跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/16 11:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張秉鈞
研究生(外文):Zhang, Bing-Jun
論文名稱:基於觀測器架構之混沌系統同步化設計
論文名稱(外文):Observer-Based Synchronization of Chaotic Systems
指導教授:鄭振發
指導教授(外文):Cheng, Cheng-Fa
口試委員:吳政郎朱子文鄭振發
口試委員(外文):Wu, Jenq-LangChu, Tzyy-WenCheng, Cheng-Fa
口試日期:2022-01-18
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:通訊與導航工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:37
中文關鍵詞:混沌同步區間觀測器安全通訊有限時間
外文關鍵詞:Chaotic synchronizationInterval observerSecure communicationFinite time
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究基於觀測器架構的混沌主從系統的同步問題。為了使主系統與從系統在指定的區間內達成同步,提出了三種觀測器方案以及從策略。首先,同步區間將在雙觀測器方案指定的時間後重合。接著,修改觀測器方案和從策略,將同步區間限制在指定的時間段內。然後,將雙觀測器方案改為單觀測器方案,將同步區間限制在指定時間點上。最後以一混沌金融系統為例,透過MATLAB模擬提出的觀測器方案,驗證了該方案在混沌同步上的可行性。
This thesis researches the synchronization problem of chaotic master-slave systems based on the observer. In order to synchronize the master system and the slave system within the specified interval, three observer schemes and slave strategies are proposed. First the synchronization interval will coincide after a specified time by the dual-observer scheme. Next, modify the observer scheme and the slave strategy, limiting the synchronization interval in a specified time period. Then, change the dual-observer scheme to single observer scheme, limiting the synchronization interval at the specified time point. Finally, taking a chaotic financial system as an example, the observer schemes proposed through MATLAB simulation verifies the feasibility of the schemes in chaotic synchronization.
摘要..........................................................I
Abstract....................................................II
致謝........................................................III
Contents....................................................IV
List of Figures..............................................V
List of Tables..............................................VI
Chapter 1.Introduction.......................................1
1-1 Backgrounds...........................................1
1-2 Motivations...........................................3
1-3 Research Purpose and Method...........................3
1-4 Organization of the Thesis............................3
Chapter 2.Chaos System.......................................5
2-1 Introduction of Chaos.................................5
2-2 Definition of Chaos...................................5
2-3 Chaotic System Model..................................8
2-4 Synchronization of the Chaotic System................12
Chapter 3.Secure Communication..............................13
3-1 Chaotic Communication System.........................13
3-2 Cryptography.........................................14
Chapter 4.Finite Time Synchronization.......................17
4-1 System Description and Problem Formulation...........17
4-2 Finite Time Observer Design..........................19
Chapter 5.Simulation Results................................24
Chapter 6.Conclusions and Future Work.......................34
6-1 Conclusions..........................................34
6-2 Future Work..........................................34
References..................................................35
[1]E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, vol. 20, pp. 130-141, 1963.
[2]E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Physical Review Letters, vol. 64, no. 11, pp. 1196-1199, 1990.
[3]L. M. Pecora and T. L. Carroll, “Synchronization in chaotic system,” Physical Review Letters, vol. 64, no. 8, pp. 821-824, 1990.
[4]L. J. Yin, Z. H. Deng, B. Y. Huo, and Y. Q. Xia, “Finite-time synchronization for chaotic gyros systems with terminal sliding mode control,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 6, pp. 1131-1140, 2019.
[5]V. N. Giap, Q. D. Nguyen, and S. C. Huang, “Synthetic adaptive fuzzy disturbance observer and sliding-mode control for chaos-based secure communication systems,” IEEE Access, vol. 9, pp. 23907-23928, 2021.
[6]V. H. P. Rodrigues, T. R. Oliveira, and J. P. V. S. Cunha, “Globally stable synchronization of chaotic systems based on norm observers connected in cascade,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 9, pp. 883-887, 2016.
[7]T. J. Wang, D. C. Wang, and K. J. Wu, “Chaotic adaptive synchronization control and application in chaotic secure communication for industrial internet of things,” IEEE Access, vol. 6, pp. 8584-8590, 2018.
[8]R. Behinfaraz and M. A. Badamchizadeh, “Synchronization of different fractional-ordered chaotic systems using optimized active control,” 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), pp. 1-6, 2015.
[9]M. K. Shukla and B. B. Sharma, “Hybrid projective synchronization of fractional order Volta's system via active control,” 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS), pp. 1-6, 2015.
[10]M. K. Shukla and B. B. Sharma, “Stabilization of a class of uncertain fractional order chaotic systems via adaptive backstepping control,” 2017 Indian Control Conference (ICC), pp. 462-467, 2017.
[11]D. Efimov and T. Raïssi, “Design of interval observers for uncertain dynamical systems,” Automation and Remote Control, pp. 191−225, 2016.
[12]F. Mazenc and O. Bernard, “Interval observers for linear time-invariant systems with disturbances,” Automatica, vol. 47, no. 1, pp. 140-147, 2011.
[13]D. Efimov, T. Raïssi, and A. Zolghadri, “Control of nonlinear and LPV systems: Interval observer-based framework,” IEEE Transactions on Automatic Control, vol. 58, no. 3, pp. 773-778, 2013.
[14]S. Ifqir, N. Ait-Oufroukh, D. Ichalal, and S. Mammar, “Synchronous interval observer design for switched LPV systems using multiple quadratic ISS-Lyapunov functions,” 2017 25th Mediterranean Conference on Control and Automation (MED), pp. 388-393, 2017.
[15]J. T. Li, Z. H. Wang, Y. Shen, and Y. Wang, “Interval observer design for discrete-time uncertain Takagi–Sugeno fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 27, no. 4, pp. 816-823, 2019.
[16]G. James, “Chaos: making a new science” Viking Books, 1987.
[17]D. T. Mihailović, G. Mimić, and I. Arsenić, “Climate predictions: the chaos and complexity in climate models,” Advances in Meteorology, vol. 2014, Article ID 878249, 2014.
[18]I. Klioutchnikov, M. Sigova, and N. Beizerov, “Chaos theory in finance,” Procedia Computer Science, vol. 119, pp. 368-375, 2017.
[19]A. A. Berryman and J. A. Millstein, “Are ecological systems chaotic — and if not, why not?” Trends in Ecology & Evolution, vol. 4, no. 1, pp. 26-28, 1989.
[20]D. Kelsey, “The economics of chaos or the chaos of economics,” Oxford Economic Papers New Series, vol. 40, no.1, pp. 1-31, 1988.
[21]H. Gregersen and L. Sailer, “Chaos theory and its implications for social science research,” sage journals, pp. 777-802, 1993.
[22]A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski, J. Reynolds, and C. Rosenthal, “Chaos engineering,” IEEE software, vol. 33, no.3, pp. 35-41, 2016.
[23]詹承叡,以適應雙混沌同步為基礎之安全通訊系統,國立雲林科技大學電機工程系碩士論文,2000。
[24]陳信維,混沌與碎形理論在時間序列分析之應用,國立台灣科技大學工業管 理系碩士論文,1999。
[25]L. O. Chua, “Dynamic nonlinear networks: State-of-the-art,” IEEE Transactions on Circuits and Systems, vol. 27, no. 11, pp. 1059-1087, 1980.
[26]J. H. Lü, X. H. Yu, and G. R. Chen, “Generating chaotic attractors with multiple merged basins of attraction: a switching piecewise-linear control approach,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 2, pp. 198-207, 2003.
[27]J. L. Hudson, O. E. Rossler, and H. C. Killory, “Chaos in a four-variable piecewise-linear system of differential equations,” IEEE Transactions on Circuits and Systems, vol. 35, no. 7, pp. 902-908, 1988.
[28]J. C. Sprott and S. J. Linz, “Algebraically simple chaotic flows,” International Journal of Chaos Theory and Applications, vol. 5, no. 2, 2000.
[29]Y. N. Zhao, W. Zhang, H. S. Su, and J. Q. Yang “Observer-based synchronization of chaotic systems satisfying incremental quadratic constraints and its application in secure communication,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 12, pp. 5221-5232, 2020.
[30]H. T. Yau, C. C. Wang, J. Y. Chang, and X. Y. Su, “A study on the application of synchronized chaotic systems of different fractional orders for cutting tool wear diagnosis and identification,” IEEE Access, vol. 7, pp. 15903-15911, 2019.
[31]C. S. Pappu, B. C. Flores, P. S. Debroux, and J. E. Boehm, “An electronic implementation of lorenz chaotic oscillator synchronization for bistatic radar applications,” IEEE Transactions on Aerospace and Electronic Systems, vol. 53, no. 4, pp. 2001-2013, 2017.
[32]混沌通信:簡介,技術,混沌掩蓋技術,混沌參數調製技術,混沌鍵控技術,套用展望,_中文百科全書 (newton.com.tw)。
[33]K. M. Cuomo, A. V. Oppenheim, and S.H. Strogatz, “Synchronization of Lorenz-based chaotic circuits with applications to communications,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 40, no. 10, pp. 626-633, 1993.
[34]T. Yang and L. O. Chua, “Secure communication via chaotic parameter modulation,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 43, no. 9, pp. 817-819, 1996.
[35]H. Dedieu, M. P. Kennedy, and M. Hasler, “Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua's circuits,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 40, no. 10, pp. 634-642, 1993.
[36]T. Yang, C. W. Wu, and L. O. Chua, “Cryptography based on chaotic systems,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 44, no. 5, pp. 469-472, 1997.
[37]J. H. Ma and Y. S. Chen, “Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system,” Applied Mathematics and Mechanics, vol. 22, no. 11, pp. 1240-1251, 2001.
[38]C. R. Xie, Y. H. Xu, and D. B. Tong, “Chaos synchronization of financial chaotic system with external perturbation,” Discrete Dynamics in Nature and Society, vol. 2015, Article ID 731376, 2015.
[39]楊承翰,基於多目標粒子群演算法之混沌系統同步研究,國立臺灣海洋大學,2015。
[40]李昱雍,基於多目標粒子群演算法之混沌安全通訊系統設計,國立臺灣海洋大學,2016。
[41]林立耘,基於混沌安全通訊之影像加密傳輸,國立臺灣海洋大學,2018。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top