跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 19:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱俊瑋
研究生(外文):QIU, JUN-WEI
論文名稱:臺灣全電動公車之生命週期永續性評估
論文名稱(外文):Life Cycle Sustainability Assessment of Battery Electric Buses
指導教授:李育明李育明引用關係
指導教授(外文):LEE, YUH-MING
口試委員:李育明朱九龍江謝令涵
口試委員(外文):LEE, YUH-MINGCHU, CHIU-LUNGCHIANG HSIEH, LING-HAN
口試日期:2022-06-16
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:自然資源與環境管理研究所
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:145
中文關鍵詞:全電動公車生命週期永續性評估傳統生命週期評估生命週期成本社會生命週期評估
外文關鍵詞:BEBLCSA(environmental)LCALCCS-LCANet ZeroSustainable Development
相關次數:
  • 被引用被引用:4
  • 點閱點閱:467
  • 評分評分:
  • 下載下載:126
  • 收藏至我的研究室書目清單書目收藏:1
本研究為了解全電動公車系統於未來永續發展上是否具備永續性,並了解可改善之熱點,針對臺灣全電動公車進行生命週期永續性評估(LCSA)。以一輛全電動公車作為功能單位之永續性評估,包括傳統生命週期評估(LCA)、生命週期成本(LCC)、社會生命週期評估(S-LCA)與各面向結果彙整之永續熱點分析。
環境面之傳統生命週期評估,收集各階段之投入產出資料,並以「OpenLCA」之「CML」生命週期衝擊評估方法針對9項衝擊類別進行評估。評估結果顯示環境衝擊最大之類別為全球暖化約為5.056E+05 kg CO2 eq,次為淡水生態毒性約4.040E+05 kg 1,4-DB eq。經濟面,計算全電動公車於各階段之成本,並透過成本有效性分析,計算全電動公車於不同情境下之淨現值最高可達24,745,000元。另外延伸探討柴油公車經抵換專案汰換為全電動公車後,其獲得之「減量額度」經濟效益至少價值29,897,000元。社會面,透過探討復康巴士、長照系統與來往偏鄉使用公車汰換為全電動公車之效益。日本案例證實,全電動公車可提升社會效益,包括縮短城鄉差距、提升生活品質、增加災難應變措施等。
永續性評估方面,本研究透過熱點法,以定量方式彙整環境與經濟面評估結果,並以定性方式將社會面分析彙整以完整永續性評估。定量評估結果顯示,熱點值最高出現於全電動公車之營運階段,次之則為車輛製造與購買階段。表示欲使全電動公車往永續發展,此兩階段為最優先研究及考量之階段。定性分析結果則說明,全電動公車可透過碳權交易平台與公車至電網(B2G)模式等配套措施,使全電動公車邁向永續性。

In order to understand the Battery Electric Bus(BEB) is sustainable in the future sustainable development, and to find the hotspots that can be improved by the Battery Electric Bus system. This study aims to evaluate the sustainability of BEB system in Taiwan by using the Lifecycle Sustainability Assessment (LCSA). The LCSA using three evaluation tools , (environmental)Life Cycle Assessment (LCA) based on ISO14040, Life Cycle Costing (LCC), and Social Life Cycle Assessment (S-LCA), were used to assess the impacts that occur during the life cycle service system from environmental, economic, and social perspectives respectively.
On the environmental side, the (environmental)LCA of BEB collects input and output data at each stage, and evaluates 9 impact categories through the “CML” life cycle impact assessment method of “OpenLCA”. The assessment results show that the category with the largest environmental impact is global warming at about 5.056E+05 kg CO2 eq, secondly by freshwater ecotoxicity at about 4.040E+05 kg 1,4-DB eq. On the economic side, the cost of BEB at each stage is aggregated, and through cost-effectiveness analysis to calculate the net present value of the BEB under different scenarios. The results of the calculated show that BEB maximum NPV reach a maximum of NT$24,745,000. In addition, it was further discussed that after replacing diesel buses with BEB through the Carbon Offset Plant, is obtained at least NTD29.897 million economic benefit for "certified emissions reductions". On the social side, through the discussion benefits for replacing the use of diesel buses with BEB to rehabilitation bus, long-term care system and round trip remote village. The case of Japan confirms that BEB can improve social benefits, including shortening the urban-rural gap, improving the quality of life, and increasing disaster response measures.
In terms of LCSA, this study uses both “quantitative” and “qualitative” methods for aggregation. Environmental and economic results are aggregated using the hot spot method. then, the social results are integrated through qualitative methods. The results show that in order to achieve sustainable development of BEB, it is necessary to prioritize addressing indirect emissions from operations, vehicle purchase costs, and advancing “B2G” and “cap and trade”.

第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究流程與論文架構 6
第二章 文獻回顧 9
第一節 電動公車發展現況 10
第二節 汽車運輸業溫室氣體相關法規與案例 22
第三節 生命週期評估 31
第四節 汽車運輸系統的生命週期評估 61
第三章 研究架構與方法 65
第一節 研究步驟與研究架構 65
第二節 生命週期評估研究方法 69
第四章 結果與討論 77
第一節 傳統生命週期評估 77
第二節 經濟議題考量 103
第三節 全電動公車與社會關懷 117
第四節 全電動公車生命週期永續性評估與綜合討論 126
第五章 結論與建議 133
第一節 結論 133
第二節 建議 137
參考文獻 139
英文文獻 139
中文文獻 144
日文文獻 145

英文文獻
1.Amaral, K.G., M.M. Aisse, and G.R. Possett. (2019). “Sustainability assessment of sludge and biogas management in wastewater treatment plants using the LCA technique”. Revista Ambiente and Agua, 14(5), e2371.https://doi.org/10.4136/ambi-agua.2371

2.Acero, A.P., C. Rodriguez, and A. Ciroth. (2016). “LCIA methods: Impact assessment methods in life cycle assessment and their impact categories”. https://www.openlca.org/wp-content/uploads/2015/11/openLCA_LCIA_METHODS-v.1.5.6.pdf.

3.Baumann, H. and A.M. Tillman. (2004). The Hitch Hiker’s Guide to LCA. Studentlitteratur AB, Lund.

4.Bouckaert, S., A.F. Pales, C. McGlade, U. Remme, B. Wanner, L. Varro, D. D'Ambrosio, and T. Spencer. (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector. Washington.

5.Buo, T. (2015). “Environmental assessment of bus transport in the trondheim region: Evaluation of relevant bus and fuel technologies and their potential for mitigating emissions from passenger transportation”. Norwegian University of Science and Technology.

6.Ciroth, A. (2007). “ICT for environment in life cycle applications OpenLCA—A new open source software for life cycle assessment”. The International Journal of Life Cycle Assessment, 12(4), 209-210.

7.Ciroth A,S. Winter, G Berlin. (2014). “OpenLCA 1.4 overview and first steps”. https://www.openlca.org/wp-content/uploads/2015/11/openLCA_1-4_overview_and_first_steps_v11.pdf

8.Ciroth, A., M. Finkbeiner, M. Traverso, J. Hildenbrand, W. Kloepffer, B. Mazijn, S. Prakash, G. Sonnemann, S. Valdivia, and C.M. Ugaya. (2011). Towards A Life Cycle Sustainability Assessment: Making Informed Choices on Products. UNEP. Paris.

9.Clemens, M.A., C.J. Kenny, and T. J. Moss. (2007). “The trouble with the MDGs: Confronting expectations of aid and development success”. World Development, 35(5), 735-751.https://doi.org/10.1016/j.worlddev.2006.08.003

10.Curran, M.A. (2012). Life Cycle Assessment Handbook: A Guide For Environmentally Sustainable Products. Beverly, MA .

11.Chang, C.C., Y.T. Liao, and Y.W. Chang. (2019). “Life cycle assessment of carbon footprint in public transportation- A case study of bus route no. 2 in Tainan city, taiwan”. Procedia Manufacturing, 30, 388-395.

12.Cooney, G., T.R. Hawkins, and J. Marriott. (2013). “Life cycle assessment of diesel and electric public transportation buses”. Journal of Industrial Ecology, 17(5), 689-699.

13.Dong, Y. H., and S.Ng. Thomas. (2014). “Comparing the midpoint and endpoint approaches based on ReCiPe—A study of commercial buildings in Hong Kong”. The International Journal of Life Cycle Assessment, 19(7), 1409–1423. doi:10.1007/s11367-014-0743-0

14.Emilsson, E.,and L. Dahllof. (2019). “Lithium-ion vehicle battery production”. IVL swedish environmental research institute, Stockholm.

15.European Economic Area (EEA). (2019). EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019. European Union. Luxembourg.

16.Habermacher, F. (2011). “Modeling material inventories and environmental impacts of electric passenger cars”. Department of Environmental Science ETH: Zurich, Switzerland.

17.International Energy Agency (IEA). (2012). CO2 Emissions from Fuel Combustion - 2011 Highlights. International Energy Agency(IEA). Paris.

18.Jolliet, O., M. Margni, R. Charles, S. Humbert, J. Payet, G. Rebitzer, and R. Rosenbaum. (2003). “IMPACT 2002+: a new life cycle impact assessment methodology”. The International Journal of Life Cycle Assessment, 8(6), 324-330.

19.Jitender, and P. Sarkar. (2017). “Reduction of environmental impact of products through hotspot analysis in LCA”. Smart Innovation, Systems and Technologies, 153–163. doi:10.1007/978-981-10-3521-0_13

20.Klopffer, W. (2008). “Life cycle sustainability assessment of products”. The International Journal of Life Cycle Assessment, 13(2), 89-95.

21.Lopez, C., R. Ruiz-Benitez, and C. Vargas-Machuca. (2019). “On the environmental and social sustainability of technological innovations in urban bus transport: The EU case”. Sustainability, 11(5), 1413.

22.Ladu, L. and P. Morone. (2021). “Holistic approach in the evaluation of the sustainability of bio-based products: An Integrated Assessment Tool”. Sustainable Production and Consumption, 28, 911-924e916.

23.Mahmoud, M., R. Garnett, M. Ferguson, and P. Kanaroglou. (2016). “Electric buses: A review of alternative powertrains”. Renewable and Sustainable Energy Reviews, 62, 673-684.

24.Majeau-Bettez, G., T.R. Hawkins, and A.H. Strømman. (2011). “Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles”. Environmental Science and Technology, 45(10), 4548-4554.

25.Mastinu, G. and L. Solari. (2022). “Electric and biomethane-fuelled urban buses: comparison of environmental performance of different powertrains”. The International Journal of Life Cycle Assessment, 1-17.

26.Menoufi, K.A. (2011). “Life cycle analysis and life cyle impact assessment methodologies: a state of the art”. Engineering, 10-12.

27.Notter, D.A., M. Gauch, R. Widmer, P. Wager, A. Stamp, R. Zah, and H. J. Althaus. (2010). “Contribution of Li-ion batteries to the environmental impact of electric vehicles”. ACS Publications.

28.Nissing, C., L. Coent, and N. Girault. (2011). “Development and Application of a LCA Model for Coal Conversion Products (Coal to Y)”. Towards Life Cycle Sustainability Management, 469-480. doi:10.1007/978-94-007-1899-9_46

29.Onat, N.C., N.N. Aboushaqrah, M. Kucukvar, F. Tarlochan, and A.M. Hamouda. (2020). “From sustainability assessment to sustainability management for policy development: The case for electric vehicles”. Energy Conversion and Management, 216, 112937.

30.Onat, N.C., M. Kucukvar, N.N. Aboushaqrah, and R. Jabbar. (2019). “How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar”. Applied Energy, 250, 461-477.

31.Polom, M. and P. Wisniewski. (2021). “Implementing electromobility in public transport in poland in 1990 - 2020: A review of experiences and evaluation of the current development directions”. Sustainability, 13(7), 4009.

32.Pankow, N., R. Bruggemann, J. Waschnewski, R. Gnirss, and R. Ackermann. (2021). “Indicators for Sustainability Assessment in the Procurement of Civil Engineering Services”. Measuring and Understanding Complex Phenomena, 105-118. doi:10.1007/978-3-030-59683-5_8

33.Rebitzer, G., T. Ekvall, R. Frischknecht, D. Hunkeler, G. Norris, T. Rydberg, W. P. Schmidt, S. Suh, B.P. Weidema, and D.W. Pennington. (2004). “Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications”. Environment international, 30(5), 701-720.

34.Sullivan, J.L., A. Burnham, and M. Wang. (2010). “Energy-consumption and carbon-emission analysis of vehicle and component manufacturing”. Argonne National Lab.(ANL) and Argonne, IL(United States).

35.Silva, D., A.O. Nunes, A. da Silva Moris, C. Moro, and T.O. Piekarski. (2017). “How important is the LCA software tool you choose Comparative results from GaBi, OpenLCA, SimaPro and Umberto”. In Proceedings of the VII Conferencia Internacional de Analisis de Ciclo de Vida en Latinoamerica, Medellin, Colombia.

36.Sittipong, W. and V. Varabuntoonvit. (2021). “Life Cycle Sustainability and Eco-Efficiency for Mass Transportation in Bangkok: A Case Study for Bus and Rapid Transit”, Kasetsart University.

37.Soltanpour, Y., I. Peri, and L. Temri. (2019). “Area of protection in S-LCA: Human well-being or societal quality”. The International Journal of Life Cycle Assessment, 24(11), 2073–2087. doi:10.1007/s11367-019-01620-y

38.Shemfe, M., S. Gadkari, and J. Sadhukhan. (2018). “Social Hotspot Analysis and Trade Policy Implications of the Use of Bioelectrochemical Systems for Resource Recovery from Wastewater”. Sustainability, 10(9), 3193. doi:10.3390/su1009319

39.Saber, Z., M. Esmaeili, H. Pirdashti, A. Motevali, and A. Nabavi-Pelesaraei. (2020). “Exergoenvironmental-Life cycle cost analysis for conventional, low external input and organic systems of rice paddy production”. Journal of Cleaner Production, 121529. doi:10.1016/j.jclepro.2020.121529

40.The International Organization for Standardization (ISO). (2006a). ISO 14040:Environmental Management – Life Cycle Assessment – Principles And Framework. American National Standards Institute (ANSI).

41.The International Organization for Standardization (ISO). (2006b). ISO 14044: Environmental Management – Life Cycle Assessment – Requirements And Guidelines. American National Standards Institute (ANSI).

42.Tiwari, R., R. Cervero, and L. Schipper. (2011). “Driving CO2 reduction by integrating transport and urban design strategies”. Cities, 28(5), 394-405.

43.Topal, O. and I. Nakir. (2018). “Total cost of ownership based economic analysis of diesel, CNG and electric bus concepts for the public transport in Istanbul City”. Energies, 11(9), 2369.

44.United Nations (UN). (2015). Transforming our World: The 2030 Agenda for Sustainable Development. Department of Economic and Social Affairs.

45.United Nations Environment Programme (UNEP). (2009). Guidelines for Social Life Cycle Assessment of Products. UNEP. Paris.

46.United Nations Environment Programme (UNEP). (2011). Towards a Life Cycle Sustainability Assessment. UNEP. Paris.

47.United Nations Environment Programme (UNEP). and Society of Environmental Toxicology and Chemistry (SETAC). (2009). Guidelines for social life cycle assessment of products. UNEP. Paris.

48.Valdivia, S., A. Ciroth, C. Ugaya, B. Lu, G. Sonnemann, J. Fontes, C. Alvarado, and S. Tischhauser. (2010). “Social Life Cycle Assessment and Life Cycle Sustainability Assessment”. https://www.lifecycleinitiative.org/wp-content/uploads/2012/12/SLCA%20and%20LCSA.pdf

49.VanderGiesen, C., S. Cucurachi, J. Guinee, G.J. Kramer, and A. Tukker. (2020). “A critical view on the current application of LCA for new technologies and recommendations for improved practice”. Journal of Cleaner Production, 259, 120904.

50.Vuchic, V.R., and M. Poulton. (2001). “Transportation for liveable cities”. Canadian Journal of Urban Research, 10(2), 340.

51.World Bank. (2022). “State and Trends of Carbon Pricing 2022”. State and Trends of Carbon Pricing. Washington, DC.

52.World Commission on Environment and Development (WCED). (1987). “World Commission on Environment and Development: Our Common Future”. Oxford University Press.

53.Wright, T.S. (2002). “Definitions and frameworks for environmental sustainability in higher education”. Higher education policy, 15(2), 105-120.

54.Zampori, L. and R. Pant. (2019). Suggestions for updating the Product Environmental Footprint (PEF) method. Publications Office of the European Union, Luxembourg.

55.Zhi, J.H., F.Q. Cheng, H.Z. Han, and F.L. Yang. (2015). “Comparative life cycle assessment on environment -friendly clean briquette and lignite”. Materials Research Innovations, 19(sup2), S2–96–S2–102. doi:10.1179/1432891715z.0000000001319

56.Zhao, E., P.D. Walker, and N.C. Surawski. (2021). “Emissions life cycle assessment of diesel, hybrid and electric buses”. Journal of Automobile Engineering, 236(6), 1233-1245.

57.Zhuang, P. and H.Liang. (2021). “Stochastic Energy Management of Electric Bus Charging Stations With Renewable Energy Integration and B2G Capabilities”. IEEE Transactions on Sustainable Energy, 12(2), 1206–1216. doi:10.1109/tste.2020.3039758

中文文獻
1.中華民國交通部,(2017),《能源轉型白皮書-運輸部門節能計畫》,中華民國交通部。

2.李堅明、張明如,(2016),考慮產業先期行動誘因之排放權核配制度設計之研究,應用經濟論叢,100期,第35-57頁。

3.交通部運輸研究所,(1997),電動車輛發展之初步評估與規劃,交通部運輸研究所-綜合技術組。

4.交通部,(2022),交通部業務概況報告,立法院第10屆第5會期交通委員會。

5.行政院環境保護署,(2018),電動車規劃推動辦理情形,行政院能源及減碳辦公室。

6.李孟穎、郭瑾瑋、温珮伶、周裕豐、吳易樺,(2019),臺灣能源工程模型說明文件:運輸部門,工研院綠能與環境研究所。

7.周武雄、許珮蒨、池佳育、楊伊萍、蔡富伃、邱智萱、曾佩如、朱珮芸、李忠遠、楊智凱,(2021),汽車運輸業參與溫室氣體抵換專案之研究,交通部運輸研究所。

8.林志明、蔡明志、賈凱傑,(1994),替代能源車輛-電動車技術及發展潛力之初步研究,交通部運輸研究所。

9.施延熙,(2001),生態效益:主導21世紀的經營理念,經濟部工業局。

10.浦忠成,(2021),幸福巴士 - 調查報告,監察院。

11.陳榮明,(2013),電動公車引進的評估,《臺北市議會公報》,第97卷,第三期,第1120-1122頁,臺北市議會,臺北市。

12.許志義與洪穎正,2016。電力需求面管理與用戶群代表法制革新:先進國家案例及其對臺灣之政策意涵,臺灣能源期刊,第3卷第2期,第137-153頁,臺北,經濟部能源局。

13.許志義與鍾晧晨,2017。虛擬電廠參與者之成本效益分析與政策推介,臺灣能源期刊,第4卷第2期,第145-172頁,臺北,經濟部能源局。

14.捷順交通股份有限公司(捷順交通),(2022),捷順交通電動公車抵換專案,捷順交通股份有限公司(捷順交通)。

15.港都汽車客運股份有限公司(港都客運),(2020),港都客運電動公車抵換專案,港都汽車客運股份有限公司(港都客運)。

16.楊智凱、許義宏、陳國岳、黃新薰、張瓊文、朱珮芸,(2014),電動公車、油電公車與柴油公車之成本效益分析,交通部運輸研究所。

17.楊盛旺,(2021),復康巴士服務相關法制之探討,立法院法制局專題研究報告,法制局。

18.經濟部能源局,(2021),《能源轉型白皮書-能源轉型關鍵指標》,經濟部,經濟部能源局。

19.臺北市政府交通局,(2021),《109年交通統計年報》,臺北市。

20.賴文泰,2017。電動公車營運指標、財務效益分析與發展策略之研究,運輸計畫季刊,第46卷第4期,第377-398頁。

日文文獻
1.大野晃,(2008),限界集落と地域再生,新潟日報事業社。

2.自動車局,(2018),電動バス導入ガイドライン,国土交通省,東京都。

3.橋本 恵一郎、市川 智秀、大庭 靖貴,(2017),過疎地域における物流サービスの現状と課題,国土交通省。https://www.soumu.go.jp/main_content/000569917.pdf
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top