跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊歆懿
研究生(外文):Hsin-Yi Yang
論文名稱:探討脂聯素受體促效劑AdipoRon對於乳癌細胞株的毒殺機制
論文名稱(外文):Investigating the cytotoxic effects of an Adiponectin receptor agonist, AdipoRon, on breast cancer cell lines
指導教授:郭靜穎
指導教授(外文):Ching-Ying Kuo
口試委員:林亮音蘇剛毅陳政彰
口試委員(外文):Liang-In LinKang-Yi SuCheng-Chang Chen
口試日期:2022-01-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學檢驗暨生物技術學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:81
中文關鍵詞:乳癌脂聯素AdipoRon鐵依賴型細胞死亡
外文關鍵詞:Breast cancerAdiponectinAdipoRonFerroptosis
DOI:10.6342/NTU202200416
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據世界衛生組織的資料,在2020年乳癌是世界上最常見也是最容易造成死亡的女性癌症,在一些臨床研究發現,血液中過低的脂聯素濃度是許多癌症的危險因子,其中就包括乳癌。脂聯素是一個大約30kDa的蛋白質,主要是由脂肪細胞所表現及分泌,在血液中的濃度與身體的脂肪量成反比,先前的研究指出脂聯素具有毒殺乳癌及肝癌細胞的能力,然而,發展蛋白質藥物最大的困境就是難以避免蛋白質聚合,同時也要確保蛋白質的穩定度及效力,因此不易發展成臨床用藥。在2013年,Kadowaki團隊發現一種小分子脂聯素促效劑AdipoRon,AdipoRon能夠促進肝臟及骨骼肌細胞的脂肪酸氧化,利用飲食誘導肥胖的小鼠模型,進行口服餵藥,發現AdipoRon能夠降低血糖濃度以及胰島素抗性。其他研究發現AdipoRon能夠促進胰臟癌細胞、卵巢癌細胞以及骨肉瘤細胞死亡,並促使上述細胞的細胞週期停留在G0/G1期。此外,利用小鼠模型也發現AdipoRon能夠抑制三陰性乳癌以及胰臟癌腫瘤的生長,因此本篇研究想探討AdipoRon抑制乳癌細胞生長的機制。
我們發現AdipoRon會抑制乳癌細胞生長、抑制腫瘤球形成、促進細胞週期停留在G0/G1時期、細胞凋亡、細胞自噬作用以及鐵依賴型細胞死亡。另外合併AdipoRon以及鐵依賴型細胞死亡抑制劑Ferrostatin-1,發現合併藥物能夠降低AdipoRon毒殺細胞的效果,因此推測AdipoRon主要是藉由鐵依賴型細胞死亡造成癌細胞凋亡。此外,我們也發現AdipoRon會使細胞以及粒線體中過氧化物堆積、粒線體數量下降以及粒線體型態改變,導致粒線體功能異常。
綜合以上所述,本篇研究發現AdipoRon可能藉由鐵依賴型細胞死亡造成乳癌細胞死亡,同時也發現AdipoRon能夠抑制乳癌腫瘤球的形成,顯示AdipoRon可能具有抑制癌細胞幹性的作用,不過AdipoRon造成鐵依賴型細胞死亡以及抑制癌細胞幹性的詳細機制需要更進一步的研究。
According to the data from The World Health Organization, breast cancer is the most common cancer worldwide and the leading cause of cancer death in women in 2020. Clinical studies indicate that lower adiponectin concentration in blood correlates with higher risk of breast, gastric, colorectal, and prostate cancer. Adiponectin, a ~30kDa protein, is produced and secreted by adipocytes. The concentration of adiponectin in blood negatively correlates with the mass of fat. In previous studies, adiponectin induces cell death of breast cancer cells and hepatocellular carcinoma cells. However, prevention of protein aggregation, and maintenance of protein stability and activity are the main challenges of developing protein drugs. Thus, in 2013, an adiponectin receptor agonist, AdipoRon, was identified by Kadowaki’s team. It has been found that AdipoRon induces fatty acid consumption in muscle and liver cells. Also, orally administered AdipoRon reduces blood glucose and insulin resistance in diet-induced obesity mouse models. Besides, AdipoRon induces cell death and G0/G1 arrest in pancreatic cancer cells, ovarian cancer cells, and osteosarcoma cells. Furthermore, AdipoRon inhibits tumor growth of breast and pancreatic cancer in mouse models. Therefore, AdipoRon is considered a potential therapeutic agent for breast cancer. In this study, we aim to investigate the effects of AdipoRon on breast cancer cells and the underlying mechanisms.
We found that AdipoRon induced cell arrest in G0/G1 phase, apoptosis, autophagy, ferroptosis, and inhibited stemness in breast cancer cells. Furthermore, we found that ferroptosis inhibitor, Ferrostatin-1, reduced the cytotoxic effect of AdipoRon, suggesting that AdipoRon-induced cell death was mediated by ferroptosis. Additionally, we found that AdipoRon decreased mitochondrial mass, altered the mitochondrial morphology, and induced mitochondrial dysfunction.
Altogether, this study suggested that AdipoRon-induced cell death was mediated by ferroptosis. We also found that AdipoRon was able to inhibit tumorsphere formation. However, it still needs further investigation to clarify the underlying mechanisms of how AdipoRon induces ferroptosis and how AdipoRon inhibits cancer stemness.
致謝 I
中文摘要 II
Abstract IV
List of Abbreviations VI
List of Figure VIII
Table of Contents X
Chapter 1 Introduction 1
1.1 Breast cancer 1
1.2 Adiponectin 2
1.2.1 Introduction of Adiponectin 2
1.2.2 Physiological Functions of Adiponectin 3
1.2.3 Adiponectin and Diseases 4
1.2.4 Adiponectin and Cancers 5
1.3 AdipoRon 6
1.3.1 Introduction of AdipoRon 6
1.3.2 AdipoRon as a potential treatment for diseases 7
1.3.3 AdipoRon as a potential therapeutic strategy for cancers 7
1.4 Autophagy 8
1.5 Ferroptosis 9
1.5.1 Mechanism of ferroptosis 9
1.5.2 Targeting ferroptosis as a therapeutic strategy in cancers 12
1.6 Mitochondrial dysfunction 14
Chapter 2 Specific Aim 19
Chapter 3 Materials and Methods 20
3.1 Materials used in this study. 20
3.1.1 Cells used in this study. 20
3.1.2 Cell-culture medium used in this study. 21
3.1.3 List of shRNAs. 22
3.1.4 List of primers. 23
3.1.5 List of antibodies. 24
3.2 Methods. 25
3.2.1 Cell culture and reagents. 25
3.2.2 Virus production and transduction. 25
3.2.3 Clonogenic survival assay. 27
3.2.4 Tumorsphere formation assay. 28
3.2.5 Cell viability assay. 28
3.2.6 Cell cycle assay. 29
3.2.7 Apoptosis assay. 29
3.2.8 SDS-PAGE and Western blot. 30
3.2.9 RNA extraction, cDNA synthesis, and quantitative polymerase chain reaction (RT-qPCR) 30
3.2.10 mRFP-GFP-LC3 Tandem Fluorescent Protein Quenching Assay 31
3.2.11 ROS analysis. 32
3.2.12 Mitochondrial morphology analysis. 34
3.2.13 Seahorse Mitostress assay. 35
3.2.14 Statistical analysis. 36
Chapter 4 Results 37
4.1 AdipoRon inhibited cell growth and cancer stemness of breast cancer cells. 37
4.2 AdipoRon induced the G0/G1 phase arrest in breast cancer cells. 38
4.3 AdipoRon slightly induced apoptosis and necrosis in breast cancer cells. 39
4.4 AdipoRon induced autophagy in breast cancer cells. 39
4.5 AdipoRon-induced LC3 conversion was not altered after inhibition of classical autophagy pathway. 41
4.6 AdipoRon reduced GPX4 expression level and induced ferroptosis in breast cancer cells. 42
4.7 AdipoRon induced mitochondrial dysfunction and ROS accumulation in breast cancer cells. 43
Chapter 5 Discussion 46
Figures 52
References 72
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 71(3), 209-249. doi:10.3322/caac.21660
Taiwan, M. o. H. a. W. (2020). Cancer Registry Annual Report, 2018 Taiwan. https://www.hpa.gov.tw/Pages/TopicList.aspx?nodeid=269
Sun, Y. S., Zhao, Z., Yang, Z. N., Xu, F., Lu, H. J., Zhu, Z. Y., et al. (2017). Risk Factors and Preventions of Breast Cancer. International journal of biological sciences, 13(11), 1387-1397. doi:10.7150/ijbs.21635
Harbeck, N., Penault-Llorca, F., Cortes, J., Gnant, M., Houssami, N., Poortmans, P., et al. (2019). Breast cancer. Nat Rev Dis Primers, 5(1), 66. doi:10.1038/s41572-019-0111-2
Ahmad, A. (2013). Breast Cancer Metastasis and Drug Resistance.
Pal China, S., Sanyal, S., & Chattopadhyay, N. (2018). Adiponectin signaling and its role in bone metabolism. Cytokine, 112, 116-131. doi:10.1016/j.cyto.2018.06.012
Khoramipour, K., Chamari, K., Hekmatikar, A. A., Ziyaiyan, A., Taherkhani, S., Elguindy, N. M., et al. (2021). Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients, 13(4). doi:10.3390/nu13041180
Nigro, E., Daniele, A., Salzillo, A., Ragone, A., Naviglio, S., & Sapio, L. (2021). AdipoRon and Other Adiponectin Receptor Agonists as Potential Candidates in Cancer Treatments. International journal of molecular sciences, 22(11), 5569. doi:10.3390/ijms22115569
Yamauchi, T., Iwabu, M., Okada-Iwabu, M., & Kadowaki, T. (2014). Adiponectin receptors: a review of their structure, function and how they work. Best Pract Res Clin Endocrinol Metab, 28(1), 15-23. doi:10.1016/j.beem.2013.09.003
Zhang, D., Wang, X., & Lu, X. Y. (2016). Adiponectin Exerts Neurotrophic Effects on Dendritic Arborization, Spinogenesis, and Neurogenesis of the Dentate Gyrus of Male Mice. Endocrinology, 157(7), 2853-2869. doi:10.1210/en.2015-2078
Yau, S. Y., Li, A., Hoo, R. L., Ching, Y. P., Christie, B. R., Lee, T. M., et al. (2014). Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc Natl Acad Sci U S A, 111(44), 15810-15815. doi:10.1073/pnas.1415219111
Combs, T. P., & Marliss, E. B. (2014). Adiponectin signaling in the liver. Reviews in endocrine & metabolic disorders, 15(2), 137-147. doi:10.1007/s11154-013-9280-6
Zhou, L., Deepa, S. S., Etzler, J. C., Ryu, J., Mao, X., Fang, Q., et al. (2009). Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. The Journal of biological chemistry, 284(33), 22426-22435. doi:10.1074/jbc.M109.028357
Aleidi, S., Issa, A., Bustanji, H., Khalil, M., & Bustanji, Y. (2015). Adiponectin serum levels correlate with insulin resistance in type 2 diabetic patients. Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society, 23(3), 250-256. doi:10.1016/j.jsps.2014.11.011
Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., et al. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med, 8(11), 1288-1295. doi:10.1038/nm788
Fang, X., Palanivel, R., Cresser, J., Schram, K., Ganguly, R., Thong, F. S., et al. (2010). An APPL1-AMPK signaling axis mediates beneficial metabolic effects of adiponectin in the heart. American journal of physiology. Endocrinology and metabolism, 299(5), E721-729. doi:10.1152/ajpendo.00086.2010
Tsioufis, C., Dimitriadis, K., Chatzis, D., Vasiliadou, C., Tousoulis, D., Papademetriou, V., et al. (2005). Relation of microalbuminuria to adiponectin and augmented C-reactive protein levels in men with essential hypertension. Am J Cardiol, 96(7), 946-951. doi:10.1016/j.amjcard.2005.05.052
Christou, G. A., & Kiortsis, D. N. (2014). The role of adiponectin in renal physiology and development of albuminuria. J Endocrinol, 221(2), R49-61. doi:10.1530/JOE-13-0578
Ruan, H., & Dong, L. Q. (2016). Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol, 8(2), 101-109. doi:10.1093/jmcb/mjw014
Imatoh, T., Miyazaki, M., Momose, Y., Tanihara, S., & Une, H. (2008). Adiponectin levels associated with the development of hypertension: a prospective study. Hypertens Res, 31(2), 229-233. doi:10.1291/hypres.31.229
Leon, B. M., & Maddox, T. M. (2015). Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World journal of diabetes, 6(13), 1246-1258. doi:10.4239/wjd.v6.i13.1246
van Himbergen, T. M., Beiser, A. S., Ai, M., Seshadri, S., Otokozawa, S., Au, R., et al. (2012). Biomarkers for insulin resistance and inflammation and the risk for all-cause dementia and alzheimer disease: results from the Framingham Heart Study. Arch Neurol, 69(5), 594-600. doi:10.1001/archneurol.2011.670
Li, J. C., Yi, F., Diao, S., & Li, J. Y. (2019). [Association Between Plasma Adiponectin and Risk of Breast Cancer by Molecular Subtypes]. Sichuan Da Xue Xue Bao Yi Xue Ban(1672-173X (Print)).
Ishikawa, M., Kitayama, J., Kazama, S., Hiramatsu, T., Hatano, K., & Nagawa, H. (2005). Plasma adiponectin and gastric cancer. Clin Cancer Res, 11(2 Pt 1), 466-472. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15701829
Chong, D. Q., Mehta, R. S., Song, M., Kedrin, D., Meyerhardt, J. A., Ng, K., et al. (2015). Prediagnostic Plasma Adiponectin and Survival among Patients with Colorectal Cancer. Cancer Prev Res (Phila)(1940-6215 (Electronic)), 1138-1145.
Fu, S., Xu, H., Liu, C., Gu, M., Wang, Q., Zhou, J., et al. (2017). [Role of adiponectin in prostate cancer: A preliminary study]. Zhonghua Nan Ke Xue, 23(11), 975-981. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29738161
Dieudonne, M. N., Bussiere, M., Dos Santos, E., Leneveu, M. C., Giudicelli, Y., & Pecquery, R. (2006). Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun, 345(1), 271-279. doi:10.1016/j.bbrc.2006.04.076
Cong, L., Gasser, J., Zhao, J., Yang, B., Li, F., & Zhao, A. Z. (2007). Human adiponectin inhibits cell growth and induces apoptosis in human endometrial carcinoma cells, HEC-1-A and RL95 2. Endocr Relat Cancer, 14(3), 713-720. doi:10.1677/ERC-07-0065
Kim, A. Y., Lee, Y. S., Kim, K. H., Lee, J. H., Lee, H. K., Jang, S. H., et al. (2010). Adiponectin represses colon cancer cell proliferation via AdipoR1- and -R2-mediated AMPK activation. Mol Endocrinol, 24(7), 1441-1452. doi:10.1210/me.2009-0498
Dos Santos, E., Benaitreau, D., Dieudonne, M. N., Leneveu, M. C., Serazin, V., Giudicelli, Y., et al. (2008). Adiponectin mediates an antiproliferative response in human MDA-MB 231 breast cancer cells. Oncol Rep, 20(4), 971-977. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18813842
Saxena, N. K., Fu, P. P., Nagalingam, A., Wang, J., Handy, J., Cohen, C., et al. (2010). Adiponectin modulates C-jun N-terminal kinase and mammalian target of rapamycin and inhibits hepatocellular carcinoma. Gastroenterology, 139(5), 1762-1773, 1773 e1761-1765. doi:10.1053/j.gastro.2010.07.001
Marqus, S., Pirogova, E., & Piva, T. J. (2017). Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci, 24(1), 21. doi:10.1186/s12929-017-0328-x
Fruebis, J., Tsao, T. S., Javorschi, S., Ebbets-Reed, D., Erickson, M. R., Yen, F. T., et al. (2001). Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 2005-2010. doi:10.1073/pnas.041591798
Okada-Iwabu, M., Yamauchi, T., Iwabu, M., Honma, T., Hamagami, K., Matsuda, K., et al. (2013). A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature, 503(7477), 493-499. doi:10.1038/nature12656
Choi, S. K., Kwon, Y., Byeon, S., Haam, C. E., & Lee, Y. H. (2020). AdipoRon, adiponectin receptor agonist, improves vascular function in the mesenteric arteries of type 2 diabetic mice. PLoS One, 15(3), e0230227. doi:10.1371/journal.pone.0230227
Zhang, Y., Zhao, J., Li, R., Lau, W. B., Yuan, Y. X., Liang, B., et al. (2015). AdipoRon, the first orally active adiponectin receptor activator, attenuates postischemic myocardial apoptosis through both AMPK-mediated and AMPK-independent signalings. American journal of physiology. Endocrinology and metabolism(1522-1555 (Electronic)).
Liu, B., Liu, J., Wang, J. G., Liu, C. L., & Yan, H. J. (2020). AdipoRon improves cognitive dysfunction of Alzheimer's disease and rescues impaired neural stem cell proliferation through AdipoR1/AMPK pathway. Exp Neurol(1090-2430 (Electronic)).
Ramzan, A. A., Bitler, B. G., Hicks, D., Barner, K., Qamar, L., Behbakht, K., et al. (2019). Adiponectin receptor agonist AdipoRon induces apoptotic cell death and suppresses proliferation in human ovarian cancer cells. Mol Cell Biochem, 461(1-2), 37-46. doi:10.1007/s11010-019-03586-9
Messaggio, F., Mendonsa, A. M., Castellanos, J., Nagathihalli, N. S., Gorden, L., Merchant, N. B., et al. (2017). Adiponectin receptor agonists inhibit leptin induced pSTAT3 and in vivo pancreatic tumor growth. Oncotarget, 8(49), 85378-85391. doi:10.18632/oncotarget.19905
Akimoto, M., Maruyama, R., Kawabata, Y., Tajima, Y., & Takenaga, K. (2018). Antidiabetic adiponectin receptor agonist AdipoRon suppresses tumour growth of pancreatic cancer by inducing RIPK1/ERK-dependent necroptosis. Cell Death Dis, 9(8), 804. doi:10.1038/s41419-018-0851-z
Takenaga, K., Akimoto, M., Koshikawa, N., & Nagase, H. (2021). Obesity reduces the anticancer effect of AdipoRon against orthotopic pancreatic cancer in diet-induced obese mice. Sci Rep, 11(1), 2923. doi:10.1038/s41598-021-82617-2
Yim, W. W., & Mizushima, N. (2020). Lysosome biology in autophagy. Cell Discov, 6(2056-5968 (Print)), 6. doi:10.1038/s41421-020-0141-7
Cicchini, M., Karantza, V., & Xia, B. (2015). Molecular pathways: autophagy in cancer--a matter of timing and context. Clin Cancer Res, 21(3), 498-504. doi:10.1158/1078-0432.CCR-13-2438
Gozuacik, D., & Kimchi, A. (2004). Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 23(16), 2891-2906. doi:10.1038/sj.onc.1207521
Russell, R. C., Yuan, H. X., & Guan, K. L. (2014). Autophagy regulation by nutrient signaling. Cell research, 24(1), 42-57. doi:10.1038/cr.2013.166
Nassour, J., Radford, R., Correia, A., Fuste, J. M., Schoell, B., Jauch, A., et al. (2019). Autophagic cell death restricts chromosomal instability during replicative crisis. Nature, 565(7741), 659-663. doi:10.1038/s41586-019-0885-0
Chen, Y., McMillan-Ward, E., Kong, J., Israels, S. J., & Gibson, S. B. (2008). Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ, 15(1), 171-182. doi:10.1038/sj.cdd.4402233
Dixon, S. J., Lemberg Km Fau - Lamprecht, M. R., Lamprecht Mr Fau - Skouta, R., Skouta R Fau - Zaitsev, E. M., Zaitsev Em Fau - Gleason, C. E., Gleason Ce Fau - Patel, D. N., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(1097-4172 (Electronic)), 1060-1072. doi:10.1016/j.cell.2012.03.042
Chen, X., Kang, R., Kroemer, G., & Tang, D. (2021). Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol, 18(5), 280-296. doi:10.1038/s41571-020-00462-0
Jiang, X., Stockwell, B. R., & Conrad, M. (2021). Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol, 22(4), 266-282. doi:10.1038/s41580-020-00324-8
Li, J., Cao, F., Yin, H. L., Huang, Z. J., Lin, Z. T., Mao, N., et al. (2020). Ferroptosis: past, present and future. Cell Death Dis, 11(2), 88. doi:10.1038/s41419-020-2298-2
Conrad, M., Lorenz, S. M., & Proneth, B. (2021). Targeting Ferroptosis: New Hope for As-Yet-Incurable Diseases. Trends Mol Med, 27(2), 113-122. doi:10.1016/j.molmed.2020.08.010
Seibt, T. M., Proneth, B., & Conrad, M. (2019). Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med, 133(1873-4596 (Electronic)), 144-152. doi:10.1016/j.freeradbiomed.2018.09.014
Zhang, X., Sui, S., Wang, L., Li, H., Zhang, L., Xu, S., et al. (2020). Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol, 235(4), 3425-3437. doi:10.1002/jcp.29232
Schonberg, D. L., Miller, T. E., Wu, Q., Flavahan, W. A., Das, N. K., Hale, J. S., et al. (2015). Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells. Cancer Cell, 28(4), 441-455. doi:10.1016/j.ccell.2015.09.002
Basuli, D., Tesfay, L., Deng, Z., Paul, B., Yamamoto, Y., Ning, G., et al. (2017). Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene, 36(29), 4089-4099. doi:10.1038/onc.2017.11
Mai, T. T., Hamai, A., Hienzsch, A., Caneque, T., Muller, S., Wicinski, J., et al. (2017). Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem, 9(10), 1025-1033. doi:10.1038/nchem.2778
Chanvorachote, P., & Luanpitpong, S. (2016). Iron induces cancer stem cells and aggressive phenotypes in human lung cancer cells. Am J Physiol Cell Physiol, 310(9), C728-739. doi:10.1152/ajpcell.00322.2015
Guo, J., Xu, B., Han, Q., Zhou, H., Xia, Y., Gong, C., et al. (2018). Ferroptosis: A Novel Anti-tumor Action for Cisplatin. Cancer research and treatment, 50(2), 445-460. doi:10.4143/crt.2016.572
Song, X., Zhu, S., Chen, P., Hou, W., Wen, Q., Liu, J., et al. (2018). AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System Xc(-) Activity. Current biology : CB, 28(15), 2388-2399 e2385. doi:10.1016/j.cub.2018.05.094
Lv, C., Qu, H., Zhu, W., Xu, K., Xu, A., Jia, B., et al. (2017). Low-Dose Paclitaxel Inhibits Tumor Cell Growth by Regulating Glutaminolysis in Colorectal Carcinoma Cells. Frontiers in pharmacology, 8, 244. doi:10.3389/fphar.2017.00244
Daher, B., Parks, S. K., Durivault, J., Cormerais, Y., Baidarjad, H., Tambutte, E., et al. (2019). Genetic Ablation of the Cystine Transporter xCT in PDAC Cells Inhibits mTORC1, Growth, Survival, and Tumor Formation via Nutrient and Oxidative Stresses. Cancer Res, 79(15), 3877-3890. doi:10.1158/0008-5472.CAN-18-3855
Sato, M., Kusumi, R., Hamashima, S., Kobayashi, S., Sasaki, S., Komiyama, Y., et al. (2018). The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells. Sci Rep, 8(1), 968. doi:10.1038/s41598-018-19213-4
Ye, J., Jiang, X., Dong, Z., Hu, S., & Xiao, M. (2019). Low-Concentration PTX And RSL3 Inhibits Tumor Cell Growth Synergistically By Inducing Ferroptosis In Mutant p53 Hypopharyngeal Squamous Carcinoma. Cancer management and research, 11, 9783-9792. doi:10.2147/CMAR.S217944
Lei, G., Zhang, Y., Koppula, P., Liu, X., Zhang, J., Lin, S. H., et al. (2020). The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell research, 30(2), 146-162. doi:10.1038/s41422-019-0263-3
Hangauer, M. J., Viswanathan, V. S., Ryan, M. J., Bole, D., Eaton, J. K., Matov, A., et al. (2017). Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 551(7679), 247-250. doi:10.1038/nature24297
Wu, Y., Yu, C., Luo, M., Cen, C., Qiu, J., Zhang, S., et al. (2020). Ferroptosis in Cancer Treatment: Another Way to Rome. Frontiers in oncology, 10, 571127. doi:10.3389/fonc.2020.571127
Martinez-Reyes, I., & Chandel, N. S. (2020). Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun, 11(1), 102. doi:10.1038/s41467-019-13668-3
Korla, K., & Mitra, C. K. (2014). Modelling the Krebs cycle and oxidative phosphorylation. J Biomol Struct Dyn, 32(2), 242-256. doi:10.1080/07391102.2012.762723
Pagliarini, D. J., & Rutter, J. (2013). Hallmarks of a new era in mitochondrial biochemistry. Genes & development, 27(24), 2615-2627. doi:10.1101/gad.229724.113
Rossmann, M. P., Dubois, S. M., Agarwal, S., & Zon, L. I. (2021). Mitochondrial function in development and disease. Disease models & mechanisms, 14(6), dmm048912. doi:10.1242/dmm.048912
Zhao, R. Z., Jiang, S., Zhang, L., & Yu, Z. B. (2019). Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med, 44(1), 3-15. doi:10.3892/ijmm.2019.4188
Gilgun-Sherki, Y., Melamed, E., & Offen, D. (2001). Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 40(8), 959-975. doi:Doi 10.1016/S0028-3908(01)00019-3
Sahu, K., Langeh, U., Singh, C., & Singh, A. (2021). Crosstalk between anticancer drugs and mitochondrial functions. Current research in pharmacology and drug discovery, 2, 100047. doi:10.1016/j.crphar.2021.100047
Chen, H., & Chan, D. C. (2010). Physiological functions of mitochondrial fusion. Ann N Y Acad Sci, 1201(1749-6632 (Electronic)), 21-25. doi:10.1111/j.1749-6632.2010.05615.x
Youle, R. J., & van der Bliek, A. M. (2012). Mitochondrial fission, fusion, and stress. Science (New York, N.Y.), 337(6098), 1062-1065. doi:10.1126/science.1219855
Liu, Y. J., McIntyre, R. L., Janssens, G. E., & Houtkooper, R. H. (2020). Mitochondrial fission and fusion: A dynamic role in aging and potential target for age-related disease. Mech Ageing Dev, 186, 111212. doi:10.1016/j.mad.2020.111212
Wang, L., Collings, C. K., Zhao, Z., Cozzolino, K. A., Ma, Q., Liang, K., et al. (2017). A cytoplasmic COMPASS is necessary for cell survival and triple-negative breast cancer pathogenesis by regulating metabolism. Genes & development, 31(20), 2056-2066. doi:10.1101/gad.306092.117
Zhu, W., Qu, H., Xu, K., Jia, B., Li, H., Du, Y., et al. (2017). Differences in the starvation-induced autophagy response in MDA-MB-231 and MCF-7 breast cancer cells. Animal cells and systems, 21(3), 190-198. doi:10.1080/19768354.2017.1330763
Li, C., Xue, Y., Xi, Y. R., & Xie, K. (2017). Progress in the application and mechanism of metformin in treating non-small cell lung cancer. Oncology letters, 13(5), 2873-2880. doi:10.3892/ol.2017.5862
Rena, G., Hardie, D. G., & Pearson, E. R. (2017). The mechanisms of action of metformin. Diabetologia, 60(9), 1577-1585. doi:10.1007/s00125-017-4342-z
Pernicova, I., & Korbonits, M. (2014). Metformin—mode of action and clinical implications for diabetes and cancer. Nature Reviews Endocrinology, 10(3), 143-156. doi:10.1038/nrendo.2013.256
Foretz, M., Guigas, B., Bertrand, L., Pollak, M., & Viollet, B. (2014). Metformin: from mechanisms of action to therapies. Cell Metab, 20(6), 953-966. doi:10.1016/j.cmet.2014.09.018
Zhang, C., & Wang, Y. (2019). Metformin attenuates cells stemness and epithelialmesenchymal transition in colorectal cancer cells by inhibiting the Wnt3a/betacatenin pathway. Mol Med Rep, 19(2), 1203-1209. doi:10.3892/mmr.2018.9765
Yuan, X., Wei, W., Bao, Q., Chen, H., Jin, P., & Jiang, W. (2018). Metformin inhibits glioma cells stemness and epithelial-mesenchymal transition via regulating YAP activity. Biomed Pharmacother, 102, 263-270. doi:10.1016/j.biopha.2018.03.031
Chen, B., Cha, J. H., Yan, M., Cao, N., Ye, P., Yan, X., et al. (2021). ATXN7L3B promotes hepatocellular carcinoma stemness and is downregulated by metformin. Biochem Biophys Res Commun, 573, 1-8. doi:10.1016/j.bbrc.2021.08.009
Sharma, A., Bandyopadhayaya, S., Chowdhury, K., Sharma, T., Maheshwari, R., Das, A., et al. (2019). Metformin exhibited anticancer activity by lowering cellular cholesterol content in breast cancer cells. PLoS One, 14(1), e0209435. doi:10.1371/journal.pone.0209435
Zhu, P., Davis, M., Blackwelder, A. J., Bachman, N., Liu, B., Edgerton, S., et al. (2014). Metformin selectively targets tumor-initiating cells in ErbB2-overexpressing breast cancer models. Cancer Prev Res (Phila), 7(2), 199-210. doi:10.1158/1940-6207.CAPR-13-0181
Kar, R., Singha, P. K., Venkatachalam, M. A., & Saikumar, P. (2009). A novel role for MAP1 LC3 in nonautophagic cytoplasmic vacuolation death of cancer cells. Oncogene, 28(28), 2556-2568. doi:10.1038/onc.2009.118
Lee, C., Lamech, L., Johns, E., & Overholtzer, M. (2020). Selective Lysosome Membrane Turnover Is Induced by Nutrient Starvation. (1878-1551 (Electronic)).
Gao, M., Yi, J., Zhu, J., Minikes, A. M., Monian, P., Thompson, C. B., et al. (2019). Role of Mitochondria in Ferroptosis. Mol Cell, 73(2), 354-363 e353. doi:10.1016/j.molcel.2018.10.042
Kuang, F., Liu, J., Tang, D., & Kang, R. (2020). Oxidative Damage and Antioxidant Defense in Ferroptosis. Front Cell Dev Biol, 8, 586578. doi:10.3389/fcell.2020.586578
Imai, H., Matsuoka, M., Kumagai, T., Sakamoto, T., & Koumura, T. (2017). Lipid Peroxidation-Dependent Cell Death Regulated by GPx4 and Ferroptosis. Curr Top Microbiol Immunol, 403(0070-217X (Print)), 143-170. doi:10.1007/82_2016_508
Song, X., Wang, X., Liu, Z., & Yu, Z. (2020). Role of GPX4-Mediated Ferroptosis in the Sensitivity of Triple Negative Breast Cancer Cells to Gefitinib.
Shibata, Y., Yasui, H., Higashikawa, K., Miyamoto, N., & Kuge, Y. (2019). Erastin, a ferroptosis-inducing agent, sensitized cancer cells to X-ray irradiation via glutathione starvation in vitro and in vivo. PLoS One, 14(12). doi:ARTN e0225931
Onodera, T., Ghazvini Zadeh, E., Xu, P., Gordillo, R., Guo, Z., Joffin, N., et al. (2021). PEGylated AdipoRon derivatives improve glucose and lipid metabolism under insulinopenic and high-fat diet conditions. J Lipid Res, 62, 100095. doi:10.1016/j.jlr.2021.100095
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top