跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/24 17:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪證鈞
研究生(外文):JHENG-JYUN HONG
論文名稱:考慮臺灣海峽海氣象條件之碟型半潛式浮動平台性能研究
論文名稱(外文):Performance Prediction of a Disk-Type Semi-Submersible Floating Platform in Taiwan Strait
指導教授:趙修武
指導教授(外文):SIOU-WU JHAO
口試委員:楊瑞源邱逢琛林宗岳鍾年勉江茂雄
口試委員(外文):RUEI-YUAN YANGFONG-CHEN CIOUZONG-YUE LINNIAN-MIAN JHONGMAO-SYONG JIANG
口試日期:2021-12-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:126
中文關鍵詞:浮式風機半潛式平台水動力係數運動響應
外文關鍵詞:floating wind turbinesemi-submersible floating platformhydrodynamic coefficientmotion response
DOI:10.6342/NTU202200560
相關次數:
  • 被引用被引用:1
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
本研究討論碟型半潛式浮動平台搭載SNL 13.2MW風機在臺灣海峽海氣象條件下風機系統的運動響應。首先以AQWA計算浮動平台的水動力係數,風機空氣動力特性及繫纜系統以及浮動式風機系統的運動方程式皆以OrcaFlex求解。本研究使用STAR-CCM+分析浮動平台在各個方向運動輻射阻尼時受到的黏性效應。本研究所模擬的臺灣海峽海象條件為新竹外海區域發生機會較常見以及高波的兩種海況以及50年回歸週期的颱風海況,氣象條件則參考蒲氏風級表。類不規則波的模擬中,不規則波的有義波高及零上切週期分別是常見海況 (1.5公尺及5.5秒),高波海況 (4.5公尺及7.5秒)以及極端海況為(9.1公尺及12.7秒) 。本研究考慮在風向及波向為0°、30°、60°、90°時的運動響應及風機表現。模擬結果顯示浮動平台水動力係數的黏性效應對於風機運動及風機功率的標準差影響顯著,但對於平均值的影響並不明顯。在常見海況下,機艙及浮台的運動響應、風機功率和機艙的縱移速度的標準差和平均值皆對入流方向不敏感。在高波海況下,機艙及浮台的運動響應、風機功率和機艙的縱移速度的標準差和平均值在風向為90°時有最大的標準差。在極端海況下,機艙及浮台的運動響應、風機功率和機艙的縱移速度的標準差和平均值皆對入流方向不敏感。
This study predicts the performance of a disk-type semi-submersible platform equipped with a SNL 13.2MW wind turbine under the meteocean condition of the Taiwan Strait. The hydrodynamic coefficient of the platform is calculated by AQWA via a potential flow approach. The aerodynamics of the wind turbine and mooring system are calculated by OrcaFlex, which solves the equations of motion to calculate the motion responses of the floating wind turbine. The viscous damping components of the hydrodynamic coefficients are predicted by STAR-CCM+. In this study, three irregular wave conditions are considered with four wave and wind directions, i.e., 0°, 30°, 60°, and 90°. The wind condition is based on the Beaufort Scale. The significant wave height and zero-crossing period of three studied wave conditions are (1.5 m, 5.5 s) ,(4.5m, 7.5 s) and (9.1m, 12.7 s), respectively. The results show that viscous damping substantially contributes to the standard deviation of the motion response of a floating wind turbine but has a trivial impact on the mean motion response. Under the common condition of irregular sea, the standard deviation along with the mean value of motion response for the nacelle and platform as well as the power and the surge velocity of the nacelle are insensitive to the incoming wave direction. Under the highwave condition of irregular sea, the motion of the floating wind turbine and the turbine generated power have the largest standard deviation in the 90° wave direction, which is the most critical for the mooring design. Under the extreme condition of irregular sea, the standard deviation along with the mean value of motion response for the nacelle and platform as well as the power and the surge velocity of the nacelle are also insensitive to the incoming wave direction.
Abstract II
Content IV
Nomenclature V
List of Figures X
List of Tables XV
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Literature Review 5
Chapter 2 Numerical Methods 11
2.1 Potential Flow Modeling of Floating Body 11
2.2 Viscous Modeling of Floating Body 17
2.3 Modeling of Floating Wind Turbine 23
Chapter 3 Floating Platform and Wind Turbine Design 38
3.1 Platform Design 38
3.2 Wind Turbine Design 40
Chapter 4 Viscous Damping Correction 51
4.1 Computational Domain and Boundary Condition 51
4.2 Correction Method and Result 55
Chapter 5 Numerical Simulation 63
5.1 Setup of OrcaFlex 63
5.2 Irregular Wave Response 67
Chapter 6 Conclusion 123
Reference 125
[1]J. K. Kaldellis and D. Zafirakis, "The wind energy (r) evolution: A short review of a long history," Renewable energy, 36.7: 1887-1901, 2011.
[2]Global Wind Energy Council, GWEC Global Wind Report 2021, 2021.
[3]C. W. Zheng, C. W., Xiao, Z. N. Xiao, Y. H. Peng, C. Y. Li, and Z. B. Du, "Rezoning global offshore wind energy resources," Renewable Energy, 129: 1-11, 2018.
[4]P. C. Chang, R. Y. Yang, and C. M. Lai, "Potential of offshore wind energy and extreme wind speed forecasting on the west coast of Taiwan," Energies, 8.3: 1685-1700, 2015.
[5]https://www.twtpo.org.tw/handbook_show.aspx
[6]工研院綠能所,台灣風能評估手冊,2011。
[7]M. Dicorato, G. Forte, M. Pisani and M. Trovato, "Guidelines for assessment of investment cost for offshore wind generation," Renewable energy, 36.8: 2043-2051, 2011.
[8]M. Bilgili, A. Yasar and E. Simsek, "Offshore wind power development in Europe and its comparison with onshore counterpart," Renewable and Sustainable Energy Reviews, 15.2: 905-915, 2011.
[9]M. Kaltschmitt, W. Streucher, and A. Wiese. Renewable Energy. Springer, 2007.
[10]Z. Wang, C. Jiang, Q. Ai and C. Wang, "The key technology of offshore wind farm and its new development in China," Renewable and Sustainable Energy Reviews, 13.1: 216-222, 2009.
[11]T. Tran, D. Kim and J. Song, "Computational fluid dynamic analysis of a floating offshore wind turbine experiencing platform pitching motion," Energies, 7.8: 5011-5026, 2014.
[12]T. T. Tran and D. H. Kim, "A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion," Renewable Energy, 90: 204-228, 2016.
[13]李雅榮、何正有、黃政彰、王昱傑,受波浪影響之單柱型浮動式風力發電機的輸出改善,中國造船暨輪機工程學刊,34.2: 55-62,2015.
[14]M. Karimirad and T. Moan, "Feasibility of the application of a spar-type wind turbine at a moderate water depth," Energy Procedia, 24: 340-350, 2012.
[15]H. Shin, B. Kim, P. T. Dam and K. Jung, "Motion of OC4 5MW semi-Submersible offshore wind turbine in irregular waves," International Conference on Offshore Mechanics and Arctic Engineering. 55232: V008T09A028, 2013.
[16]N. Nikolaos, Deep water offshore wind technologies, Master Thesis, University of Strathclyde, Glasgow, 2004.
[17]C. S. Laura and D. C. Vicente, Floating Offshore Wind Farm, Springer, 2016.
[18]N. Barltrop, "Multiple unit floating offshore wind farm (MUFOW)," Wind Engineering, 17.4: 183-188, 1993.
[19]A. R. Henderson and M. H. Patel, "Floating offshore wind energy," BWEA Conference., 20, 1998.
[20]K. C. Tong, "Technical and economic aspects of a floating offshore wind farm," Journal of Wind Engineering and Industrial Aerodynamics, 74: 399-410, 1998.
[21]D. Roddier, C. Cermelli, A. Aubault, and A. Weinstein, "WindFloat: A floating foundation for offshore wind turbines," Journal of renewable and sustainable energy, 2.3: 033104, 2010.
[22]A. Robertson, J. Jonkman, M. Masciola, H. Song, A. Goupee, A. Coilling, and C. Luan, Definition of the semisubmersible floating system for phase II of OC4, National Renewable Energy Lab, Golden, CO, USA, 2014.
[23]J. Jonkman, Definition of the Floating System for Phase IV of OC3, National Renewable Energy Lab, Golden, CO, USA, 2010.
[24]http://www.gicon-sof.de/en/technical-solution.html
[25]S. de Guzmán, D. Marón, P. Bueno, M. Taboada, and M. Moreu, "A reduced draft spar concept for large offshore wind turbines," International Conference on Offshore Mechanics and Arctic Engineering. 51319: V010T09A077, 2018.
[26]Y. K. Wang, J. F. Chai, Y. W. Chang, T. Y. Huang, and Y. S. Kuo,"Development of seismic demand for Chang-bin offshore wind farm in Taiwan strait," Energies 9.12: 1036,2016.
[27]T. J. Chang, C. L. Chen, Y. L. Tu, H. T. Yeh, and Y. T. Wu, "Evaluation of the climate change impact on wind resources in Taiwan Strait." Energy conversion and management, 95: 435-445, 2015.
[28]陳麒友,臺灣離岸風電潛力場址半潛式浮動平台性能研究,臺灣大學工程科學及海洋工程學研究所碩士論文,2020。
[29]M. H. Hansen, A. Hansen, T. J. Larsen, S. Øye, P. Sørensen, and P. Fuglsang, Control Design for a Pitch-Regulated, Variable Speed Wind Turbine, RisØ-R-1500, RisØ National Laboratory, Roskilde, 2005.
[30]M. D. Haskind, "The oscillation of a ship in still water," Prikladnaya Matematika I Mekhanika, 10: 33-66, 1946.
[31]M. D. Haskind, "The hydrodynamic theory of ship oscillations in rolling and pitching," Bulletin de I’ Academie des Sciences de I’URSS, 1: 23-34, 1946.
[32]J. V. Wehausen and E. V. Laitone, "Surface waves," Fluid Dynamics, 446-778, 1960.
[33]STAR-CCM+ user guide version 13.06, Siemens, 2018.
[34]C. W. Hirt and B. D. Nichols, "Volume of fluid method for the dynamics of free surface," Journal of Computational Physics, 39: 201-225, 1981.
[35]S. Goldstein, "On the vortex theory of screw propellers," Containing Papers of a Mathematical and Physical Character, 123.792: 440-465, 1929.
[36]D. T. Griffith, and D. A. Thomas, The Sandia 100-meter all-glass baseline wind turbine blade: SNL100-00, SAND 2011-3779, 2011.
[37]D. T. Griffith, The SNL100-02 blade: advanced core material design studies for the Sandia 100-meter blade, SAND2013-10162, 2013.
[38]W. Sahasakkul, Development of A Model for An Offshore Wind Turbine Supported by A Moored Semi-Submersible Platform, Master Thesis, University of Texas at Austin, Austin, TX, USA, 2014.
[39]黃偉華,水深變化對於浮動式風機淺水繫纜的設計影響,國立成功大學水利及海洋工程學研究所碩士論文,2020。
[40]簡仲璟、郭一羽,近岸波浪頻譜形狀之研究,第16屆海洋工程研討會論文集,1994。
[41]https://www.weather.gov/mfl/beaufort.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top