跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/20 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏子傑
研究生(外文):Tzu-Chieh Yen
論文名稱:含特羅格鹼自具微孔結構之高分子合成與電致變色性質研究
論文名稱(外文):Enhancement of Electrochromic Response Capability with Tröger’s Base Induced Intrinsic Porous Polymer Film
指導教授:劉貴生
指導教授(外文):Guey-Sheng Liou
口試委員:蕭勝輝龔宇睿張嘉文
口試委員(外文):Sheng-Huei HsiaoYu-Ruei KungCha-Wen Chang
口試日期:2022-01-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:93
中文關鍵詞:特羅格鹼電致變色自聚合固有微孔洞微孔聚合物
外文關鍵詞:Tröger’s baseelectrochromicself-polymerizationintrinsic porous structurepolymers of microporosity
DOI:10.6342/NTU202200460
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為三大章節,第一章為緒論,簡介電致變色的發展歷程以及含有奈米結構材料、固有微孔高分子的發展及歷史;第二章實驗部分記錄新型五苯二胺單體合成、四種具電致變色性質聚醯胺及兩種自聚合高分子的合成;以氮氣等溫吸附線、廣角X射線繞射儀、電化學阻抗譜、循環伏安法及光譜電化學等,探討材料中的固有微孔對電致變色性質的影響;第三章為結果討論,以實驗結果顯示以自具微孔結構的導入提升電解質中反離子的擴散速率有助於提升高分子材料電致變色性能;第四章為結論。總而言之,微孔聚合物提供有效提升電致變色高分子之電致變色性質的途徑。
This thesis has been separated into four chapters. Chapter 1 is a general introduction of electrochromic materials and the history and development of polymers of intrinsic microporosity (PIMs). In the chapter 2, the experimental section, a novel electroactive TPPA-derived diamine, N,N'-Bis(3-methyl-4-aminophenyl)-N,N'-di(4-methoxyphenyl)-1,4-phenylene diamine) (TPPA-Me) has been synthesized and characterized. Also, four electroactive polyamides are prepared via direct solution polycondensation; two polymers are prepared via self-polymerization. In chapter 3, the measurements, including N2 adsorption-desorption isothermal curve, wide-angle X-ray diffraction (WXRD), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and spectroelectrochemistry, are utilized to investigate the effect of intrinsic microporosity on the EC behaviors. Chapter 3 describes the results of EC behaviors of the prepared PIMs derived from TPPA-Me and Tröger’s base. Accordingly, the counterions in the electrolyte reveal a higher diffusion rate in the presence of micropores derived from Tröger’s base scaffold, which promotes the EC behaviors of redox-active materials during the electrochemical process. Finally, all the results are concluded in chapter 4. In summary, the approach of polymers of intrinsic microporosity (PIMs) contributed has provided a facile way for EC polymers to enhance the electrochromic properties.
ACKNOWLEDGEMENTS……………………………………………………..i
ABSTRACT (in English)………………………………………………………..ii
ABSTRACT (in Chinese)……………………………………………………....iii
List of Figures………………………………………………………………….vii
List of Schemes………………………………………………………………..xiii
List of Tables…………………………………………………………………..xiv
Chapter 1 Introduction……………………………………………..…………..1
1.1 Electrochromism1 2
1.1.1 Brief History and Development of Electrochromism 2
1.1.2 Electrochromic Materials 6
1.1.2-1 Transition-metal Oxides 7
1.1.2-2 Conjugated Conducting Polymers 9
1.1.2-3 Metal Coordination Complexes 12
1.1.2-4 Organic Molecules 15
1.1.2-5 Arylamine-Based Polymers 17
1.1.3 Structure of Electrochromic Devices 21
1.2 Polymer of Intrinsic Microporosity (PIMs) 24
1.2.1 The Development of PIMs 25
1.2.2 Designing Concept of PIMs 27
1.2.3 Common Structures utilize for PIMs 28
1.2.4 PIMs synthesized via dibenzodioxane and Tröger’s base 29
1.3 Intrinsic Microporosity in Polymer-Based Materials 31
1.3.1 Brief History and Development of Tröger’s base 31
1.4 Research Motivation 33
Chapter 2 Experimental………………………………………….……………34
2.1 Materials 35
2.2.1 Commercial chemicals and basic monomers 35
2.2 Synthesis of Monomers 36
2.3 Synthesis of Polyamides 39
2.4 Measurement 42
Chapter 3 Results and Conclusion……………………………………………44
3.1 Basic Characterization 45
3.1.1 Synthesis and Characterization of Monomer 45
3.1.2 Characterization of Polymers 52
3.1.3 Basic Properties of Polymer Films 56
3.1.4 Characteristic of intrinsic microporosity of polymers 60
3.2 Electrochemical and Electrochromic Properties of Polymer Films 64
3.2.1 Electrochemical Properties 64
3.2.2 Spectroelectrochemistry 67
3.2.3 Electrochromic Switching Response 72
3.2.4 Electrochemical impedance spectroscopy (EIS) 78
Chapter 4 Conclusion...………………………………………………………..83
REFERENCES………………………………………………………………...85
APPENDIX…………………………………………………………………….92
LIST OF PUBLICATION……………………………………………………..93
1.Monk, P. M.; Mortimer, R. J.; Rosseinsky, D. R., Electrochromism: fundamentals and applications. John Wiley & Sons: 2008.
2.Smith, F. H., British Pat. 1929.
3.Kobosew, N.; Nekrassow, N., Bildung freier wasserstoffatome bei kathodenpolarisation der metalle. Zeitschrift für Elektrochemie und angewandte physikalische Chemie 1930, 36 (8), 529-544.
4.Platt, J. R., Electrochromism, a possible change of color producible in dyes by an electric field. J. Chem. Phys. 1961, 34 (3), 862.
5.Deb, S. K., A Novel Electrophotographic System. Appl. Opt. 1969, 8 (S1), 192-195.
6.Deb, S., Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag. Lett. 1973, 27 (4), 801-822.
7.Mohapatra, S., Electrochromism in Li x WO3. J. Electrochem. Soc. 1978, 125 (2), 284.
8.Granqvist, C.; Azens, A.; Hjelm, A.; Kullman, L.; Niklasson, G. A.; Rönnow, D.; Mattsson, M. S.; Veszelei, M.; Vaivars, G., Recent advances in electrochromics for smart windows applications. Sol Energy 1998, 63 (4), 199-216.
9.Lynam, N. R., Electrochromic automotive day/night mirrors. SAE trans.
10.Baetens, R.; Jelle, B. P.; Gustavsen, A., Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater Sol. Cells 2010, 94 (2), 87-105.
11.Green, M., The promise of electrochromic systems. Chem. Ind. 1996, (17), 641-644.
12.Kubo, T.; Tanimoto, J.; Minami, M. Toya, T.; Nishikitani, Y.; Watanabe, H., Performance and durability of electrochromic windows with carbon-based counter electrode and their application in the architectural and automotive fields. Solid State Ion 2003, 165 (1-4), 97-104.
13.Lampert, C. M., Electrochromic materials and devices for energy efficient windows. Sol. Energy Mater Sol. Cells 1984, 11 (1-2), 1-27.
14.Lee, E. S.; DiBartolomeo, D., Application issues for large-area electrochromic windows in commercial buildings. Sol. Energy Mater Sol. Cells 2002, 71 (4), 465-491.
15.Allen, N., Light, chemical change and life (a source book in photochemistry): Edited by JD Coyle, RR Hill and DR Roberts, Open University Press, 1982.£ 7.95. Pergamon: 1984.
16.Girotto, C.; Voroshazi, E.; Cheyns, D.; Heremans, P.; Rand, B. P., Solution-processed MoO3 thin films as a hole-injection layer for organic solar cells. ACS Appl. Mater. Interfaces 2011, 3 (9), 3244-3247.
17.Zheng, L.; Xu, Y.; Jin, D.; Xie, Y., Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties. Chem. Mater. 2009, 21 (23), 5681-5690.
18.Cheng, K.-C.; Chen, F.-R.; Kai, J.-J., V2O5 nanowires as a functional material for electrochromic device. Sol. Energy Mater Sol. Cells 2006, 90 (7-8), 1156-1165.
19.Scherer, M. R.; Li, L.; Cunha, P. M.; Scherman, O. A.; Steiner, U., Enhanced electrochromism in gyroid‐structured vanadium pentoxide. Adv. Mater. 2012, 24 (9), 1217-1221.
20.Ghicov, A.; Yamamoto, M.; Schmuki, P., Lattice widening in Niobium‐doped TiO2 nanotubes: efficient ion intercalation and swift electrochromic contrast. Angew. Chem. Int. Ed. 2008, 47 (41), 7934-7937.
21.Mujawar, S.; Inamdar, A. Betty, C.; Ganesan, V.; Patil, P., Effect of post annealing treatment on electrochromic properties of spray deposited niobium oxide thin films. Electrochim. Acta 2007, 52 (15), 4899-4906.
22.Lin, W.; Zhao, Q.; Sun, H.; Zhang, K. Y.; Yang, H.; Yu, Q. Zhou, X.; Guo, S.; Liu, S.; Huang, W., An electrochromic phosphorescent iridium (III) complex for information recording, encryption, and decryption. Adv. Opt. Mater. 2015, 3 (3), 368-375.
23.Nam, Y. S.; Park, H.; Magyar, A. P.; Yun, D. S.; Pollom, T. S.; Belcher, A. M., Virus-templated iridium oxide–gold hybrid nanowires for electrochromic application. Nanoscale 2012, 4 (11), 3405-3409.
24.Wen, R.-T.; Niklasson, G. A.; Granqvist, C. G., Strongly improved electrochemical cycling durability by adding iridium to electrochromic nickel oxide films. ACS Appl. Mater. Interfaces 2015, 7 (18), 9319-9322.
25.Lin, F.; Nordlund, D.; Weng, T.-C.; Moore, R. G.; Gillaspie, D. T.; Dillon, A. C.; Richards, R. M.; Engtrakul, C., Hole doping in Al-containing nickel oxide materials to improve electrochromic performance. ACS Appl. Mater. Interfaces 2013, 5 (2), 301-309.
26.Wen, R. T.; Granqvist, C. G.; Niklasson, G. A., Anodic electrochromism for energy‐efficient windows: cation/anion‐based surface processes and effects of crystal facets in nickel oxide thin films. Adv. Funct. Mater. 2015, 25 (22), 3359-3370.
27.Wen, R. T.; Granqvist, C. G.; Niklasson, G. A., Anodic electrochromic nickel oxide thin films: decay of charge density upon extensive electrochemical cycling. ChemElectroChem 2016, 3 (2), 266-275.
28.Mortimer, R. J.; Rosseinsky, D. R.; Monk, P. M., Electrochromic materials and devices. John Wiley & Sons: 2015.
29.Coe, B. J.; Harris, J. A.; Brunschwig, B. S.; Asselberghs, I.; Clays, K.; Garín, J.; Orduna, J., Three-dimensional nonlinear optical chromophores based on metal-to-ligand charge-transfer from ruthenium (II) or iron (II) centers. J. Am. Chem. Soc. 2005, 127 (38), 13399-13410.
30.Mortimer, R. J., Electrochromic materials. Chem. Soc. Rev. 1997, 26 (3), 147-156.
31.Duffy, J.; Ingram, M.; Monk, P., The effect of moisture on tungsten oxide electrochromism in polymer electrolyte devices. Solid State Ion 1992, 58 (1-2), 109-114.
32.Diesbach, G., Handbuch Der Anorganischen Chemie. Frankfurt and Main: Deutsche Chemische Gesellschaft 1930, 59, 671.
33.Neff, V. D., Electrochemical oxidation and reduction of thin films of Prussian Blue. J. Electrochem. Soc. 1978, 125 (6), 886.
34.Hünig, S., Stable radical ions. Pure Appl. Chem. 1967, 15 (1), 109-122.
35.Bird, C.; Kuhn, A., Electrochemistry of the viologens. Chem. Soc. Rev. 1981, 10 (1), 49-82.
36.Rowley, N. M.; Mortimer, R. J., New electrochromic materials. Sci. Prog. 2002, 85 (3), 243-262.
37.Leung, M.-k.; Chou, M.-Y.; Su, Y. O.; Chiang, C. L.; Chen, H.-L.; Yang, C. F.; Yang, C.-C.; Lin, C.-C.; Chen, H.-T., Diphenylamino group as an effective handle to conjugated donor− acceptor polymers through electropolymerization. Org. Lett. 2003, 5 (6), 839-842.
38.Liou, G. S.; Hsiao, S. H.; Ishida, M.; Kakimoto, M.; Imai, Y., Synthesis and properties of new aromatic poly (amine‐imide) s derived from N,N'‐bis (4‐aminophenyl)‐N,N'‐diphenyl‐1, 4‐phenylenediamine. J. Polym. Sci. A: Polym. Chem. 2002, 40 (21), 3815-3822.
39.Oishi, Y.; Ishida, M.; Kakimoto, M. A.; Imai, Y.; Kurosaki, T., Preparation and properties of novel soluble aromatic polyimides from 4,4'‐diaminotriphenylamine and aromatic tetracarboxylic dianhydrides. J. Polym. Sci. A: Polym. Chem. 1992, 30 (6), 1027-1035.
40.Yen, H. J.; Chen, C. J.; Liou, G. S., Flexible multi‐colored electrochromic and volatile polymer memory devices derived from starburst triarylamine‐based electroactive polyimide. Adv. Funct. Mater. 2013, 23 (42), 5307-5316.
41.Chang, C.-W.; Liou, G.-S., Novel anodic electrochromic aromatic polyamides with multi-stage oxidative coloring based on N,N,N',N'-tetraphenyl-p-phenylenediamine derivatives. J. Mater. Chem. 2008, 18 (46), 5638-5646.
42.Cheng, S.-H.; Hsiao, S.-H.; Su, T.-H.; Liou, G.-S., Novel aromatic poly (amine-imide) s bearing a pendent triphenylamine group: synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 2005, 38 (2), 307-316.
43.Chuang, Y.-W.; Yen, H.-J.; Wu, J.-H.; Liou, G.-S., Colorless triphenylamine-based aliphatic thermoset epoxy for multicolored and near-infrared electrochromic applications. ACS Appl. Mater. Interfaces 2014, 6 (5), 3594-3599.
44.Liou, G.-S.; Hsiao, S.-H.; Huang, N.-K.; Yang, Y.-L., Synthesis, photophysical, and electrochromic characterization of wholly aromatic polyamide blue-light-emitting materials. Macromolecules 2006, 39 (16), 5337-5346.
45.Liou, G.-S.; Hsiao, S.-H.; Su, T.-H., Synthesis, luminescence and electrochromism of aromatic poly (amine–amide) s with pendent triphenylamine moieties. J. Mater. Chem. 2005, 15 (18), 1812-1820.
46.Liou, G.-S.; Lin, H.-Y., Synthesis and electrochemical properties of novel aromatic poly (amine− amide) s with anodically highly stable yellow and blue electrochromic behaviors. Macromolecules 2009, 42 (1), 125-134.
47.Nelson, R.; Adams, R., Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. J. Am. Chem. Soc. 1968, 90 (15), 3925-3930.
48.Lin, L.-C.; Yen, H.-J.; Kung, Y.-R.; Leu, C.-M.; Lee, T.-M.; Liou, G.-S., Novel near-infrared and multi-colored electrochromic polybenzoxazines with electroactive triarylamine moieties. J. Mater. Chem. C 2014, 2 (37), 7796-7803.
49.Su, T. H.; Hsiao, S. H.; Liou, G. S., Novel family of triphenylamine‐containing, hole‐transporting, amorphous, aromatic polyamides with stable electrochromic properties. J Polym Sci A Polym Chem 2005, 43 (10), 2085-2098.
50.Chang, C.-W.; Liou, G.-S.; Hsiao, S.-H., Highly stable anodic green electrochromic aromatic polyamides: synthesis and electrochromic properties. J. Mater. Chem. 2007, 17 (10), 1007-1015.
51.Yen, H.-J.; Lin, H.-Y.; Liou, G.-S., Novel starburst triarylamine-containing electroactive aramids with highly stable electrochromism in near-infrared and visible light regions. Chem. Mater. 2011, 23 (7), 1874-1882.
52.Yen, H.-J.; Liou, G.-S., Solution-processable novel near-infrared electrochromic aromatic polyamides based on electroactive tetraphenyl-p-phenylenediamine moieties. Chem. Mater. 2009, 21 (17), 4062-4070.
53.Granqvist, C.-G., Out of a niche. Nat. Mater. 2006, 5 (2), 89-90.
54.Sing, K. S.; Schüth, F.; Weitkamp, T., Handbook of Porous Solids. Handb. Porous Solids Vol 2002, 3, 1543-1591.
55.El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M., Designed synthesis of 3D covalent organic frameworks. Science 2007, 316 (5822), 268-272.
56.Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M., Porous, crystalline, covalent organic frameworks. Science 2005, 310 (5751), 1166-1170.
57.Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295 (5554), 469-472.
58.Eddaoudi, M.; Moler, D.; Li, H.; Chen, B.; Reinke, T.; O'Keefe, M.; Yaghi, O., MOFs. Acc. Chem. Res. 2001, 34, 316-330.
59.Férey, G., Hybrid porous solids: past, present, future. Chem. Soc. Rev. 2008, 37 (1), 191-214.
60.Mark, H., Encyclopedia of space science & technology. Wiley-Interscience: 2003.
61.Ilinitch, O.; Fenelonov, V.; Lapkin, A.; Okkel, L.; Terskikh, V.; Zamaraev, K., Intrinsic microporosity and gas transport in polyphenylene oxide polymers. Microporous Mesoporous Mater. 1999, 31 (1-2), 97-110.
62.McKeown, N. B., Phthalocyanine materials: synthesis, structure and function. Cambridge university press: 1998.
63.McKeown, N. B.; Makhseed, S.; Budd, P. M., Phthalocyanine-based nanoporous network polymers. Chem. Commun. 2002, 23, 2780-2781.
64.Weaire, D.; Aste, T., The pursuit of perfect packing. CRC Press: 2008.
65.Torquato, S.; Jiao, Y., Dense packings of polyhedra: Platonic and Archimedean solids. Phys. Rev. E 2009, 80 (4), 041104.
66.Dunitz, J. D.; Filippini, G.; Gavezzotti, A., Molecular shape and crystal packing: a study of C12H12 isomers, real and imaginary. Helv. Chim. Acta 2000, 83 (9), 2317-2335.
67.Dunitz, J. D.; Filippini, G.; Gavezzotti, A., A statistical study of density and packing variations among crystalline isomers. Tetrahedron 2000, 56 (36), 6595-6601.
68.Jiao, Y.; Stillinger, F. H.; Torquato, S., Erratum, Optimal packings of superballs. Phys. Rev. E, 2009, 79(4), 041309.
69.Choi, Y.; Yi, H.; Lee, S.; Huang, Q.; Kiryukhin, V.; Cheong, S.-W., Ferroelectricity in an Ising chain magnet. Phys. Rev. Lett. 2008, 100 (4), 047601.
70.Long, T. M.; Swager, T. M., Minimization of free volume: Alignment of triptycenes in liquid crystals and stretched polymers. Adv. Mater. 2001, 13 (8), 601-604.
71.Bezzu, C. G.; Carta, M.; Tonkins, A.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.; McKeown, N. B., A spirobifluorene‐based polymer of intrinsic microporosity with improved performance for gas separation. Adv. Mater. 2012, 24 (44), 5930-5933.
72.Ma, X.; Salinas, O.; Litwiller, E.; Pinnau, I., Macromol. 2013, 46, 9618-9624
73.R. Seto, Y. Koyama, K. Xu, S. Kawauchi, T. Takata. Chem. Commun 2013, 49, 5486-5488.
74.Bezzu, C. G.; Carta, M.; Ferrari, M.-C.; Jansen, J. C.; Monteleone, M.; Esposito, E.; Fuoco, A.; Hart, K.; Liyana-Arachchi, T.; Colina, C. M., The synthesis, chain-packing simulation and long-term gas permeability of highly selective spirobifluorene-based polymers of intrinsic microporosity. J. Mater. Chem. A 2018, 6 (22), 10507-10514.
75.Emmler, T.; Heinrich, K.; Fritsch, D.; Budd, P. M.; Chaukura, N.; Ehlers, D.; Rätzke, K.; Faupel, F., Free volume investigation of polymers of intrinsic microporosity (PIMs): PIM-1 and PIM1 copolymers incorporating ethanoanthracene units. Macromolecules 2010, 43 (14), 6075-6084.
76.Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.; McKeown, N. B., An efficient polymer molecular sieve for membrane gas separations. Science 2013, 339 (6117), 303-307.
77.Tocci, E.; De Lorenzo, L.; Bernardo, P.; Clarizia, G.; Bazzarelli, F.; Mckeown, N. B.; Carta, M.; Malpass-Evans, R.; Friess, K.; Pilnáček, K. t., Molecular Modeling and Gas Permeation Properties of a Polymer of Intrinsic Microporosity Composed of Ethanoanthracene and Tröger’s Base Units. Macromolecules 2014, 47 (22), 7900-7916.
78.Ghanem, B. S., A facile synthesis of a novel triptycene-containing A–B monomer: precursor to polymers of intrinsic microporosity. Polym. Chem. 2012, 3 (1), 96-98.
79.Ghanem, B. S.; Swaidan, R.; Litwiller, E.; Pinnau, I., Ultra‐microporous triptycene‐based polyimide membranes for high‐performance gas separation. Adv. Mater. 2014, 26 (22), 3688-3692.
80.Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Lee, M.; Rose, I.; McKeown, N. B., The synthesis of microporous polymers using Tröger's base formation. Polym. Chem. 2014, 5 (18), 5267-5272.
81.Carta, M.; Croad, M.; Jansen, J. C.; Bernardo, P.; Clarizia, G.; McKeown, N. B., Synthesis of cardo-polymers using Tröger's base formation. Polym. Chem. 2014, 5 (18), 5255-5261.
82.McKeown, N. B., Polymers of Intrinsic Microporosity (PIMs). Polymer 2020, 202, 122736.
83.Wang, Y.; Ma, X.; Ghanem, B.; Alghunaimi, F.; Pinnau, I.; Han, Y., Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Materials Today Nano 2018, 3, 69-95.
84.Teo, Y. C.; Lai, H. W.; Xia, Y., Synthesis of ladder polymers: developments, challenges, and opportunities. Chem. Eur. J. 2017, 23 (57), 14101-14112.
85.Tröger, J., Ueber einige mittelst nascirenden Formaldehydes entstehende Basen. J. prakt. Chem. 1887, 36 (1), 225-245.
86.Spielman, M., The structure of Troeger's base. J. Am. Chem. Soc. 1935, 57 (3), 583-585.
87.Wagner, E., Condensations of aromatic amines with formaldehyde in media containing acid. III. The formation of Tröger's base. J. Am. Chem. Soc. 1935, 57 (7), 1296-1298.
88.Zhu, Z.; Zhu, J.; Li, J.; Ma, X., Enhanced gas separation properties of Tröger’s base polymer membranes derived from pure triptycene diamine regioisomers. Macromolecules 2020, 53 (5), 1573-1584.
89.El-Mahdy, A. F.; Lüder, J.; Kotp, M. G.; Kuo, S.-W., A Tröger’s base-derived covalent organic polymer containing carbazole units as a high-performance supercapacitor. Polymers 2021, 13 (9), 1385.
90.Zhuang, Y.; Seong, J. G.; Do, Y. S.; Jo, H. J.; Cui, Z.; Lee, J.; Lee, Y. M.; Guiver, M. D., Intrinsically microporous soluble polyimides incorporating Tröger’s base for membrane gas separation. Macromolecules 2014, 47 (10), 3254-3262.
91.Yen, H. J.; Guo, S. M.; Liou, G. S.; Chung, J. C.; Liu, Y. C.; Lu, Y. F.; Zeng, Y. Z., Mixed‐valence class I transition and electrochemistry of bis (triphenylamine)‐based aramids containing isolated ether‐linkage. J. Polym. Sci. A: Polym. Chem. 2011, 49 (17), 3805-3816.
92.Lv, X.; Yan, S.; Dai, Y.; Ouyang, M.; Yang, Y.; Yu, P.; Zhang, C., Ion diffusion and electrochromic performance of poly(4,4',4"-tris[4-(2-bithienyl)phenyl]amine) based on ionic liquid as electrolyte. Electrochim. Acta 2015, 186, 85-94.
93.Xia, Y.; Zhang, W.; Huang, H.; Gan, Y.; Xiao, Z.; Qian, L.; Tao, X., Biotemplating of phosphate hierarchical rechargeable LiFePO4/C spirulina microstructures. J. Mater. Chem. 2011, 21 (18), 6498-6501.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top