跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 17:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖家德
研究生(外文):Liao, Chia-Te
論文名稱:艦艇上層空氣尾流場數值模擬及特性分析
論文名稱(外文):The Numerical Simulation and Characteristic Analysis of the Air Flow Field in the Upper Layer of a Ship
指導教授:林瑞國林瑞國引用關係
指導教授(外文):Lin, Reui-Kuo
口試委員:李賢德黃中信蔡順峯林瑞國
口試委員(外文):Lee, Hsien-DerHuang, Chung-HsinTsai, Shun-FengLin, Reui-Kuo
口試日期:2022-06-24
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:110
中文關鍵詞:計算流體力學擴散分佈風洞試驗煙流擴散大氣風壓
外文關鍵詞:Computational Fluid DynamicsDiffusion DistributionWind Tunnel TestSmoke DiffusionAtmospheric Wind Pressure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用計算流體力學(computational fluid dynamics, CFD)方法探討位於艦艇上層結構之煙囪形狀、各種不同風向角度之相對速度、排煙溫度情況下,空氣流場流經上層結構對排煙擴散分佈之數值模擬與分析。本研究係以艦艇於風洞試驗中所觀察之不同煙囪幾何結構之流場變化與物理現象機制,利用計算流體方式,分析在不同風向與角度之相對速度所造成之煙流、擴散路徑及煙流溫度分佈情形,探討煙囪高度、幾何構型、不同之風向角度、排煙溫度、排煙速度比等各參數對行進間之船舶運動變化。本研究將建置針對艦艇因上層結構之煙囪形狀、各種不同風向角度之相對速度、排煙溫度之數值分析模式,並藉此模式探討未來因煙囪形狀、位置及各風向速度流場變化,以提供設計與改善減少阻力之可行性。
本研究工作重點為分析煙囪高度、幾何構型、不同之風向角度、排煙溫度、排煙速度比等各參數對行進間之船舶運動的流場變化,比較數值模擬與實驗數據之分佈差異。最後本研究計畫將綜合研究成果,評估該數值模式對艦艇上層結構之煙囪形狀、各種不同風向角度之相對速度、排煙溫度模擬能力與未來提供概念設計及初步設計可行性,以作為煙囪與結構物規劃及設計參考之用。研究成果預期瞭解艦艇結構與煙囪形狀、位置對於大氣風壓、擴散擾動以及噪音的產生與衝擊,以及空氣流經上層結構物之擴散模擬的範本。
This research mainly uses the computational fluid dynamics method to discuss the numerical simulation and analysis of the exhaust gas diffusion distribution of the air flow field flowing through the superstructure under the conditions of the shape of the chimney located in the superstructure of the ship, the relative velocity of various wind directions and angles, and the exhaust temperature. This study is based on the flow field changes and physical phenomenon mechanisms of different chimney geometric structures observed by ships in wind tunnel tests, and uses computational fluid methods to analyze the smoke flow, diffusion path and smoke flow caused by relative velocities in different wind directions and angles. For the temperature distribution, discuss the changes of the ship's motion between the chimney height, geometric configuration, different wind direction angles, smoke exhaust temperature, and smoke exhaust velocity ratio. In this study, a numerical analysis model will be established for the shape of the chimney of the superstructure, the relative velocity of various wind direction angles, and the temperature of the exhaust gas, and this model will be used to discuss the future changes of the chimney shape, position, and velocity flow field in each wind direction. Provide the feasibility of design and improvement to reduce drag.
The focus of this research is to analyze the flow field changes of various parameters such as chimney height, geometric configuration, different wind direction angles, exhaust gas temperature, and exhaust gas velocity ratio to the ship motion, and to compare the distribution differences between numerical simulation and experimental data. Finally, this research plan will synthesize the research results to evaluate the numerical model's ability to simulate the shape of the chimney of the ship's superstructure, the relative velocity of various wind directions, and the temperature of the exhaust gas, and to provide conceptual design and preliminary design feasibility in the future. For structural planning and design reference. The research results are expected to understand the generation and impact of ship structure and stack shape and position on atmospheric wind pressure, diffusion disturbance and noise, as well as a model for simulation of diffusion of air flowing through the superstructure.
誌謝 IV
中文摘要 V
Abstract VI
目錄 VII
圖目錄 X
表目錄 XV
第一章、前言 1
1.1 研究背景 1
1.2 研究目的 4
1.3 文獻回顧 6
1.4 研究流程 8
第二章、理論基礎 10
2.1基礎理論 10
2.1.1 擴散理論 11
2.1.2 構型與煙害 13
2.2 橫風下煙柱理論 18
2.3 流經具明顯障礙物特性 19
2.4 紊流區 20
2.4.1 紊流區評估方式 22
2.4.2 煙柱路徑計算程序 23
2.5 國內外相關研究情況 24
第三章、數值模式 26
3.1 統御方程式 26
3.2 紊流模式 27
3.2.1 紊流運動及其特徵 29
3.2.2 標準k-omega模式 30
3.2.3 大渦紊流模型(Large Eddy Simulation, LES) 31
3.3 數值模式 33
3.3.1 基本假設 33
3.3.2 邊界條件 33
3.3.3 模擬分析流程 34
3.4 模擬軟體簡介 36
3.4.1 建構分析模型(Geometry) 37
3.4.2 網格產生(Mesh) 37
3.4.3 疊代求解(Solver) 39
3.4.4 程式操作設定 39
第四章、結果分析 43
4.1 數值誤差因數 43
4.2 問題描述 44
4.3 與網格無關測試 46
4.3.1 二維艦艇模擬 46
4.3.2 三維艦艇模擬 54
4.4 二維艦艇上層風場結構分析 59
4.4.1 航行船速 節與波浪運動分析 60
4.4.2 航行船速 節與波浪運動分析 62
4.4.3 航行船速 節與波浪運動分析 64
4.5 三維艦艇上層風場結構分析 67
4.5.1 成功級巡防艦(Cheng-Kung class)與波浪運動分析 68
4.5.2 中海號戰車登陸艦(Chung-Hai class)與波浪運動分析 79
4.5.3 濟陽級巡防艦(Chi-Yung class)與波浪運動分析 88
4.5.4 康定級巡防艦(Kang-Ding-class)與波浪運動分析 97
第五章、結論與建議 106
5.1 結論 106
5.2 建議 107
參考文獻 109
[1] S. Huler, Defining the Wind: The Beaufort Scale, and How a 19th-Century Admiral Turned Science into Poetry. Crown Publishers, 2004.
[2] Rebecca Mateer. The Aerodynamics of a Modern Warship. University of Liverpool January 2020
[3] Seshadri V, Singh S, Kulkarni P R. Study of problem of exhaust smoke ingress into gt intakes of a naval ship[J]. Journal of Ship Technology, 2006, 2:22–35
[4] Kulkarni P R, Singh S N, Seshadri V. Comparison of CFD simulation of exhaust smoke-superstructure interaction on a ship with experimental data[C]//10th Naval Platform Technology Seminar 2005 (NPTS-05). Singapore, 2005: 150−172.
[5] 洪偉宏、姜治芳、王濤,上層建築形式及佈局對艦船空氣流場的影響[J]中國艦船研究,2009
[6] 莊曉東、侯佳鑫、謝軍龍,靜風條件下船舶煙氣擴散特性及對進風口影響的數值分析[J]中國艦船研究,2021、16(增刊1),1-9
[7] Erinc Dobrucali and Selma Ergin An investigation of exhaust smoke dispersion for a generic frigate by numerical analysis and experiment 2017
[8] 池田清・野村実ほか; 近現代史編纂會・編. 海軍艦隊勤務. 新人物往來社.PP.84 2001.
[9] CHEN D S, ZHAO Y H, NELSON P, etal. Estimating ship emissions based on AIS data for port of Tianjin, China[J]. Atmospheric Environment, 2016,145:10-18
[10] 黃學良、張洲、楊威強等,廣州港船舶停泊工況排放因子實測及排放量初步估算[J].環境科學,2017,38(8):3162-3168.
[11] Bosanquet, C. H. and Pearson, J. L., "The spread of smoke and gases from chimneys", Trans. Faraday Soc., 32:1249, 1936
[12] 空氣品質影響之預測Prediction of Air Quality, Hsunling Bai, Chapter 7 P.5~10
[13] Sherlock, R. H. and Stalker, E. A, A study of flow phenomena in the wake of smokestack, Engineering Research Bulletin No.29,Department of Engineering, University of Michigan, Annarbo, March 1941
[14] Nolan Robert W, “Design of Stacks to Minimize Smoke Nuisance”, Trans SNAME Vol. 54, 1946, pp 42-82
[15] Weil, J.C., Model experiments of high stack plumes, Massachusetts Institute of Technology, Mechanical Engineering Department Thesis, Aug. 1968.
[16] Baham, Gary J., McCallum, Donald, stack design technology for naval and merchant ships, Presented at Annual Meeting of society of Naval Architects and Marine Engineers, New York, November.10-12,1977
[17] ACKER H.G., “Stack Design to Avoid Smoke Nuisance,” Trans SNAME, Vol. 60, 1952, pp 566-594.
[18] Ower, E., Third, A.D., Superstructure design in relation to the descent of funnel smoke, Trans. Institute of Marine Engineers (London),Vol.1, 1959.
[19] David P. Hoult , James A. Fay & Larry J. Forney (1969) A Theory of Plume Rise Compared with Field Observations, Journal of the Air Pollution Control Association, 19:8,585-590
[20] Takasaki Koji, Tajima Hiroshi, Strøm Alexander, Murakami Shinsuke, Visualization of Combustion and CFD Study for NOx Reduction with Water Injection, 22006 Volume 41 Issue SI Pages 64-71.
[21] Muyiwa S. Adaramola, Donald J. Bergstrom, David Sumner ”Characteristics of turbulent flow in the near wake of a stack”, July 2012 Experimental Thermal and Fluid Science (EXP THERM FLUID SCI) 40:64–73
[22] Kulkarni PR, Singh SN, Seshadri V, “Flow Visualization Studies of Exhaust Smoke-Superstructure Interaction on Naval Ships”, accepted by ASNE for publication in Naval Engineers Journal edition of 2005
[23] 袁江濤、楊立、陳翾、張健,現代艦船紅外輻射及其控制策略分析[J]LASER&INFRARED,2006,36(10)
[24] Faisal Khan, S. A. Abbasi.” Assessment of Risks Posed by Chemical Industries -Application of a New Computer Automated Tool MAXCRED-III” November 1999 Journal of Loss Prevention in the Process Industries 12(6):455-469
[25] R. Yin and W.K. Chow. “Studies on Thermal Responses of Sprinkler Heads in Atrium Buildings with Fire Field Models” January 2001Fire and Materials 25(1):13-19
[26] Chen, P. F., Huang, C. H. (2004) An inverse hull design approach in minimizing the ship wave, Ocean Engineering, Vol. 31, pp. 1683-1712.
[27] Moraes, H. B., Vasconcellos, J. M. and Latorre, R. G. (2004) Wave resistance for high-speed catamarans, Ocean Engineering, Vol. 31, pp. 2253-2283.
[28] Wilson R.V., Carrica P.M. and Stem Fred. (2007), Simulation of ship breaking bow waves and induced vortices and scars, International Journal for Numerical Method in Fluids, Vol. 54, pp. 419–451.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top