|
References [1] A. R. S. Bahai, B. R. Saltzberg, and M. Ergen, Multi-Carrier Digital Communications Theory and Applications of OFDM, 2nd ed., New York, NY: Springer, 2004. [2] ITU-T, “Asymmetric digital subscriber line (ADSL) transceivers,” ITU-T Recommendation G.992.1, Geneva, 1999. [3] S. Galli and O. Logvinov, “Recent developments in the standardization of power line communications within the IEEE,” IEEE Commun. Mag., vol. 46, no. 7, pp. 64-71, Jul. 2008. [4] Y. Li, M. Zhang, W. Zhu, M. Cheng, C. Zhou and Y. Wu, ”Performance evaluation for medium voltage MIMO-OFDM power line communication system,” in China Communications, vol. 17, no. 1, pp. 151-162, Jan. 2020, doi: 10.23919/ JCC.2020.01.012. [5] IEEE, “Wireless LAM medium access control (MAC) and physical layer (PHY) specifications: High-speed physical layer in the 5 GHz band,” IEEE Standard 802.11a-1999, Sep. 1999. [6] S. P. Stapleton and F. C. Costescu, “An adaptive predistortion for a power amplifier based on adjacent channel emissions,” IEEE Trans. Veh. Technol., vol. 41, no. 1, pp. 49-56, Jan. 1992. [7] I. Iofedov and D. Wulich, “MIMO-OFDM with nonlinear power amplifiers,” IEEE Trans. Commun., vol. 63, no. 12, pp. 4894-4904, Dec. 2015. [8] A. Mohammed, M. Shehata, H. Mostafa and A. Nassar, ”Peak-to-Average Power Ratio Suppression using Companding schemes in OFDM Systems,” 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), 2018, pp. 933-936, doi: 10.1109/MWSCAS.2018.8623875. [9] Xingjian He, Fengjun Yang and Ran Xi, ”Peak-to-average power ratio reduction in OFDM signals via self-adaptive EVM method,” 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2016, pp. 676-679, doi: 10.1109/IMCEC.2016.7867295. [10] Qijia Liu, R. J. Baxley and G. Tong Zhou, ”Free subcarrier optimization for peakto- average power ratio minimization in OFDM systems,” 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, pp. 3073-3076, doi: 10.1109/ICASSP.2008.4518299. [11] R. Deshpande and D. J. Pete, ”Optimized Peak to Average Power Ratio (PAPR) Reduction Technique for OFDM,” 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), 2017, pp. 1-5, doi: 10.1109/ICCUBEA.2017.8463796. [12] A. J. Redfern and G. T. Zhou, “Nonlinear channel identification and equalization for OFDM systems,” Proc. IEEE Int. Conf. Acoust. Speech, Signal Process., vol. 6, pp. 3521-3524, May 12-15, 1998. [13] A. F. Sheta and A. H. Abel-Wahab, ”Identification of nonlinear communication channel using evolutionary Volterra time-series,” Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999, pp. 229-235 Vol. 1, doi: 10.1109/CEC.1999.781930. [14] W. Qiang, Z. Jiashu and Y. Jing, ”Identification of Nonlinear Communication Channel Using an Novel Particle Swarm Optimization Technique,” 2008 Inter-ational Conference on Computer Science and Software Engineering, 2008, pp. 1162-1165, doi: 10.1109/CSSE.2008.1228. [15] Fang Yangwang and Jiao Licheng, ”Blind identification of nonlinear FIR Volterra channels,” WCC 2000 - ICSP 2000. 2000 5th International Conference on Signal Processing Proceedings. 16th World Computer Congress 2000, 2000, pp. 294-297 vol.1, doi: 10.1109/ICOSP.2000.894494. [16] C.-H. Tseng and E. J. Powers, “Identification of nonlinear channels in digital transmission systems,” Proc. IEEE Signal Processing Workshop on Higher-Order Statistics, South Lake Tahoe, California, June, 1993, pp. 42-45. [17] C.-H. Tseng, “Identification of nonlinear systems driven by random multisine signals,” Proc. IASTED Int. Conf. Signal and Image Process., Honolulu, Hawaii, USA, Aug. 20-22, 2007. [18] K. G. Gard, H. M. Gutierrez, and M. Steer, “Characterization of spectral regrowth in microwave amplifiers based on the nonlinear transformation of a complex Gaussian process,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 7, pp. 1059-1069, July 1999. [19] G. T. Zhou, H. Qian, L. Ding, and R. Raich, “On the baseband representation of a bandpass nonlinearity,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2953-2957, Aug. 2005. [20] G. T. Zhou and J. S. Kenney, “Predicting spectral regrowth of nonlinear power amplifiers,” IEEE Trans. Commun., vol. 50, no. 5, pp. 718-722, May 2002. [21] Y. Shen and J. L. Tauritz, ”On the analysis of quasistatic bandpass nonlinearities using Volterra series,” 60th ARFTG Conference Digest, Fall 2002., 2002, pp. 59-66, doi: 10.1109/ARFTGF.2002.1218686. [22] S. Benedetto and E. Biglieri, Principles of Digital Transmission with Wireless Applications, Norwell, MA: Kluwer, July 1999. [23] B. Fehri and S. Boumaiza, “Baseband equivalent Volterra series for digital predistortion of dual-band power amplifiers,” IEEE Trans. on Microwave Theory and Techniques, vol. 62, no. 3, pp. 700-714, Mar. 2014. [24] C. Tsai et al., “Incoherent laser heterodyned long-reach 60-GHz MMWoF link with Volterra filtered 16-QAM OFDM beyond 13 Gbps,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 27, no. 2, pp. 1-11, Mar.-Apr. 2021. [25] A. Hamza et al.,“A code-domain, in-band, full-duplex wireless communication link with greater than 100-dB rejection,” IEEE Tran. Microwave Theory and Techniques, vol.‘69, no. 1, pp. 955-968, Jan. 2021. [26] C. Lee, Y. Lin and W. Lin, “Investigation of linearity in the high electric field region for SiGe HBTs based on Volterra series,” IEEE Transactions on Device and Materials Reliability, vol. 14, no. 4, pp. 1049-1055, Dec. 2014. [27] X. Y. Z. Xiong, L. J. Jiang, J. E. Schutt-Aine and W. C. Chew, “Volterra seriesbased time-domain macromodeling of nonlinear circuits,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 7, no. 1, pp. 39-49, Jan. 2017. [28] W. J. Rugh, Nonlinear System Theory - The Volterra/Wiener Approach, Baltimore, MD: Johns Hopkins University Press, 1981. [29] T. Koh and E. J. Powers, “Second-order Volterra filtering and its application to nonlinear system identification,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 33, no. 6, pp. 1445-1455, Dec. 1985. [30] P. Koukoulas and N. Kalouptsidis, “Nonlinear system identification using Gaussian inputs,” IEEE Trans. Signal Process., vol. 43, no. 8, pp. 1831-1841, Aug. 1995. [31] T. C. Hsia, System Identification: Least-Squares Methods, Massachusetts: Lexington Books, 1977. [32] V. J. Mathews and G. L. Sicuranza, Polynomial Signal Processing, New York: John Wiley & Sons, 2000. [33] H. Zhao, J. Wang and X. Li, “Modeling of low noise amplifier based on Volterra series with recursive least square algorithm,” International Applied Computational Electromagnetics Society Symposium (ACES), Suzhou, China, 2017, pp. 1-2. [34] M. Usman, M. S. Ibrahim, J. Ahmed, S. S. Hussain and M. Moinuddin, “Quantum calculus-based Volterra LMS for nonlinear channel estimation,” International Conference on Latest Trends in Electrical Engineering and Computing Technologies (INTELLECT), Karachi, Pakistan, 2019, pp. 1-4. [35] C. Evans, D. Rees, L. Jones, and M. Weiss, “Periodic signals for measuring nonlinear Volterra kernels,” IEEE Trans. Instrum. Meas., vol. 45, no. 2, pp. 362-371, April 1996. [36] J. S. Bendat, Nonlinear System Analysis and Identification From Random Data, New York: Wiley, 1990. [37] S. W. Nam and E. J. Powers, “Application of higher order spectral analysis to cubically nonlinear system identification,” IEEE Trans. Signal Processing, vol. 42, no. 7, July 1994. [38] C.-H. Tseng, “Identification of cubically nonlinear systems using undersampled data,” IEE Proc.-Vis. Image Signal Process., vol. 144, no. 5, pp. 267-277, Oct. 1997. [39] P. J. Lawrence, “Estimation of the Volterra functional series of a nonlinear system using frequency response data,” IEEE Proc. D, vol. 128, no. 5, pp. 206-210, Sept. 1981. [40] S. Boyd, Y. S. Tang, and L. O. Chua, “Measuring Volterra kernels,” IEEE Trans. Circuits and Systems, vol. 30, no. 8, pp. 571-577, Aug. 1983. [41] L. O. Chua and Y. Liao, “Measuring Volterra kernels (II),”Int. J. Circuit Theory, Applicat., vol. 17, pp. 151-190, 1989. [42] Z. A. Khan, E. Zenteno, P. Handel and M. Isaksson, “Extraction of the third-order 3×3 MIMO Volterra kernel outputs using multitone signals,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 11, pp. 4985-4999, Nov. 2018. [43] ETSI, “Digital audio broadcasting (DAB), guidelines and rules for implementation and operation, part 1: system outline,” ETSI Technical Report, TR 101 496-1 v1.1.1, Nov. 2000. [44] ETSI, “Digital video broadcasting (DVB), framing structure, channel coding and modulation for digital terrestrial television,” ETSI European Standard, EN 300 744 v1.2.1, Jul. 1999. [45] C.-H. Cheng and E. J. Powers, “Optimal Volterra kernel estimation algorithms for a nonlinear communication system for PSK and QAM inputs,” IEEE Trans. Signal Processing, vol. 49, no. 1, pp. 147-163, Jan. 2001. [46] C.-H. Tseng and E. J. Powers, “Identification of cubic systems using higher order moments of I.I.D. signals,” IEEE Trans. Signal Process., vol. 43, no. 7, pp. 1733- 1735, Jul. 1995. [47] G. Mileounis, P. Koukoulas, and N. Kalouptsidis, “Input-output identification of nonlinear channels using PSK, QAM, and OFDM inputs,” Signal Process., vol. 89, no. 7, pp. 1359-1369, July 2009. [48] C.-H. Tseng, “Estimation of cubic nonlinear bandpass channels in orthogonal frequency-division multiplexing systems,” IEEE Trans. Commun., vol. 58, no. 5, pp. 1415-1425, May 2010. [49] J.-H. Cheng, Y.-H. Lin and C.-H. Tseng, “Identification of Volterra kernels for nonlinear communication systems with OFDM inputs,” International Conference on Systems and Informatics (ICSAI 2014), Shanghai, China, 2014, pp. 860-865. [50] J. C. Pedro and N. B. Carvalho, “Designing multisine excitations for nonlinear model testing,” IEEE Trans. Microwave Theory and Techniques, vol. 53, no. 1, pp. 45-54, Jan. 2005. [51] J. Zhang et al., “Decision-feedback frequency-domain Volterra nonlinear equalizer for IM/DD OFDM long-reach PON,” Journal of Lightwave Technology, vol. 37, no. 13, pp. 3333-3342, July 1, 2019. [52] W. Chung, “Channel estimation methods based on Volterra kernels for MLSD in optical communication systems,” IEEE Photon. Technol. Lett., vol.2 2, no. 4, pp. 224-226, Feb. 2010. [53] D. R. Morgan et al., “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3852-3860, Oct. 2006. [54] J. Reina-Tosina et al., “Behavioral modeling and predistortion of power amplifiers under sparsity hypothesis,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 745-753, Feb. 2015. [55] J. A. Becerra, M. J. M. Ayora, J. Reina-Tosina and C. Crespo-Cadenas, “Sparse identification of Volterra models for power amplifiers without pseudoinverse computation,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 11, pp. 4570-4578, Nov. 2020. [56] J. -H. Cheng and C. -H. Tseng, “Identification of Nonlinear Channels in Bandpass Communication Systems with OFDM Inputs,” Journal of Marine Science and Technology, vol. 29, Iss. 4. [57] S. C. Cripps, RF Power Amplifiers for Wireless Communications, Norwood, MA: Artech House, 1999. [58] M. Schetzen, The Volterra and Wiener Theories of Nonlinear System. New York: Wiley, 1980. [59] J. Tsimbinos and K. V. Lever, “Input Nyquist sampling suffices to identify and compensate nonlinear systems,” IEEE Trans. Signal Processing, vol. 46, no. 10, pp. 2833-2837, Oct. 1998. [60] W. A. Frank, “Sampling requirements for Volterra system identification,” IEEE Signal Processing Letters, vol. 3, no. 9, pp. 266-268, Sept. 1996. [61] A. Papoulis, Probability, Random Variables, and Stochastic Processes, New York: McGraw-Hill, 1984. [62] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Baltimore, MD: Johns Hopkins University Press, 1989. [63] C.-H. Tseng, “A mixed-domain method for identification of quadratically nonlinear systems,” IEEE Trans. Signal Process., vol. 45, no. 4, pp. 1013-1024, April 1997. [64] C. -H. Tseng and J. -H. Cheng, ”Nonlinear Channel Estimation for Minimally Sampled Baseband OFDM Systems,” IEEE Transactions on Communications, doi: 10.1109/TCOMM.2021.3104031. [65] G. T. Zhou and G. B. Giannakis, “Nonlinear channel identification and performance analysis with PSK inputs,” Proc. IEEE Signal Proc. Advances for Wireless Commun., vol. 1, pp. 337-340, Paris, France, Apr. 16-18, 1997. [66] S. Haykin, Adaptive Filter Theory, 2nd ed., Englewood Cliffs, New Jersey: Prentice-Hall, 1991. [67] D. R. Brillinger, “Identification of polynomial systems by means of higher-order spectra,” J. Sound, Vibration, vol. 12, pp. 301-313, 1970. [68] F. J. Macwilliams and N. J. A. Sloane, “Pseudo-random sequences and arrays,” IEEE Proc. vol. 64, no. 12, pp. 1715-1729, Dec. 1976. [69] R. E. Blahut, Theory and Practice of Error Control Codes, Reading, MA: Addison- Wesley, 1983. [70] D. M. Burton, Elementary Number Theory, 4th ed., Boston, MA: Allyn and Bacon, 1989. [71] C.-H. Tseng, “Characterization of nonlinear channels in OFDM systems using signals with spectral notches,” Proc. IEEE Int. Symp. Power Line Commun. and Its Applications, pp. 249-254, Rio de Janeiro, Brazil, March 28-31, 2010. [72] R. B. J. T. Allenby and A. Slomson, How to Count: An Introduction to Combinatorics, 2nd ed., Boca Rton, FL: CRC Press, 2011. [73] A. A. M. Saleh, “Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers,” IEEE Trans. Coommun., vol. COMM-29, pp. 1715-1720, Nov. 1981.
|