跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/14 04:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳楨鈺
研究生(外文):CHEN, CHEN-YU
論文名稱:探討不同建模教學對於六年級學童在 齒輪概念的心智模式改變與建模能力表現
論文名稱(外文):Exploring the Impacts of Different Modeling Instructions of Gearing Concepts on Sixth Graders' Changes in Mental Models and Performance of Modeling Competence
指導教授:林靜雯林靜雯引用關係
指導教授(外文):LIN, JING-WEN
口試委員:盧玉玲鄭孟斐
口試委員(外文):LU, YU-LINGCHENG, MENG-FEI
口試日期:2022-07-11
學位類別:碩士
校院名稱:國立臺北教育大學
系所名稱:自然科學教育學系
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:154
中文關鍵詞:一般探究教學心智模式建模能力建模教學電腦輔助建模教學實作建模教學齒輪概念
外文關鍵詞:regular inquiry-based instructionmental modelmodeling competencemodeling-based instructioncomputer-based modeling instructionpractice-based modeling instructionconcept of gears
相關次數:
  • 被引用被引用:0
  • 點閱點閱:70
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在設計「齒輪概念」之建模教學以探討 : 一、不同教學模式(電腦輔助建模、實作建模與一般探究教學)對於學生的齒輪概念分數之影響;二、不同教學模式對於學生之齒輪概念心智模式之類型分布與改變;三、不同教學模式對於學生的建模能力之影響。
本研究為準實驗研究輔以質性資料分析。研究對象為六年級三個班級的學生共72位學生(男40女32 ),教學根據研究目的分為三組 : 實驗組一為電腦輔助建模教學組(25人)、實驗組二為實作建模教學組(24人),對照組為一般探究教學組(23人)。以三組不同教學模式分別進行「齒輪概念」之課程, 研究使用三種研究工具進行施測:「心智模式試卷」前、後測的答題結果分別進行齒輪概念分數的量化統計分析與學生心智模式的質性分類探討;「齒輪教學學習單」與「建模能力試卷」的結果再作為學生的建模能力量化統計的比較。
研究結果顯示:一、三組齒輪概念的教學皆對學生的齒輪概念分數有所助益,且實作建模教學組顯著優於一般探究教學組。二、教學過程中,學生對於齒輪概念的心智模式可歸類出:直觀模式、初始帶動模式、進階帶動模式、尺度模式、計算模式、科學模式六種模式。教學前、後整體心智模式的改變多由直觀模式提升至尺度模式。比較不同教學模式則發現兩建模教學組比一般探究教學更易將學生心智模式提升至接近科學模式。三、比較不同教學模式的建模能力差異,兩建模教學組在建模能力各階段均無顯著差異;而兩建模教學組與一般探究教學組比較發現,建模教學組的「模型調度」能力顯著優於一般探究教學組。
綜合上述,本研究對於齒輪建模教學提出實際執行上可能面臨的問題,並對齒輪概念的建模教學設計提出後續建議。
This study adopted the concept of gears in developing modeling-based instructional design, including computer-based modeling instruction, practice-based modeling instruction, and regular inquiry-based instruction. This study mainly explored and analyzed the effects of different teaching models on students' concepts of gears, mental models, and modeling competence.
The study adopted an experimental design and a qualitative research method. The participants of this study were 72 6th graders from 3 classes, including 40 boys and 32 girls. The experimental group contained 25 students from computer-based modeling instruction and 24 from practice-based modeling instruction—meanwhile, 23 students were assigned to regular inquiry-based instruction as the comparison group. The study used three investigation methods to evaluate the effects of the gearing concept among three different teaching models. The data collected from the "Mental model Test" before and after the lecture were used to analyze quantitative gearing concept scores and qualitative mental models. It then went on to use the "Gear worksheet" and "Modeling competence Test" to conduct a quantitative comparison of students' modeling competence. The findings indicated that the instruction could effectively improve the gearing concepts of students. Moreover, practice-based modeling instruction provided better enhancement than regular inquiry-based instruction. The tests also divided mental models into six models: intuitive mode, initial-driving model, advance-driving model, dimension model, calculated model, and scientific model. The post-test results reveal that the three groups' mental models evolved from intuitive to dimension model. It can also be seen that the mental model in both computer-based and practice-based modeling instruction significantly lead to a scientific model than regular inquiry-based instruction. For students' modeling competence, the study found that computer-based and practice-based modeling instruction appear to have no difference. Moreover, students from these two teaching models perform better in model deployment than in regular inquiry-based instruction.
In summary, this study examined the difficulties while applying the gearing concept to modeling-based instruction and hoped to provide possible solutions for curriculum design.

中文摘要 i
英文摘要 iii
目次 v
表次 vii
圖次 ix
第一章 緒論 1
第一節 研究背景與動機 2
第二節 研究目的與問題 4
第三節 名詞釋義 5
第四節 研究範圍與限制 7
第二章 文獻探討 9
第一節 模型與建模 9
第二節 心智模式 15
第三節 建模輔助工具 18
第四節 齒輪的相關研究 23
第三章 研究方法 29
第一節 研究架構 30
第二節 研究對象 33
第三節 教學設計 33
第四節 研究工具 43
第五節 研究流程 59
第六節 資料處理與分析 60
第四章 研究結果 63
第一節 不同教學模式對於學生齒輪概念的理解分數變化。 63
第二節 探討齒輪概念心智模式之類型分布與變化情形 70
第三節 不同教學模式對於學生建模能力之影響 80
第四節 綜合討論 88
第五章 結論與建議 93
第一節 結論 93
第二節 發展與建議 95
參考文獻 99
中文部分 99
英文部分 101
附錄一:課程教案 105
附錄二:心智模式試題 113
附錄三:齒輪教學學習單(電腦輔助建模組) 115
附錄四:齒輪教學學習單(實作建模組) 125
附錄五:齒輪教學學習單(一般探究教學組) 135
附錄六:建模能力試題 141


中文文獻
1.李正森(2003)。國小高年級學童簡單機械齒輪迷思概念之研究(未出版之碩士論文)。國立臺中師範學院,臺中市。
2.吳育倫、林靜雯 (2013)。兒童地球形狀概念演化樹之跨年級調查驗證。教育科學研究期刊,58(4),133-163。
3.林弘昌、陳祺祐(2011)。精熟學習策略融入電腦輔助教學應用於國小科學概念改變之研究。教學科技與媒體,97,46-64。
4.林英傑(2011)。電腦輔助建模學習活動對國小高年級學童建模能力之研究。教學科技與媒體,96,22-42。
5.邱勇達(2005)。多媒體工具Squeak融入國小自然科課程學習-以齒輪單元為例(未出版之碩士論文)。國立中央大學,桃園市。
6.邱美虹(2008)。模型與建模能力之理論架構。科學教育月刊,306,2-9。
7.邱美虹、吳文龍、鍾曉蘭、李雪碧(2013)。以概念演化樹探討跨年級學生理想氣體心智模式之發展歷程。科學教育學刊,21(2),135-162。https://doi.org/10.6173/CJSE.2013.2102.01
8.邱美虹、劉俊庚(2008)。從科學學習的觀點探究模型和建模能力。科學教育月刊,314,2-20。
9.施能木(2009)。樂高組件對國小學童學習生活科技課程「簡單機械」單元之影響研究。生活科技教育月刊,42(2),3-26。
10.柯政宏(2013)。數位遊戲教學對學童學習自然與生活科技課程「簡單機械」之影響(未出版之碩士論文)。國立臺北教育大學,臺北市。
11.張志康、邱美虹(2009)。建模能力分析指標的發展與應用-以電化學為例。科學教育學刊,17(4),319-342。https://doi.org/10.6173/CJSE.2009.1704.04
12.張志康(2009)。從概念改變理論探究建模教學對學生力學心智模式與建模能力之影響。博士論文,國立臺灣師範大學,臺北市。https://hdl.handle.net/11296/ryswt4
13.張榮裕(2006)。國小六年級學童對齒輪操作的推理表徵之研究(未出版碩士論文)。國立臺中教育大學,臺中市。
14.陳益民(2021)。建模試探教學法對不同空間能力高年級心智模式與建模能力之影響(未出版博士論文)。國立東華大學,花蓮縣。

英文文獻
1.Bell, T., Urhahne, D., Schanze, S., & Ploetzner, R. (2010). Collaborative inquiry learning: Models, tools, and challenges. International journal of science education, 32(3), 349-377. https://doi.org/10.1080/09500690802582241
2.Bielik, T., Stephens, L., Damelin, D., & Krajcik, J. S. (2019). Designing Technology Environments to Support System Modeling Competence. In A. U. zu Belzen, D. Krüger & J. van Driel (Eds), Towards a Competence-Based View on Models and Modeling in Science Education (pp. 275-290). Springer. https://doi.org/10.1007/978-3-030-30255-9_16
3.Brady, C., Holbert, N., Soylu, F., Novak, M., & Wilensky, U. (2015). Sandboxes for model-based inquiry. Journal of Science Education and Technology, 24(2), 265-286.
4.Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of representations and Expressed models in building mental models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 119-135). Kluwer. https://doi.org/10.1007/978-94-010-0876-1_6
5.Buckley, B. C., Gobert, J. D., Kindfield, A. C. H., Horwitz, P., Tinker, R. F., Gerlits, B., Wilensky, U., Dede, C., & Willett, J. (2004). Model-based teaching and learning with BioLogica™: What do they learn? How do they learn? How do we know? Journal of Science Education and Technology, 13(1), 23-41. https://doi.org/10.1023/B:JOST.0000019636.06814.e3
6.Johnson-Laird, P. N. (1994). Mental Models, Deductive Reasoning, and the Brain. In
M. S. Gazzaniga (Ed.), The Cognitive Neural Science (pp. 999-1008). Cambridge: The MIT Press.
7.Louca, L. (2005). Creating games or developing programs? Documenting the use of StageCast Creator as modeling tool in elementary science. In Z. Zacharia & C. Constantinou (Eds.), Computer Based Learning in Science (pp. 556-569). University of Zilina.
8.Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning Models in Science Education and in Design and Technology Education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing Models in Science Education (pp. 3-17). Springer. https://doi.org/10.1007/978-94-010-0876-1_1
9.Gobert, J. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894. https://doi.org/10.1080/095006900416839
10.Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019-1041. https://doi.org/10.1002/(SICI)1098-2736(199611)33:9<1019::AID-TEA4>3.0.CO;2-I
11.Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22, 1011-1026. https://doi.org/10.1080/095006900416884
12.Joan, M. C., & Mike, C. (2008). Developing conceptual understanding of mechanical advantage through the use of Lego robotic technology. Australasian Journal of Educational Technology, 24(4), 387-401. https://doi.org/10.14742/ajet.1199
13.Justi, R. S., & Gilbert, J. K. (2003). Teachers’ view on the nature of models. International Journal of Science Education, 25(11), 1369-1386. https://doi.org/10.1080/0950069032000070324
14.Lee, S., Kang, E., & Kim, H. B. (2015). Exploring the impact of students’ learning approach on collaborative group modeling of blood circulation. Journal of Science Education and Technology, 24, 234-255. https://doi.org/10.1007/s10956-014-9509-5
15.Leenaars, F. A., van Joolingen, W. R., Gijlers, H., & Bollen, L. (2014). GearSketch: an adaptive drawing-based learning environment for the gears domain. Educational technology research and development, 62(5), 555-570. https://doi.org/10.1007/s11423-014-9345-6
16.Lehrer, R., & Schauble, L. (1998). Reasoning about structure and function: Children's conceptions of gears. Journal of Research in Science Teaching, 35(1), 3-25. https://doi.org/10.1002/(SICI)1098-2736(199801)35:1<3::AID-TEA2>3.0.CO;2-X
17.Teodoro, V. D., & Neves, R. G. (2011). Mathematical modelling in science and mathematics education. Computer Physics Communications, 182(1), 8-10.
18.van Joolingen, W. R., Schouten, J., & Leenaars, F. (2019). Drawing-based modeling in teaching elementary biology as a diagnostic tool. In A. U. zu Belzen, D. Krüger & J. van Driel (Eds), Towards a Competence-Based View on Models and Modeling in Science Education (pp. 131-145). Springer. https://doi.org/10.1007/978-3-030-30255-9_8
19.van Joolingen, W. R., Aukes, A. V. A., Gijlers, H., & Bollen, L. (2015). Understanding elementary astronomy by making drawing-based models. Journal of Science Education and Technology, 24, 256-264. https://doi.org/10.1007/s10956-014-9540-6
20.Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24(4), 535-585.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊