跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/10 13:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭鈞隆
研究生(外文):CHUN-LUNG HSIAO
論文名稱:自航船模航向與航跡控制實驗之比較
論文名稱(外文):Comparative Study of Free Running Ship Model Course Control Between the Course-Keeping Control and the Track-Keeping Control
指導教授:蔡進發蔡進發引用關係
指導教授(外文):Jing-Fa Tsai
口試委員:林宗岳邵揮洲林恆山
口試委員(外文):ZONG-YUE LinHUI-ZHOU SHAOHENG-SHAN LIN
口試日期:2022-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
論文頁數:59
中文關鍵詞:航向保持控制航跡保持控制模糊控制平行修正導航法
外文關鍵詞:Course-keeping controlTrack-keeping controlFuzzy ControlParallelogram Correction
DOI:10.6342/NTU202202091
相關次數:
  • 被引用被引用:0
  • 點閱點閱:35
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為在有風流條件下比較自航船模航向保持控制與航跡保持控制之差異性。航向保持控制使用模糊控制器,航跡保持控制由模糊控制器以及平行修正導航法組成。航向保持控制實驗方式為本船初始位置為於航線上並透過電子羅盤獲得本船之航向來進行航行;航跡保持控制實驗方式為本船初始位置位於航線左側1.8公尺,並設定平行修正導航法平行四邊形之高分別為5、10、15、20、25、30倍船長進行實驗,再透過全球定位系統計算出每個時刻本船偏離航線之位移並求解出新的參考航向再由模糊控制器計算出所要之舵角,由上述6個倍數船長選出航跡保持控制最佳平行四邊形之高為20倍船長。
由航向保持控制實驗結果顯示,航向角在1度及-3度之間擺動,平均航向角為0.975度;而最大位移5.163公尺(約9.2倍船寬),平均位移量1.610公尺;舵角在6度與-2度之間,平均舵角為1.876度。由航跡保持控制實驗結果顯示,平行四邊形之高為20倍船長時,本船能航行到航線上並且以穩定的船速在航線上行駛,且到達航線後航向角在-4度及4度之間擺動,平均航向角為2.007度;而最大位移0.727公尺(約1.3倍船寬),平均位移量0.319公尺;舵角在6度與-7度之間,平均舵角為2.776度。由航向及航跡保持控制兩個比較結果可知,航向保持控制會因為風流之影響無法在航線上航行;相反地,航跡保持控制可在有風流時抵達航線並穩定行性,航跡保持控平均位移比航向保持控制小,但平均航向角與舵角皆較大。
The purpose of this study is to compare the difference between the course-keeping control and the track-keeping control of a free running model ship under the condition of wind and current. The course-keeping control is based on fuzzy control and the track-keeping control consists of fuzzy control and parallelogram correction. The scenario of the course-keeping control experiments is to make the model ship placing at the route and sailing along the course by compass. The scenario of the track-keeping control experiments is to make the model ship located at 1.8m to the left of the route and setting the height of parallelogram to be 5、10、15、20、25、and 30 times the ship length. Then, the displacement of the ship model and new reference course is determined by the Global Position System. Finally, the desired rudder angle is calculated by the fuzzy controller. The optimal parallelogram height for track-keeping control is 20 times the length of the ship model from the test results.
The course-keeping control experiments results show that the variation of the course angle of the model ship is between 1° and -3°and the average course angle is 0.975°. The maximum displacement is 5.163 meters (about 9.2 times ship model breadth) and the average displacement is 1.610 meters. The variation of the rudder angle is between 6° and -2° and the average rudder angle is 1.876°.
The track-keeping control experiment results show that the model ship can sail on the route. When the model ship arrives in the route, the variation of the course angle of the model ship maintains balance between 4° and -4° and the average course angle is 2.007°. The maximum displacement is 0.727 meters (about 1.3 ship model breadth) and the average displacement is 0.319 meters. The variation of the rudder angle is between 6° and-7° and the average rudder angle is 2.776°. From the test results of the course-keeping and the track-keeping control, we can see that the course-keeping control can’t navigate on the route due to the influence of wind and current. However, the track-keeping control can arrive in the route and navigate stably along the route under wind and current. The average displacement of track-keeping control is smaller than that of the course-keeping control, but the average course angle and rudder angle are both larger than that of the course-keeping control.
摘要 I
ABSTRACT II
目錄 IV
圖目錄 VI
表目錄 IX
符號說明 X
第一章 緒論 1
1-1前言 1
1-2文獻回顧 1
1-3研究動機 3
1-4研究方法與目的 3
1-5論文結構 3
第二章 船模與環境介紹 5
2-1船模介紹 5
2-2設備介紹及校正流程 6
2-2-1全球定位系統 6
2-2-2電子羅盤 7
2-2-3風速計 7
2-2-4資料擷取卡 8
2-3實驗環境說明 8
第三章 控制系統與理論介紹 9
3-1航向保持控制系統 9
3-1-1模糊集合與歸屬函數 9
3-1-2 模糊控制器介紹 9
3-1-3模糊控制器之推論流程 11
3-1-4量化因子與比例因子調整說明 12
3-2航跡保持控制系統 13
3-2-1平行修正導航法介紹 13
3-2-2平行修正導航法計算流程說明 13
第四章 試驗結果與討論 16
4-1航向保持控制試驗 16
4-2航跡保持控制試驗 17
4-3航向及航跡保持控制比較 19
第五章 結論與建議 21
5-1結論 21
5-2建議 21
文獻參考 22
1.Rothblum, A. M. "Keys to Successful Incident Inquiry. In Human Factors in Incident Investigation and Analysis,"2nd International Workshop on Human Factors in Offshore Operations (HFW2002), Houston, TX,2002.
2.Sperry, E. A. "Automatic Steering," Society of Naval Architects and Marine Engineers,1922.
3.Davison, K.S. "On The Turning and Steering of Ships," Transaction of the Society of Naval Architects and Marine Engineers, Vol.52, 1944.
4.Nomoto, K. and Taguchi, K." On Steering Qualities of Ships (2)," Journal of Zosen Kiokai, 1957. 1957(101): p. 57-66.
5.Kempf, G. "Measurements of the Propulsive and Structural Characteristics of Ships," Transactions of SNAME, Vol. 40, pp. 42-57, 1932.
6.Mort, N. and Linkens, D.A. "Self-turning Controller for Surface Ship Course and Tracking-keeping," In Proceedings, Symposium on Ship Steering Automatic Control, Genova, Italy, pp.175-188, 1980.
7.Morari, M. and Zafiriov, E. " Robust Process Control, " Englewood Cliffs, NJ,1989.
8.Cheng J., Yi J. Q. and Zhao D. B. "A New Fuzzy Autopilot for Way-Point Tracking Control of Ships," IEEE International Conference on Fuzzy Systems, Canada, 16-21 July, 2006.
9.Jasmin, V. "Adaptive Fuzzy Ship Autopilot for Track-Keeping,"Control Engineering Practice, PP.433-443, 2003.
10.McGookin, E.W., Murray-Smith, D.J., Li, Y., and Fossen, T.I. "Ship Steering Control System Optimization Using Genetic Algorithms," Control Engineering Practice, Vol.8, pp.429-443,2000.
11.Vukić, Z., Omerdić, E., & Kuljaca, L. "Improved Fuzzy Autopilot for Track-Keeping," IFAC Proceedings Volumes, 31(30), 123-128,1998.
12.Vukic, Z., & Velagic, J. "Comparative Analysis of Mamdani and Sugeno Type Fuzzy Autopilots for Ships," In 1999 European Control Conference (ECC) (pp. 1369-1374). IEEE,1999.
13.Moreira, L., Fossen, T. I., & Soares, C. G. "Path Following Control System for A Tanker Ship Model," Ocean Engineering, 34(14-15), 2074-2085,2007.
14.Fossen, T. I. "Marine Control Systems–Guidance. Navigation, and Control of Ships, Rigs and Underwater Vehicles," Marine Cybernetics, Trondheim, Norway ,2002.
15.李珉禎,"平行修正導航法於船舶軌跡控制之探討,"國立臺灣海洋大學運輸與航海科學系碩士論文,2016。
16.謝文記,"船舶節能自動操船系統之實驗研究,"國立台灣大學工程科學及海洋工程科學研究所碩士論文,2017。
17.王云珊,"貨櫃船自推實驗之計算模擬,"國立台灣大學工程科學及海洋工程 研究所,2012。
18.美國國家電子海洋協會. "The NMEA0183 Protocol," https://www.tronico.fi/OH6NT/docs/NMEA0183.pdf.
19. Zadeh, Lotfi A. "Fuzzy Sets," Information and control 8.3: 338-353,1965.
20.Van Amerongen, J., Van Nauta Lemke, H.R. and Van der Veen, J.C.T. "An Autopilot for Ships Designed with Fuzzy Sets," Digital Computer Applications to Process Control,1997.
21. Mamdani, E. H. " Applications of Fuzzy Algorithms for Control of Simple Dynamic Plant, "Proc. Iee, 121, 1585-1588,1974.
22.李政宏,"船舶自動避碰系統之實驗研究,"國立台灣大學工程科學及海洋工程科學研究所碩士論文,2019。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top