水解率的測定…………………………………………………………..19
2.14 HMG-CoA reductase 抑制能力測定……………………………………..…….19
2.14.1 HMG-CoA Reductase 之 IC50 值………………………………………..……20
2.15 抑制 HMG-CoA reductase 之胜肽序列的純化與鑑定…………………..……20
2.15.1 膠體層析過濾………………………………………………………………...20
2.15.2 劃分物對 HMG-CoA reductase 抑制活性之測定………………..………….20
2.15.3 高效液相層析的純化分離…………………………………………………...21
2.15.4 胜肽序列鑑定………………………………………………………………...21
2.16 分子對接………………………………………………………………………..22
2.17 動物實驗………………………………………………………………………..22
2.17.1 動物飼養……………………………………………………………………...22
2.17.2 血漿分析……………………………………………………………………...23
2.17.3 肝臟分析……………………………………………………………………...23
2.17.4 糞便分析……………………………………………………………………...24
2.18 統計分析………………………………………………………………………..25
伍、結果與討論 26
陸、結論 45
柒、參考文獻 46
捌、圖表 56
玖、附錄 91
田仲安。2019。高靜水壓輔助酵素水解吳郭魚發酵副產物之血管收縮素轉換酶抑制胜肽的純化與降血壓效果。國立臺灣海洋大學食品科學系碩士論文。基隆。臺灣。
行政院衛生福利部國健署。2019。國人三高盛行率。臺北。臺灣。
李季華。2019。高淨水壓輔助蛋白酶水解鱸魚發酵副產物對降血壓效果。國立海洋大學食品科學系碩士論文。基隆。臺灣。
李姵誼。2021。高靜水壓輔助蛋白酶水解藍鯊發酵魚皮對降膽固醇的影響。國立臺灣海洋大學食品科學系碩士論文。基隆。臺灣。
林雨欣。2011。蜆肉蛋白質水解物與龍鬚菜之組合物對降血膽固醇的效果。國立臺灣海洋大學食品科學系博士論文。基隆。臺灣。
林翊琪。2021。高靜水壓輔助蛋白酶水解發酵黃豆渣水解物對降膽固醇的影響。國立臺灣海洋大學食品科學系碩士論文。基隆。臺灣。
張國瑞、張靜、王立君、江平、杜超、張軍惠。2020。高血壓合併心絞痛患者頸動脈內膜中膜厚度與脂蛋白相關磷脂酶 A2、炎性因子、T 淋巴細胞及血管內皮功能的關係研究。實用心腦肺血管病雜誌。
陳玉真。2004。乳酸菌發酵吳郭魚保健食品產製技術及生理活性之探討。國立臺灣海洋大學食品科學系碩士論文。基隆。臺灣。
陳復生、張雪、錢向明。2005。概述食品超高壓加工技術。化學工業出版社。
黃莉雯。2019。高靜水壓輔助酵素水解鱸魚發酵副產物對降低膽固醇的效果。國立臺灣海洋大學食品科學系碩士論文。基隆。臺灣。
楊孟璇。2019。高靜水壓輔助酵素水解螺旋藻發酵產物對羥甲基戊二酸單醯輔酶A 還原酶之抑制活性的影響。國立臺灣海洋大學食品科學系碩士論文。基隆。臺灣。
楊竣翔。2014。難消化性麥芽糊精與白腎豆萃取物對高脂飲食大白鼠醣類脂質。國立臺灣海洋大學食品科學系碩士論文。基隆。臺灣。
漁業署。2020。臺灣漁業統計年報。https://www.fa.gov.tw/cht/PublicationsFishYear/

Al-Ruwaih, N.; Ahmed, J.; Mulla, M. F.; Arfat, Y. A. High-pressure assisted enzymatic proteolysis of kidney beans protein isolates and characterization of hydrolysates by functional, structural, rheological and antioxidant properties. LWT-Food Science and Technology. 2019, 100, 231-236.
Altschul, R.; Hoffer, A.; Stephen, J. D. Influence of nicotinic acid on serum cholesterol in man. Archives of Biochemistry. 1995, 54, 558-559.
AOAC. Official methods of analysis of the association of official analytical chemists. 1990, 16th Edition. Sidney, W. (Eds.), Washington D.C., U.S.A.
Asokan, S. M.; Wang, T.; Wang, M. F.; Lin, W. T. A novel dipeptide from potato protein hydrolysate augments the effects of exercise training against high-fat diet-induced damages in senescence-accelerated mouse-prone 8 by boosting pAMPK/SIRT1/PGC-1α/pFOXO3 pathway. Aging (Albany NY). 2020, 12, 7334.
Ballantyne, C. M.; Andrews, T. C.; Hsia, J. A.; Kramer, J. H.; Shear, C.; ACCESS Study Group. Correlation of non-high-density lipoprotein cholesterol with apolipoprotein B: Effect of 5 hydroxymethylglutaryl coenzyme A reductase inhibitors on non-high-density lipoprotein cholesterol levels. The American Journal of Cardiology. 2001, 88, 265-269.
Bhujel, R. C.; Suharman, I. Food and nutrition security in the context of COVID-19 and the potential role of tilapia aquaculture. Earth and Environmental Science. 2021, 695, 12023.
Bingtong, L.; Yongliang, Z.; Liping, S. Identification and characterization of the peptides with calcium‐binding capacity from tilapia (Oreochromis niloticus) skin gelatin enzymatic hydrolysates. Journal of Food Science. 2020, 85, 114-122.
Boachie, R.; Yao, S.; Udenigwe, C. C. Molecular mechanisms of cholesterol-lowering peptides derived from food proteins. Current Opinion in Food Science. 2018, 20, 58-63.
Bouchier, P.; O'cuinn, G.; Harrington, D.; FitzGerald, R. Debittering and hydrolysis of a tryptic hydrolysate of β‐casein with purified general and proline specific aminopeptidases from lactococcus lactis ssp. cremoris AM2. Journal of Food Science. 2001, 66, 816-820.
Butz, P.; A. Fernandez Garcia.; R. Lindauer.; S. Dieterich.; A. Bognar. B. Influence of ultra high pressure processing on fruit and vegetable products. Journal of Food Engineering. 2003, 56, 233-236.
Chen, G. W.; Lin, H. T. V.; Huang, L. W.; Lin, C. H.; Lin, Y. H. Purification and Identification of Cholesterol Micelle Formation Inhibitory Peptides of Hydrolysate from High Hydrostatic Pressure-Assisted Protease Hydrolysis of Fermented Seabass Byproduct. International Journal of Molecular Sciences. 2021, 22, 5295.
Chen, G. W.; Tsai, J. S.; Pan, B. S. Purification of angiotensin I-converting enzyme inhibitory peptides and antihypertensive effect of milk produced by protease- facilitated lactic fermentation. International Dairy Journal. 2007, 17, 641-647.
Chen, G. W.; Yang, M. H. Production and Purification of Novel Hypocholesterolemic Peptides from Lactic Fermented Spirulina platensis through High Hydrostatic Pressure-Assisted Protease Hydrolysis. Catalysts. 2021, 11, 873.
Cheung, H. S.; Wang, F. L.; Ondetti, M. A.; Sabo, E. F.; Cushman, D. W. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. Journal of Biological Chemistry. 1980, 25, 401-407.
Church, F. C.; Swaisgood, H. E.; Porter, D. H.; Catignani, G. L. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science. 1983, 66, 1219-1227.
DeBose-Boyd, R.A. Feedback regulation of cholesterol synthesis: Stero-accelerated ubiquitination and degradation of HMG-CoA reductase. Cell Research. 2008, 18, 609-621.
Doi, E.; Shibata, D.; Matoba, T. Modified colorimetric ninhydrin methods for peptidase assay. Analytical Biochemistry. 1981, 118, 173-184.
Ducrocq, G.; Gonzalez-Juanatey, J. R.; Puymirat, E.; Lemesle, G.; Cachanado, M.; Durand-Zaleski, I. Effect of a restrictive vs liberal blood transfusion strategy on major cardiovascular events among patients with acute myocardial infarction and anemia: The REALITY Randomized Clinical Trial. The Journal of the American Medical Association. 2021, 325, 552-560.
E Silva, M. B. D. C.; Da Cruz Souza, C. A.; Philadelpho, B. O.; Da Cunha, M. M. N.; Batista, F. P. R.; Da Silva, J. R.; Druzian, J. I.; Castilho, M. S.; Cilli, E. M.; Ferreira, E. S. In vitro and in silico studies of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitory activity of the cowpea Gln-Asp-Phe peptide. Food Chemistry. 2018, 259, 270-277.
Eisenmenger, M. J.; Reyes-De-Corcuera, J. I. High pressure enhancement of enzymes: A Review. Enzyme and Microbial Technology. 2009, 45, 331-347.
Elias, R. J.; Kellerby, S. S.; Decker, E. A. Antioxidant activity of proteins and peptides. Critical Reviews In Food Science and Nutrition. 2008, 48, 430-441.
FAO. 2018. http://www.fao.org/fishery/species/2018/en
FAO. 2020b.GlobalFish.http://www.fao.org/in-ction/globefish/marketreports/resource-detail/en/c/1271712/
Feng, Y. X.; Ruan, G. R.; Jin, F.; Xu, J.; Wang, F. J. Purification, identification, and synthesis of five novel antioxidant peptides from Chinese chestnut (Castanea mollissima Blume) protein hydrolysates. Food Science and Technology. 2018, 92, 40-46.
Fontán, M. C. G.; Martínez, S.; Franco, I.; Carballo, J. Microbiological and chemical changes during the manufacture of Kefir made from cows’ milk, using a commercial starter culture. International Dairy Journal. 2006, 16, 762-767.
Franck, M.; Perreault, V.; Suwal, S.; Marciniak, A.; Bazinet, L.; Doyen, A. High hydrostatic pressure-assisted enzymatic hydrolysis improved protein digestion of flaxseed protein isolate and generation of peptides with antioxidant activity. Food Research International. 2019, 115, 467-473.
Frerot, E.; Chen, T. Identification and quantitation of new glutamic acid derivatives in soy sauce by UPLC/MS/MS. Chemistry and Ciodiversity. 2013, 10, 1842-1850.
Frister, H.; Meisel, H.; Schlimme, E. OPA method modified by use of N, N-dimethyl-2-mercaptoethylammonium chloride as thiol component. Fresenius' Zeitschrift Fuer Analytische Chemie. 1988, 330, 631-633.
Ganji, S. H.; Kamanna, V. S.; Kashyap, M. L. Niacin and cholesterol: role in cardiovascular disease. The Journal of Nutritional Biochemistry. 2003, 14, 298-305.
Garcia-Mora, P.; Peñas, E.; Frías, J.; Gomez, R.; Martinez-Villaluenga, C. High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins. Food Chemistry. 2015, 171, 224-232.
Garcia-Mora, P.; Penas, E.; Frias, J.; Zielinski, H.; Wiczkowski, W.; Zielinska, D.; Martinez-Villaluenga, C. High-pressure-assisted enzymatic release of peptides and phenolics increases angiotensin converting enzyme I inhibitory and antioxidant activities of pinto bean hydrolysates. Journal of Agricultural and Food Chemistry. 2016, 64, 1730-1740.
George, J. M.; Selvan, T. S.; Rastogi, N. K. High-pressure-assisted infusion of bioactive compounds in apple slices. Innovative Food Science and Emerging Technologies. 2016, 33, 100-107.
Gil-Ramírez, A.; Ruiz-Rodríguez, A.; Marín, F. R.; Reglero, G.; Soler-Rivas, C. Effect of ergosterol-enriched extracts obtained from Agaricus bisporus on cholesterol absorption using an in vitro digestion model. Journal of Functional Foods. 2014, 11, 589-597.
Gojda, J.; Cahova, M. Gut microbiota as the link between elevated BCAA serum levels and insulin resistance. Biomolecules. 2021, 11, 1414.
Grundy, S. M.; Stone, N. J. 2018 American Heart Association/American College of Cardiology/Multisociety Guideline on the Management of Blood Cholesterol–Secondary Prevention. JAMA Cardiology. 2019,4, 589-591.
Guan, H.; Diao, X.; Jiang, F.; Han, J.; Kong, B. The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates. Food Chemistry. 2018, 245, 89-96.
Guérard, F.; Sumaya‐Martinez, M. T. Antioxidant effects of protein hydrolysates in the reaction with glucose. Journal of the American Oil Chemists' Society. 2003, 80, 467-470.
Habibi‐Najafi, M. B.; Lee, B. H.; Law, B. Bitterness in cheese: A Review. Critical Reviews in Food Science and Nutrition. 1996, 36, 397-411.
Hafidz, K. A.; Puspitasari, N.; Azminah, A. Y.; Artha, Y.; Mun’im, A. HMG-CoA Reductase inhibitory activity of Gnetum gnemon seed extract and identification of potential inhibitors for lowering cholesterol level. Journal of Young Pharmacists. 2017, 9, 559.
Hartmann, R.; Meisel, H. Food-derived peptides with biological activity: from research to food applications. Current Opinion in Biotechnology. 2007, 18, 163-169.
Hemker, A. K.; Nguyen, L. T.; Karwe, M.; Salvi, D. Effects of pressure-assisted enzymatic hydrolysis on functional and bioactive properties of tilapia (Oreochromis niloticus) by-product protein hydrolysates. Food Science and Technology. 2020, 122, 109003.
Heo, W.; Lee, E. S.; Cho, H. T.; Kim, J. H.; Lee, J. H.; Yoon, S. M.; Kim, Y. J. Lactobacillus plantarum LRCC 5273 isolated from Kimchi ameliorates diet-induced hypercholesterolemia in C57BL/6 mice. Bioscience Biotechnology and Biochemistry. 2018, 82, 1964-1972.
Howard, A.; Udenigwe, C. C. Mechanisms and prospects of food protein hydrolysatesand peptide-induced hypolipidaemia. Food and Function. 2013, 4, 40-51.
Huang, C. Y.; Tsai, Y. H.; Hong, Y. H.; Hsieh, S. L.; Huang, R. H. Characterization and antioxidant and angiotensin I-converting enzyme (ACE)-inhibitory activities of gelatin hydrolysates prepared from extrusion-pretreated milkfish (Chanos chanos) scale. Marine Drugs. 2018, 16, 346.
Huang, H. W.; Wu, S. J.; Lu, J. K.; Shyu, Y. T.; Wang, C. Y. Current status and future trends of high-pressure processing in food industry. Food Control. 2017, 72, 1-8.
Hurt-Camejo, E. ANGPTL3, PCSK9, and statin therapy drive remarkable reductions in hyperlipidemia and atherosclerosis in a mouse model. Journal of Lipid Research. 2020, 61, 272.
Inoue, N.; Nagao, K.; Sakata, K.; Yamano, N.; Gunawardena, P. E. R.; Han, S. Y.; Yanagita, T. Screening of soy protein-derived hypotriglyceridemic di-peptides in vitro and in vivo. Lipids in Health and Disease. 2011, 10, 1-10.
Insull Jr, W. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. Southern Medical Journal. 2006, 99, 257-274.
Karr, S. Epidemiology and management of hyperlipidemia. The American Journal of Managed Care. 2017, 23, 139-148.
Kim, P. B.; Klanian, M. G.; Seijo, J. C. Effect of size heterogeneity of Nile tilapia (Oreochromis niloticus) on the optimal harvest time: A bioeconomics approach. Latin American Journal of Aquatic Research. 2020, 48, 65-73.
Kim, S. E.; Kim, H. H.; Kim, J. Y.; Im Kang, Y.; Woo, H. J.; Lee, H. J. Anticancer activity of hydrophobic peptides from soy proteins. Biofactors. 2000, 12, 151-155.
Koning, A. J.; Roberts, C. J.; Wright, R. L. Different subcellular localization of Saccharomyces cerevisiae HMG-CoA reductase isozymes at elevated levels corresponds to distinct endoplasmic reticulum membrane proliferations. Molecular Biology of the Cell. 1996, 7, 769-789.
Koyama, D.; Sun, X.; Sasai, M.; Matsumura, S.; Inoue, K.; Ohinata, K. Ser-Tyr and Asn-Ala, vasorelaxing dipeptides found by comprehensive screening, reduce blood pressure via different age-dependent mechanisms. Aging (Albany NY). 2019, 11, 9492.
Krečak, I.; Holik, H.; Martina, M. P.; Zekanović, I.; Coha, B.; Gverić-Krečak, V. Chronic kidney disease could be a risk factor for thrombosis in essential thrombocythemia and polycythemia vera. International Journal of Hematology. 2020, 112, 377-384.
Kristinsson, H. G.; Rasco, B. A. Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition. 2000, 40, 43-81.
Lampart-Szczapa, E.; Konieczny, P.; Nogala-Kałucka, M.; Walczak, S.; Kossowska, I.; Malinowska, M. Some functional properties of lupin proteins modified by lactic fermentation and extrusion. Food Chemistry. 2006, 96, 290-296.
Larsson, K.; Mattsson, M.; Ebrahim, F.; Glimelius, I.; Höglund, M. High prevalence and incidence of cardiovascular disease in chronic lymphocytic leukaemia: a nationwide population-based study. British Journal of Haematology. 2020, 190, 245-248.
Li, D.; Liu, F.; Wang, X.; Li, X. Apple polyphenol extract alleviates high-fat-diet-induced hepatic steatosis in male C57BL/6 mice by targeting LKB1/AMPK pathway. Journal of Agricultural and Food Chemistry. 2019, 67, 12208-12218.
Lin, J. D.; Lin, P. Y.; Chen, L. M.; Fang, W. H.; Lin, L. P.; Loh, C. H. Serum glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) levels in children and adolescents with intellectual disabilities. Research in Developmental Disabilities. 2010, 31, 172-177.
Lin, Y. H.; Tsai, J. S.; Chen, G. W. Purification and identification of hypocholesterolemic peptides from freshwater clam hydrolysate with in vitro gastrointestinal digestion. Journal of Food Biochemistry. 2018, 41, 12385.
Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 1951, 193, 265-275.
Luo, J.; Yang, H.; Song, B. L. Mechanisms and regulation of cholesterol homeostasis. Nature Reviews Molecular Cell Biology. 2020, 21, 225-245.
Ma, H.; Zhang, B.; Hu, Y.; Wang, J.; Liu, J.; Qin, R. Correlation analysis of intestinal redox state with the gut microbiota reveals the positive intervention of tea polyphenols on hyperlipidemia in high fat diet fed mice. Journal of Agricultural and Food Chemistry. 2019, 67, 7325–7335.
Marciniak, A.; Suwal, S.; Naderi, N.; Pouliot, Y.; Doyen, A. Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science and Technology. 2018, 80, 187-198.
Meyer, R. S.; K. L. Cooper, D. Knorr.; H. L. M. Lelieveld. High-pressure sterilization of foods. Food Technology. 2000, 54, 67-70.
Michelato, M.; Oliveira Vidal, L. V.; Xavier, T. O.; Moura, L. B.; Almeida, F. L. A.; Pedrosa, V. B.; Furuya, W. M. Dietary lysine requirement to enhance muscle development and fillet yield of finishing Nile tilapia. Aquaculture. 2016, 457, 124-130
Mirdhayati, I.; Hermanianto, J.; Wijaya, C. H.; Sajuthi, D.; Arihara, K. Angiotensin converting enzyme (ACE) inhibitory and antihypertensive activities of protein hydrolysate from meat of kacang goat (Capra aegagrus hircus). Journal of the Science of Food and Agriculture. 2016, 96, 3536-3542.
Morita, T.; Oh-hashi, A.; Takei, K.; Ikai, M.; Kasaoka, S.; Kiriyama, S. Cholesterol-lowering effects of soybean, potato and rice proteins depend on their low methionine contents in rats fed a cholesterol-free purified diet. The Journal of Nutrition. 1997, 127, 470-477.
Nazir, M. A.; Mu, T. H.; Zhang, M. Preparation and identification of angiotensin I‐converting enzyme inhibitory peptides from sweet potato protein by enzymatic hydrolysis under high hydrostatic pressure. International Journal of Food Science and Technology. 2020, 55, 482-489.
Nishiwaki, T.; Yoshimizu, S.; Furuta, M.; Hayashi, K. Debittering of enzymatic hydrolysates using an aminopeptidase from the edible basidiomycete Grifola frondosa. Journal of Bioscience and Bioengineering. 2002, 93, 60-63.
Noman, A.; Xu, Y.; AL-Bukhaiti, W. Q.; Abed, S. M.; Ali, A. H.; Ramadhan, A. H.; Xia, W. Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochemistry. 2018, 67, 19-28.
Opie, L.H.; Frishman, W.H.; Thadani, U. Angiotensin-converting enzyme inhibitors and conventional vasodilators. Drugs for the Heart, 1994, 105-143.
Peres, H.; Freitas, J. M. A.; Carvalho, P. L. P.; Furuya, W. M.; Satori, M. M. P.; Oliva-Teles, A.; Barros, M. M. Growth performance and metabolic responses of Nile tilapia fed diets with different protein to energy ratios. Aquaculture. 2021, 737493.
Peterson, G. L. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Analytical Biochemistry. 1979, 100, 201-220.
Ram, H.; Jaipal, N.; Charan, J.; Kashyap, P.; Kumar, S.; Tripathi, R.; Singh, B. P.; Siddaiah, C. N.; Hashem, A.; Abd Allah, E. F. Phytoconstituents of an ethanolic pod extract of prosopis cineraria triggers the inhibition of HMG-CoA reductase and the regression of atherosclerotic plaque in hypercholesterolemic rabbits. Lipids in Health and Disease. 2020, 19, 6.
Rao, A. V.; Ramakrishnan, S. Indirect assessment of hydroxymethylglutaryl-CoA reductase (NADPH) activity in liver tissue. Clinical Chemistry. 1975, 21, 1523-1525.
Raveschot, C.; Cudennec, B.; Coutte, F.; Flahaut, C.; Fremont, M.; Drider, D.; Dhulster, P. Production of bioactive peptides by Lactobacillus species: From gene to application. Frontiers in Microbiology. 2018, 9, 2354.
Redondo-Cuenca, A.; Villanueva-Suárez, M. J.; Mateos-Aparicio, I. Soybean seeds and its by-product okara as sources of dietary fibre. Measurement by AOAC and Englyst methods. Food Chemistry. 2008, 108, 1099-1105.
Ruiz, J. Á. G.; Ramos, M.; Recio, J. Angiotensin converting enzyme inhibitory activity of peptides isolated from Manchego cheese. stability under simulated gastrointestinal digestion. International Dariy Journal. 2004, 14, 1075-1080.
Sanchez-Rodriguez E.; Egea-Zorrilla A.; Plaza-Díaz J.; Aragón-Vela J.; Muñoz-Quezada S.; Tercedor-Sánchez L. The gut microbiota and its implication in the development of atherosclerosis and related cardiovascular diseases. Nutrients. 2020, 12, 605.
Schonewille, M.; de Boer, J. F.; Mele, L.; Wolters, H.; Bloks, V. W.; Wolters, J. C.; Groen, A. K. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice. Journal of Lipid Research. 2016, 57, 1455-1464.
Sentandreu, M. A.; Toldrá, F. Oligopeptides hydrolysed by muscle dipeptidyl peptidases can generate angiotensin-I converting enzyme inhibitory dipeptides. European Food Research and Technology. 2007, 224, 785-790.
Sheng, L.; Wang, L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Comprehensive Reviews in Food Science and Food Safety. 2021, 20, 738-786.
Sierra, L.; Fan, H.; Zapata, J.; Wu, J. Antioxidant peptides derived from hydrolysates of red tilapia (Oreochromis sp.) scale. LWT-Food Science and Technology. 2021, 146, 111631.
Silva, M.,; Philadelpho, B.; Santos, J.; Souza, V.; Souza, C.; Santiago, V.; Ferreira, E. IAF, QGF, and QDF peptides exhibit cholesterol-lowering activity through a statin-like HMG-CoA reductase regulation mechanism: In silico and in vitro approach. International Journal of Molecular Sciences. 2021, 22, 11067.
Soares, R. A. M.; Mendonça, S.; de Castro, L. Í. A.; Menezes, A. C. C. C. C.; Arêas, J. A. G. Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity. International Journal of Molecular Sciences. 2015, 16, 4150-4160.
Stamler, J.; Elliott, P.; Kesteloot, H.; Nichols, R.; Claeys, G.; Dyer, A. R.; Stamler, R. Inverse relation of dietary protein markers with blood pressure: findings for 10 020 men and women in the INTERSALT study. Circulation. 1996, 94, 1629-1634.
Stefanadis C. Flavonoids in Atherosclerosis: An Overview of Their Mechanisms of Action. Current Medicinal Chemistry. 2013, 20, 2641-2660.
Stewart, J.; McCallin, T.; Martinez, J.; Chacko, S.; Yusuf, S. Hyperlipidemia. 2020, Pediatrics in Review, 41, 393-402.
Sunwoo, H. H.; Gujral, N.; Huebl, A. C.; Kim, C. T. Application of high hydrostatic pressure and enzymatic hydrolysis for the extraction of ginsenosides from fresh ginseng root (Panax ginseng CA Myer). Food and Bioprocess Technology. 2014, 7, 1246-1254.
Suwal, S.; Perreault, V.; Marciniak, A.; Tamigneaux, É.; Deslandes, É.; Bazinet, L.; Jacques, H.; Beaulieu, L.; Doyen, A. Effects of high hydrostatic pressure and polysaccharidases on the extraction of antioxidant compounds from red macroalgae, Palmaria Palmata and Solieria Chordalis. Journal of Food Engineering. 2019, 252, 53-59.
Tavano, O. L.; Berenguer‐Murcia, A.; Secundo, F.; Fernandez‐Lafuente, R. Biotechnological applications of proteases in food technology. Comprehensive Reviews in Food Science and Food Safety. 2018, 17, 412-436.
Thompson, P. D.; Clarkson, P.; Karas, R. H. Statin-associated myopathy. The Journal of the American Medical Association. 2003, 289, 1681-1690.
Thorp, J. M.; Waring, W. S. Modification of metabolism and distribution of lipids by ethyl chlorophenoxyisobutyrate. Nature. 1962, 194, 948-949.
Toopcham, T.; Mes, J. J.; Wichers, H. J.; Roytrakul, S.; Yongsawatdigul, J. Bioavailability of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from Virgibacillus halodenitrificans SK1-3-7 proteinases hydrolyzed tilapia muscle proteins. Food Chemistry. 2017, 220, 190-197.
Tortorella, V.; Masciari, P.; Pezzi, M.; Mola, A.; Tiburzi, S. P.; Zinzi, M. C.; Verre, M. Histamine poisoning from ingestion of fish or scombroid syndrome. Case Reports in Emergency Medicine. 2014, 2014.
Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. 2010, 31, 455-461.
Tsai, J. S.; Chen, T. J.; Pan, B. S.; Gong, S. D.; Chung, M. Y. Antihypertensive effect of bioactive peptides produced by protease-facilitated lactic acid fermentation of milk. Food Chemistry. 2008, 106, 552-558.
Ueda, Y.; Yonemitsu, M.; Tsubuku, T.; Sakaguchi, M.; Miyajima, R. Flavor characteristics of glutathione in raw and cooked foodstuffs. Bioscience, Biotechnology, and Biochemistry. 1997, 61, 1977-1980.
Velmurugan, G.; Dinakaran, V.; Rajendhran, J.; Swaminathan, K. Blood microbiota and circulating microbial metabolites in diabetes and cardiovascular disease. Trends in Endocrinology and Metabolism. 2020, 31, 835-847.
Wang, W.; De Mejia, E. G. A new frontier in soy bioactive peptides that may prevent age‐related chronic diseases. Comprehensive Reviews in Food Science and Food Safety. 2005, 4, 63-78.
Wergedahl, H.; Liaset, B.; Gudbrandsen, O. A.; Lied, E.; Espe, M.; Muna, Z.; Berge, R. K. Fish protein hydrolysate reduces plasma total cholesterol, increases the proportion of HDL cholesterol, and lowers acyl-CoA: cholesterol acyltransferase activity in liver of Zucker rats. The Journal of Nutrition. 2004, 134, 1320-1327.
World Health Organization. Cardiovascular disease. 2019. http://www. who. int/cardiovascular_diseases/en/.
Wu, J. P.; Ding, X. L. Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Research International. 2002, 35, 367-375.
Wu, R.; Yu, M.; Liu, X.; Meng, L.; Wang, Q.; Xue, Y.; Yue, X. Changes in flavour and microbial diversity during natural fermentation of suan-cai, a traditional food made in Northeast China. International Journal of Food Microbiology. 2015, 211, 23-31.
Xu, F.; Yu, H.; Lu, C.; Chen, J.; Gu, W. The cholesterol-lowering effect of alisol acetates based on HMG-CoA reductase and its molecular mechanism. Evidence-Based Complementary and Alternative Medicine. 2016, 2016.
Zhang, R.; Chen, J.; Jiang, X.; Yin, L.; Zhang, X. Antioxidant and hypoglycaemic effects of tilapia skin collagen peptide in mice. International Journal of Food Science and Technology. 2016, 51, 2157-2163.
Zhang, X.; Shi, W.; He, H.; Cao, R.; Hou, T. Hypolipidemic effects and mechanisms of Val-Phe-Val-Arg-Asn in C57BL/6J mice and 3T3-L1 cell models. Journal of Functional Foods. 2020, 73, 104100. 
電子全文 電子全文(網際網路公開日期:20270812)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊