|
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 71(3), 209-249. doi:10.3322/caac.21660 Taiwan, M. o. H. a. W. (2020). Cancer Registry Annual Report, 2018 Taiwan. https://www.hpa.gov.tw/Pages/TopicList.aspx?nodeid=269 Sun, Y. S., Zhao, Z., Yang, Z. N., Xu, F., Lu, H. J., Zhu, Z. Y., et al. (2017). Risk Factors and Preventions of Breast Cancer. International journal of biological sciences, 13(11), 1387-1397. doi:10.7150/ijbs.21635 Harbeck, N., Penault-Llorca, F., Cortes, J., Gnant, M., Houssami, N., Poortmans, P., et al. (2019). Breast cancer. Nat Rev Dis Primers, 5(1), 66. doi:10.1038/s41572-019-0111-2 Ahmad, A. (2013). Breast Cancer Metastasis and Drug Resistance. Pal China, S., Sanyal, S., & Chattopadhyay, N. (2018). Adiponectin signaling and its role in bone metabolism. Cytokine, 112, 116-131. doi:10.1016/j.cyto.2018.06.012 Khoramipour, K., Chamari, K., Hekmatikar, A. A., Ziyaiyan, A., Taherkhani, S., Elguindy, N. M., et al. (2021). Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients, 13(4). doi:10.3390/nu13041180 Nigro, E., Daniele, A., Salzillo, A., Ragone, A., Naviglio, S., & Sapio, L. (2021). AdipoRon and Other Adiponectin Receptor Agonists as Potential Candidates in Cancer Treatments. International journal of molecular sciences, 22(11), 5569. doi:10.3390/ijms22115569 Yamauchi, T., Iwabu, M., Okada-Iwabu, M., & Kadowaki, T. (2014). Adiponectin receptors: a review of their structure, function and how they work. Best Pract Res Clin Endocrinol Metab, 28(1), 15-23. doi:10.1016/j.beem.2013.09.003 Zhang, D., Wang, X., & Lu, X. Y. (2016). Adiponectin Exerts Neurotrophic Effects on Dendritic Arborization, Spinogenesis, and Neurogenesis of the Dentate Gyrus of Male Mice. Endocrinology, 157(7), 2853-2869. doi:10.1210/en.2015-2078 Yau, S. Y., Li, A., Hoo, R. L., Ching, Y. P., Christie, B. R., Lee, T. M., et al. (2014). Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc Natl Acad Sci U S A, 111(44), 15810-15815. doi:10.1073/pnas.1415219111 Combs, T. P., & Marliss, E. B. (2014). Adiponectin signaling in the liver. Reviews in endocrine & metabolic disorders, 15(2), 137-147. doi:10.1007/s11154-013-9280-6 Zhou, L., Deepa, S. S., Etzler, J. C., Ryu, J., Mao, X., Fang, Q., et al. (2009). Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. The Journal of biological chemistry, 284(33), 22426-22435. doi:10.1074/jbc.M109.028357 Aleidi, S., Issa, A., Bustanji, H., Khalil, M., & Bustanji, Y. (2015). Adiponectin serum levels correlate with insulin resistance in type 2 diabetic patients. Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society, 23(3), 250-256. doi:10.1016/j.jsps.2014.11.011 Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., et al. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med, 8(11), 1288-1295. doi:10.1038/nm788 Fang, X., Palanivel, R., Cresser, J., Schram, K., Ganguly, R., Thong, F. S., et al. (2010). An APPL1-AMPK signaling axis mediates beneficial metabolic effects of adiponectin in the heart. American journal of physiology. Endocrinology and metabolism, 299(5), E721-729. doi:10.1152/ajpendo.00086.2010 Tsioufis, C., Dimitriadis, K., Chatzis, D., Vasiliadou, C., Tousoulis, D., Papademetriou, V., et al. (2005). Relation of microalbuminuria to adiponectin and augmented C-reactive protein levels in men with essential hypertension. Am J Cardiol, 96(7), 946-951. doi:10.1016/j.amjcard.2005.05.052 Christou, G. A., & Kiortsis, D. N. (2014). The role of adiponectin in renal physiology and development of albuminuria. J Endocrinol, 221(2), R49-61. doi:10.1530/JOE-13-0578 Ruan, H., & Dong, L. Q. (2016). Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol, 8(2), 101-109. doi:10.1093/jmcb/mjw014 Imatoh, T., Miyazaki, M., Momose, Y., Tanihara, S., & Une, H. (2008). Adiponectin levels associated with the development of hypertension: a prospective study. Hypertens Res, 31(2), 229-233. doi:10.1291/hypres.31.229 Leon, B. M., & Maddox, T. M. (2015). Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World journal of diabetes, 6(13), 1246-1258. doi:10.4239/wjd.v6.i13.1246 van Himbergen, T. M., Beiser, A. S., Ai, M., Seshadri, S., Otokozawa, S., Au, R., et al. (2012). Biomarkers for insulin resistance and inflammation and the risk for all-cause dementia and alzheimer disease: results from the Framingham Heart Study. Arch Neurol, 69(5), 594-600. doi:10.1001/archneurol.2011.670 Li, J. C., Yi, F., Diao, S., & Li, J. Y. (2019). [Association Between Plasma Adiponectin and Risk of Breast Cancer by Molecular Subtypes]. Sichuan Da Xue Xue Bao Yi Xue Ban(1672-173X (Print)). Ishikawa, M., Kitayama, J., Kazama, S., Hiramatsu, T., Hatano, K., & Nagawa, H. (2005). Plasma adiponectin and gastric cancer. Clin Cancer Res, 11(2 Pt 1), 466-472. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15701829 Chong, D. Q., Mehta, R. S., Song, M., Kedrin, D., Meyerhardt, J. A., Ng, K., et al. (2015). Prediagnostic Plasma Adiponectin and Survival among Patients with Colorectal Cancer. Cancer Prev Res (Phila)(1940-6215 (Electronic)), 1138-1145. Fu, S., Xu, H., Liu, C., Gu, M., Wang, Q., Zhou, J., et al. (2017). [Role of adiponectin in prostate cancer: A preliminary study]. Zhonghua Nan Ke Xue, 23(11), 975-981. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29738161 Dieudonne, M. N., Bussiere, M., Dos Santos, E., Leneveu, M. C., Giudicelli, Y., & Pecquery, R. (2006). Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun, 345(1), 271-279. doi:10.1016/j.bbrc.2006.04.076 Cong, L., Gasser, J., Zhao, J., Yang, B., Li, F., & Zhao, A. Z. (2007). Human adiponectin inhibits cell growth and induces apoptosis in human endometrial carcinoma cells, HEC-1-A and RL95 2. Endocr Relat Cancer, 14(3), 713-720. doi:10.1677/ERC-07-0065 Kim, A. Y., Lee, Y. S., Kim, K. H., Lee, J. H., Lee, H. K., Jang, S. H., et al. (2010). Adiponectin represses colon cancer cell proliferation via AdipoR1- and -R2-mediated AMPK activation. Mol Endocrinol, 24(7), 1441-1452. doi:10.1210/me.2009-0498 Dos Santos, E., Benaitreau, D., Dieudonne, M. N., Leneveu, M. C., Serazin, V., Giudicelli, Y., et al. (2008). Adiponectin mediates an antiproliferative response in human MDA-MB 231 breast cancer cells. Oncol Rep, 20(4), 971-977. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18813842 Saxena, N. K., Fu, P. P., Nagalingam, A., Wang, J., Handy, J., Cohen, C., et al. (2010). Adiponectin modulates C-jun N-terminal kinase and mammalian target of rapamycin and inhibits hepatocellular carcinoma. Gastroenterology, 139(5), 1762-1773, 1773 e1761-1765. doi:10.1053/j.gastro.2010.07.001 Marqus, S., Pirogova, E., & Piva, T. J. (2017). Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci, 24(1), 21. doi:10.1186/s12929-017-0328-x Fruebis, J., Tsao, T. S., Javorschi, S., Ebbets-Reed, D., Erickson, M. R., Yen, F. T., et al. (2001). Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 2005-2010. doi:10.1073/pnas.041591798 Okada-Iwabu, M., Yamauchi, T., Iwabu, M., Honma, T., Hamagami, K., Matsuda, K., et al. (2013). A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature, 503(7477), 493-499. doi:10.1038/nature12656 Choi, S. K., Kwon, Y., Byeon, S., Haam, C. E., & Lee, Y. H. (2020). AdipoRon, adiponectin receptor agonist, improves vascular function in the mesenteric arteries of type 2 diabetic mice. PLoS One, 15(3), e0230227. doi:10.1371/journal.pone.0230227 Zhang, Y., Zhao, J., Li, R., Lau, W. B., Yuan, Y. X., Liang, B., et al. (2015). AdipoRon, the first orally active adiponectin receptor activator, attenuates postischemic myocardial apoptosis through both AMPK-mediated and AMPK-independent signalings. American journal of physiology. Endocrinology and metabolism(1522-1555 (Electronic)). Liu, B., Liu, J., Wang, J. G., Liu, C. L., & Yan, H. J. (2020). AdipoRon improves cognitive dysfunction of Alzheimer's disease and rescues impaired neural stem cell proliferation through AdipoR1/AMPK pathway. Exp Neurol(1090-2430 (Electronic)). Ramzan, A. A., Bitler, B. G., Hicks, D., Barner, K., Qamar, L., Behbakht, K., et al. (2019). Adiponectin receptor agonist AdipoRon induces apoptotic cell death and suppresses proliferation in human ovarian cancer cells. Mol Cell Biochem, 461(1-2), 37-46. doi:10.1007/s11010-019-03586-9 Messaggio, F., Mendonsa, A. M., Castellanos, J., Nagathihalli, N. S., Gorden, L., Merchant, N. B., et al. (2017). Adiponectin receptor agonists inhibit leptin induced pSTAT3 and in vivo pancreatic tumor growth. Oncotarget, 8(49), 85378-85391. doi:10.18632/oncotarget.19905 Akimoto, M., Maruyama, R., Kawabata, Y., Tajima, Y., & Takenaga, K. (2018). Antidiabetic adiponectin receptor agonist AdipoRon suppresses tumour growth of pancreatic cancer by inducing RIPK1/ERK-dependent necroptosis. Cell Death Dis, 9(8), 804. doi:10.1038/s41419-018-0851-z Takenaga, K., Akimoto, M., Koshikawa, N., & Nagase, H. (2021). Obesity reduces the anticancer effect of AdipoRon against orthotopic pancreatic cancer in diet-induced obese mice. Sci Rep, 11(1), 2923. doi:10.1038/s41598-021-82617-2 Yim, W. W., & Mizushima, N. (2020). Lysosome biology in autophagy. Cell Discov, 6(2056-5968 (Print)), 6. doi:10.1038/s41421-020-0141-7 Cicchini, M., Karantza, V., & Xia, B. (2015). Molecular pathways: autophagy in cancer--a matter of timing and context. Clin Cancer Res, 21(3), 498-504. doi:10.1158/1078-0432.CCR-13-2438 Gozuacik, D., & Kimchi, A. (2004). Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 23(16), 2891-2906. doi:10.1038/sj.onc.1207521 Russell, R. C., Yuan, H. X., & Guan, K. L. (2014). Autophagy regulation by nutrient signaling. Cell research, 24(1), 42-57. doi:10.1038/cr.2013.166 Nassour, J., Radford, R., Correia, A., Fuste, J. M., Schoell, B., Jauch, A., et al. (2019). Autophagic cell death restricts chromosomal instability during replicative crisis. Nature, 565(7741), 659-663. doi:10.1038/s41586-019-0885-0 Chen, Y., McMillan-Ward, E., Kong, J., Israels, S. J., & Gibson, S. B. (2008). Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ, 15(1), 171-182. doi:10.1038/sj.cdd.4402233 Dixon, S. J., Lemberg Km Fau - Lamprecht, M. R., Lamprecht Mr Fau - Skouta, R., Skouta R Fau - Zaitsev, E. M., Zaitsev Em Fau - Gleason, C. E., Gleason Ce Fau - Patel, D. N., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(1097-4172 (Electronic)), 1060-1072. doi:10.1016/j.cell.2012.03.042 Chen, X., Kang, R., Kroemer, G., & Tang, D. (2021). Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol, 18(5), 280-296. doi:10.1038/s41571-020-00462-0 Jiang, X., Stockwell, B. R., & Conrad, M. (2021). Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol, 22(4), 266-282. doi:10.1038/s41580-020-00324-8 Li, J., Cao, F., Yin, H. L., Huang, Z. J., Lin, Z. T., Mao, N., et al. (2020). Ferroptosis: past, present and future. Cell Death Dis, 11(2), 88. doi:10.1038/s41419-020-2298-2 Conrad, M., Lorenz, S. M., & Proneth, B. (2021). Targeting Ferroptosis: New Hope for As-Yet-Incurable Diseases. Trends Mol Med, 27(2), 113-122. doi:10.1016/j.molmed.2020.08.010 Seibt, T. M., Proneth, B., & Conrad, M. (2019). Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med, 133(1873-4596 (Electronic)), 144-152. doi:10.1016/j.freeradbiomed.2018.09.014 Zhang, X., Sui, S., Wang, L., Li, H., Zhang, L., Xu, S., et al. (2020). Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol, 235(4), 3425-3437. doi:10.1002/jcp.29232 Schonberg, D. L., Miller, T. E., Wu, Q., Flavahan, W. A., Das, N. K., Hale, J. S., et al. (2015). Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells. Cancer Cell, 28(4), 441-455. doi:10.1016/j.ccell.2015.09.002 Basuli, D., Tesfay, L., Deng, Z., Paul, B., Yamamoto, Y., Ning, G., et al. (2017). Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene, 36(29), 4089-4099. doi:10.1038/onc.2017.11 Mai, T. T., Hamai, A., Hienzsch, A., Caneque, T., Muller, S., Wicinski, J., et al. (2017). Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem, 9(10), 1025-1033. doi:10.1038/nchem.2778 Chanvorachote, P., & Luanpitpong, S. (2016). Iron induces cancer stem cells and aggressive phenotypes in human lung cancer cells. Am J Physiol Cell Physiol, 310(9), C728-739. doi:10.1152/ajpcell.00322.2015 Guo, J., Xu, B., Han, Q., Zhou, H., Xia, Y., Gong, C., et al. (2018). Ferroptosis: A Novel Anti-tumor Action for Cisplatin. Cancer research and treatment, 50(2), 445-460. doi:10.4143/crt.2016.572 Song, X., Zhu, S., Chen, P., Hou, W., Wen, Q., Liu, J., et al. (2018). AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System Xc(-) Activity. Current biology : CB, 28(15), 2388-2399 e2385. doi:10.1016/j.cub.2018.05.094 Lv, C., Qu, H., Zhu, W., Xu, K., Xu, A., Jia, B., et al. (2017). Low-Dose Paclitaxel Inhibits Tumor Cell Growth by Regulating Glutaminolysis in Colorectal Carcinoma Cells. Frontiers in pharmacology, 8, 244. doi:10.3389/fphar.2017.00244 Daher, B., Parks, S. K., Durivault, J., Cormerais, Y., Baidarjad, H., Tambutte, E., et al. (2019). Genetic Ablation of the Cystine Transporter xCT in PDAC Cells Inhibits mTORC1, Growth, Survival, and Tumor Formation via Nutrient and Oxidative Stresses. Cancer Res, 79(15), 3877-3890. doi:10.1158/0008-5472.CAN-18-3855 Sato, M., Kusumi, R., Hamashima, S., Kobayashi, S., Sasaki, S., Komiyama, Y., et al. (2018). The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells. Sci Rep, 8(1), 968. doi:10.1038/s41598-018-19213-4 Ye, J., Jiang, X., Dong, Z., Hu, S., & Xiao, M. (2019). Low-Concentration PTX And RSL3 Inhibits Tumor Cell Growth Synergistically By Inducing Ferroptosis In Mutant p53 Hypopharyngeal Squamous Carcinoma. Cancer management and research, 11, 9783-9792. doi:10.2147/CMAR.S217944 Lei, G., Zhang, Y., Koppula, P., Liu, X., Zhang, J., Lin, S. H., et al. (2020). The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell research, 30(2), 146-162. doi:10.1038/s41422-019-0263-3 Hangauer, M. J., Viswanathan, V. S., Ryan, M. J., Bole, D., Eaton, J. K., Matov, A., et al. (2017). Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 551(7679), 247-250. doi:10.1038/nature24297 Wu, Y., Yu, C., Luo, M., Cen, C., Qiu, J., Zhang, S., et al. (2020). Ferroptosis in Cancer Treatment: Another Way to Rome. Frontiers in oncology, 10, 571127. doi:10.3389/fonc.2020.571127 Martinez-Reyes, I., & Chandel, N. S. (2020). Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun, 11(1), 102. doi:10.1038/s41467-019-13668-3 Korla, K., & Mitra, C. K. (2014). Modelling the Krebs cycle and oxidative phosphorylation. J Biomol Struct Dyn, 32(2), 242-256. doi:10.1080/07391102.2012.762723 Pagliarini, D. J., & Rutter, J. (2013). Hallmarks of a new era in mitochondrial biochemistry. Genes & development, 27(24), 2615-2627. doi:10.1101/gad.229724.113 Rossmann, M. P., Dubois, S. M., Agarwal, S., & Zon, L. I. (2021). Mitochondrial function in development and disease. Disease models & mechanisms, 14(6), dmm048912. doi:10.1242/dmm.048912 Zhao, R. Z., Jiang, S., Zhang, L., & Yu, Z. B. (2019). Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med, 44(1), 3-15. doi:10.3892/ijmm.2019.4188 Gilgun-Sherki, Y., Melamed, E., & Offen, D. (2001). Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 40(8), 959-975. doi:Doi 10.1016/S0028-3908(01)00019-3 Sahu, K., Langeh, U., Singh, C., & Singh, A. (2021). Crosstalk between anticancer drugs and mitochondrial functions. Current research in pharmacology and drug discovery, 2, 100047. doi:10.1016/j.crphar.2021.100047 Chen, H., & Chan, D. C. (2010). Physiological functions of mitochondrial fusion. Ann N Y Acad Sci, 1201(1749-6632 (Electronic)), 21-25. doi:10.1111/j.1749-6632.2010.05615.x Youle, R. J., & van der Bliek, A. M. (2012). Mitochondrial fission, fusion, and stress. Science (New York, N.Y.), 337(6098), 1062-1065. doi:10.1126/science.1219855 Liu, Y. J., McIntyre, R. L., Janssens, G. E., & Houtkooper, R. H. (2020). Mitochondrial fission and fusion: A dynamic role in aging and potential target for age-related disease. Mech Ageing Dev, 186, 111212. doi:10.1016/j.mad.2020.111212 Wang, L., Collings, C. K., Zhao, Z., Cozzolino, K. A., Ma, Q., Liang, K., et al. (2017). A cytoplasmic COMPASS is necessary for cell survival and triple-negative breast cancer pathogenesis by regulating metabolism. Genes & development, 31(20), 2056-2066. doi:10.1101/gad.306092.117 Zhu, W., Qu, H., Xu, K., Jia, B., Li, H., Du, Y., et al. (2017). Differences in the starvation-induced autophagy response in MDA-MB-231 and MCF-7 breast cancer cells. Animal cells and systems, 21(3), 190-198. doi:10.1080/19768354.2017.1330763 Li, C., Xue, Y., Xi, Y. R., & Xie, K. (2017). Progress in the application and mechanism of metformin in treating non-small cell lung cancer. Oncology letters, 13(5), 2873-2880. doi:10.3892/ol.2017.5862 Rena, G., Hardie, D. G., & Pearson, E. R. (2017). The mechanisms of action of metformin. Diabetologia, 60(9), 1577-1585. doi:10.1007/s00125-017-4342-z Pernicova, I., & Korbonits, M. (2014). Metformin—mode of action and clinical implications for diabetes and cancer. Nature Reviews Endocrinology, 10(3), 143-156. doi:10.1038/nrendo.2013.256 Foretz, M., Guigas, B., Bertrand, L., Pollak, M., & Viollet, B. (2014). Metformin: from mechanisms of action to therapies. Cell Metab, 20(6), 953-966. doi:10.1016/j.cmet.2014.09.018 Zhang, C., & Wang, Y. (2019). Metformin attenuates cells stemness and epithelialmesenchymal transition in colorectal cancer cells by inhibiting the Wnt3a/betacatenin pathway. Mol Med Rep, 19(2), 1203-1209. doi:10.3892/mmr.2018.9765 Yuan, X., Wei, W., Bao, Q., Chen, H., Jin, P., & Jiang, W. (2018). Metformin inhibits glioma cells stemness and epithelial-mesenchymal transition via regulating YAP activity. Biomed Pharmacother, 102, 263-270. doi:10.1016/j.biopha.2018.03.031 Chen, B., Cha, J. H., Yan, M., Cao, N., Ye, P., Yan, X., et al. (2021). ATXN7L3B promotes hepatocellular carcinoma stemness and is downregulated by metformin. Biochem Biophys Res Commun, 573, 1-8. doi:10.1016/j.bbrc.2021.08.009 Sharma, A., Bandyopadhayaya, S., Chowdhury, K., Sharma, T., Maheshwari, R., Das, A., et al. (2019). Metformin exhibited anticancer activity by lowering cellular cholesterol content in breast cancer cells. PLoS One, 14(1), e0209435. doi:10.1371/journal.pone.0209435 Zhu, P., Davis, M., Blackwelder, A. J., Bachman, N., Liu, B., Edgerton, S., et al. (2014). Metformin selectively targets tumor-initiating cells in ErbB2-overexpressing breast cancer models. Cancer Prev Res (Phila), 7(2), 199-210. doi:10.1158/1940-6207.CAPR-13-0181 Kar, R., Singha, P. K., Venkatachalam, M. A., & Saikumar, P. (2009). A novel role for MAP1 LC3 in nonautophagic cytoplasmic vacuolation death of cancer cells. Oncogene, 28(28), 2556-2568. doi:10.1038/onc.2009.118 Lee, C., Lamech, L., Johns, E., & Overholtzer, M. (2020). Selective Lysosome Membrane Turnover Is Induced by Nutrient Starvation. (1878-1551 (Electronic)). Gao, M., Yi, J., Zhu, J., Minikes, A. M., Monian, P., Thompson, C. B., et al. (2019). Role of Mitochondria in Ferroptosis. Mol Cell, 73(2), 354-363 e353. doi:10.1016/j.molcel.2018.10.042 Kuang, F., Liu, J., Tang, D., & Kang, R. (2020). Oxidative Damage and Antioxidant Defense in Ferroptosis. Front Cell Dev Biol, 8, 586578. doi:10.3389/fcell.2020.586578 Imai, H., Matsuoka, M., Kumagai, T., Sakamoto, T., & Koumura, T. (2017). Lipid Peroxidation-Dependent Cell Death Regulated by GPx4 and Ferroptosis. Curr Top Microbiol Immunol, 403(0070-217X (Print)), 143-170. doi:10.1007/82_2016_508 Song, X., Wang, X., Liu, Z., & Yu, Z. (2020). Role of GPX4-Mediated Ferroptosis in the Sensitivity of Triple Negative Breast Cancer Cells to Gefitinib. Shibata, Y., Yasui, H., Higashikawa, K., Miyamoto, N., & Kuge, Y. (2019). Erastin, a ferroptosis-inducing agent, sensitized cancer cells to X-ray irradiation via glutathione starvation in vitro and in vivo. PLoS One, 14(12). doi:ARTN e0225931 Onodera, T., Ghazvini Zadeh, E., Xu, P., Gordillo, R., Guo, Z., Joffin, N., et al. (2021). PEGylated AdipoRon derivatives improve glucose and lipid metabolism under insulinopenic and high-fat diet conditions. J Lipid Res, 62, 100095. doi:10.1016/j.jlr.2021.100095
|