跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭寶賢
研究生(外文):Bao-Xian Peng
論文名稱:一個應用於穿戴式裝置改善模式切換電壓漣波之三種模式非反向四開關升降壓直流轉換器
論文名稱(外文):A Four-Switch Three-Mode Non-Inverting Buck-Boost DC-DC Converter with Low Mode Transition Voltage Ripples for Wearable Applications
指導教授:陳信樹
指導教授(外文):Hsin-Shu Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:116
中文關鍵詞:電感式直流電壓轉換器升降壓直流電壓轉換器低輸出電壓連波模式轉換優化
外文關鍵詞:Inductive Switching DC-DC ConverterNon-Inverting Buck-Boost ConverterLow Output Voltage RipplesMode Transitions Optimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:38
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,應用於輸入為鋰電池輸出為百毫瓦消耗功率的穿戴式裝置晶片應用蓬勃發展,人們需要能升降壓的直流電壓轉換器解決方案。四開關非反向切換電感式的直流電壓轉換器因為其高輸出功率與大範圍功率操作區間比起全電容式或線性穩壓器的直流電壓轉換器更具有優勢而受到重視。
在穿戴式裝置的應用上,電源管理晶片講求低輸出漣波以及高效率,然而升降壓直流轉換器因為高電流峰對峰值往往伴隨低功率,使得同時具備兩者優點也成為切換電感式電壓轉換器設計的難題。以往的晶片透過三模式四開關非反向升降壓切換電感式轉換器架構。在輸入與輸出差異較大時以升壓與降壓模式減小輸出漣波和提高效率;而輸入與輸出電壓相近時,電路則是操作在升降壓模式,同時透過計算並壓縮升降壓模式區間提升整體效率,然而在模式之間因為工作佔週期比(Duty)不同,導致輸出電壓會在模式切換時透過補償電路來把工作佔週期比(Duty)往新模式的值變動,也就產生極大的模式轉換輸出電壓變化。
本論文透過提出的自動延遲斜波控制(Auto-Delay-Ramp)方法在三模式四開關非反向升降壓切換電感式轉換器架構,設計一個應用於輸入為鋰電池且輸出為百毫瓦消耗穿戴式裝置的低轉換模式漣波且高效率電源轉換器。
此晶片透過台積電0.18μm 1P6M High Voltage Mixed Signal CMOS製程實現,依據實驗結果,本晶片在輸出負載為一百毫安培同時輸出為三點三伏特模式切換時,瞬間輸出電壓變化約為小於0.848%,暫態反應時間約為小於21.48μs,負載電流範圍從20毫安培(mA)到350毫安培(mA),最高效率在負載為100毫安培(mA)時為96.62%,提出的自動延遲斜波控制(Auto-Delay-Ramp)方法有效的減少模式切換的輸出電壓漣波。
Recently, people need the solution of DC-DC Converter that can save a lot of cost and size because the application of hundreds of mW wearable devices flourishes. People pay attention to Four-Switch Non-Inverting Buck-Boost DC-DC Converter(FSNIBBC) because it has more power capacity than the Switching-Capacitor Converter, and it can provide both higher and lower than one conversion ratio, which the Linear Regulator cannot.
Power management chips focus on high efficiency and small output voltage ripples of wearable devices. However, the FSNIBBC usually has low conversion efficiency because of the high inductor peak-to-peak current. The proposed chip uses a Three-Mode FSNIBBC structure to increase conversion efficiency when the input voltage is much higher or lower than the output voltage. However, when the mode transitions from each mode, it would be a significant Duty gap to let the compensator settle to the new Duty level, which means vast output voltage ripples.
This thesis uses the proposed Auto-Delay-Ramp on the Three-Mode FSNIBBC. By doing so, a low mode transition voltage ripples and high-efficiency power converter will be implemented for wearable applications.
The proposed chip is fabricated in TSMC 0.18 μm 1P6M High Voltage Mixed-Signal CMOS process. It can provide a fixed output voltage of 3.3V at loading is 20 mA~ 350mA when the input voltage is 2.7V to 4.2V. The measurement results with Auto-Delay-Ramp will effectively reduce output voltage ripples when mode transition to less than 0.848% and settling time less than 21.48uSec, and the maximum efficiency is 96.62% at output current equal to 100mA.
口試委員會審定書 iii
致謝 iv
摘要 vi
ABSTRACT viii
CONTENTS x
LIST OF FIGURES xiv
LIST OF TABLES xx
Chapter 1 Introduction 1
1.1 Motivation 4
1.2 Thesis Organization 8
Chapter 2 Fundamentals of Inductive Switching DC-DC Converter 9
2.1 Introduction 9
2.1.1 Architecture 12
2.1.2 Operation 13
2.2 Steady-State Analysis and AC Equivalent Model 15
2.2.1 Steady-State Analysis 15
2.2.2 AC Equivalent Circuit Model 25
2.2.2.1 Averaged Switch Model 26
2.2.2.2 Pulse-Width Modulator Model 34
2.2.2.3 Converter Transfer Functions 35
2.3 Control Technique 37
2.3.1 Classified by Modulation Method 37
2.3.1.1 Pulse Frequency Modulation(PFM) 37
2.3.1.2 Pulse Skip Modulation(PSM) 39
2.3.1.3 Pulse-Width Modulation 40
2.3.2 Classified by Modulation Signal 42
2.3.2.1 Voltage Mode Control. 42
2.3.2.2 Current Mode Control 42
2.4 Performance Metrics 43
2.4.1 Load Range 44
2.4.2 Input and Output Voltage Range 44
2.4.3 Conversion Efficiency 45
2.4.4 BOM Cost 45
2.4.4.1 Die Area 46
Chapter 3 Basics of Four-Switch Non-Inverting Buck-Boost DC-DC Converter(FSNIBBC) 47
3.1 Conventional FSNIBBC 47
3.2 Two-Mode FSNIBBC 49
3.2.1 Operation principle 49
3.2.2 Dead Zone Issue 50
3.3 Three-Mode FSNIBBC 51
3.3.1 Operation principle 51
3.3.2 Mode Transition Voltage Ripples and Settling Time Problems 53
3.4 Performance Metrics of the Three-Mode FSNIBBC 57
3.4.1 Mode Transition Voltage 57
3.4.2 Mode Transition Settling Time 57
Chapter 4 Proposed Three-Mode FSNIBBC with the Auto-Delay-Ramp 59
4.1 Design Goal 59
4.2 Proposed Auto-Delay-Ramp (ADR) 61
4.2.1 Optimize Transition Duty Calculation 63
4.3 Operation principle 65
4.4 Proposed Architecture 66
4.5 Circuit Implementation 68
4.5.1 Proposed Auto-Delay-Ramp 68
4.5.1.1 Proposed Auto-Delay-Duty Generator 69
4.5.1.2 Proposed Auto-Delay-Ramp Generator 70
4.5.2 Power Stage 75
4.5.3 Non-Overlapping Circuit with Power Stage Signal 76
4.5.4 Zero Current Detector (ZCD) 77
4.5.5 Comparator 79
4.5.5.1 Hysteristic Comparator 79
4.5.5.2 Mode Judger 81
4.5.5.3 Pulse-Width Modulation Comparator (PWMC) 81
4.5.6 Soft Start-up 83
4.5.7 Two-Stage Op-Amp 84
4.5.8 Type III Compensation Network 86
4.6 Simulation Results 88
4.6.1 Steady-State Waveforms 89
4.6.2 Mode Transition Waveforms 91
4.6.3 Conversion Efficiency 94
Chapter 5 Experimental Results 97
5.1 Chip Micrograph 97
5.2 Experimental Environment Setup 98
5.3 Measurement Results 100
5.3.1 Steady-State Waveforms 101
5.3.2 Mode Transition Waveforms 103
5.3.3 Conversion Efficiency 105
5.4 Performance Summary 108
Chapter 6 Conclusion and Future Work 111
6.1 Conclusions 111
6.2 Future Work 111
REFERENCE 113
[ 1 ]C.-L. Wei, C.-H. Chen, K.-C. Wu, and I.-T. Ko, “Design of an averagecurrent-mode non-inverting Buck–Boost DC–DC Converter with reduced switching and conduction losses,” IEEE Trans. Power Electron., vol. 27, no. 12, pp. 4934–4943, Dec. 2012.
[ 2 ]S. Maity and Y. Suraj, “Analysis and modeling of an FFHC-controlled DC–DC Buck Converter suitable for wide range of operating conditions,” IEEE Trans. Power Electron., vol. 27, no. 12, pp. 4914–4924, Dec. 2012.
[ 3 ] R. Guo, Z. Liang, and A. Q. Huang, “A family of multimodes charge pump based DC–DC Converter with high efficiency over wide input and output range,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4788– 4798, Nov. 2012.
[ 4 ]P.-J. Liu, J.-N. Tai, H.-S. Chen, J.-H. Chen, and Y.-J. E. Chen, “Spurreduction design of frequency-hopping DC–DC Converters,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4763–4771, Nov. 2012.
[ 5 ] C. Restrepo, J. Calvente, A. Romero, E. Vidal-Idiarte, and R. Giral, “Current-mode control of a coupled-inductor Buck–Boost DC–DC switching Converter,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2536–2549, May 2012.
[ 6 ]K. K. I. Hwu and T. T. J. Peng, “A novel Buck–Boost Converter combining KY and Buck Converters,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2236–2241, May 2012.
[ 7 ] Y. Lee, S. Huang, S. Wang, W. Wu, P. Huang, H. Ho, Y. Lai, and K. Chen, “Power-tracking embedded Buck–Boost Converter with fast dynamic voltage scaling for the SoC system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1271–1282, Mar. 2012.
[ 8 ] C. Yao, X. Ruan, X. Wang, and C. K. Tse, “Isolated Buck–Boost DC/DC Converters suitable for wide input-voltage range,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2599–2613, Sep. 2011.
[ 9 ] C. Restrepo, J. Calvente, A. Cid-Pastor, A. E. Aroudi, and R. Giral, “A non-inverting Buck–Boost DC–DC switching Converter with high efficiency and wide bandwidth,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2490–2503, Sep. 2011.
[ 10 ]J. J. Chen, P. N. Shen, Y. S. Hwang, "A high-efficiency positive Buck-Boost Converter with mode-select circuit and feed-forward techniques," IEEE Trans. on Power Electron., vol. 28, no. 9, pp. 4240-4246, Sep. 2013
[ 11 ] Steven Schnier, Chris Glaser, Jasper Li, Albert Marco, "Power Management Reference Design for a Wearable Device with Wireless Charging Using the bq51003 and bq25120",SLUA748A–December 2015–Revised April 2016
[ 12 ]P. Malcovati, M. Belloni, F. Gozzini, C. Bazzani and A. Baschirotto, "A 0.18-µm CMOS 91%-Efficiency 2-A Scalable Buck-Boost DC-DC Converter for LED Drivers", IEEE Transaction on Power Electronics, vol. 29, no. 10, pp. 5392-5398, Oct. 2014.
[ 13 ]A. Chakraborty, A. Khaligh and A. Emadi, "Combination of Buck and Boost Modes to Minimize Transients in the Output of a Positive Buck-Boost Converter", Digital Objet Identifier, pp. 2372-2377, 2006.
[ 14 ]Young-Joo Lee, Alireza Khaligh,Arindam Chakraborty, Ali Emadi, "Digital Combination of Buck and Boost Converters to Control a Positive Buck-Boost Converter and Improve the Output Transients," IEEE Transactions on Power Electronics, vol. 24, no. 5, May 2009.
[ 15 ]Martín F. Ceci; María Belén D'Amico, "An alternative strategy for reducing mode transitions in a four-switch buck-boost converter ", "IEEE International Symposium of Circuits and Systems (ISCAS) “
[ 16 ]Y. J. Lee, A. Khaliah, A. Emadi, "A compensation technique for smooth transitions in a noninverting buck-boost converter," IEEE Trans. on Power Electron., vol. 24, no. 4, pp. 1002-1012, Apr. 2009
[ 17 ]L. Callegaro, M. Ciobotaru, D. J. Pagano, E. Turano and J. E. Fletcher, "A simple smooth transition technique for the noninverting buck-boost converter", IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4906-4915, Jun. 2018.
[ 18 ]L. Jia, X. Sun, Z. Zheng, X. Ma and L. Dai, "Multimode smooth switching strategy for eliminating the operational dead zone in noninverting buck–boost converter", IEEE Trans. Power Electron., vol. 35, no. 3, pp. 3106-3113, Mar. 2020.
[ 19 ]C. Yao, X. Ruan, W. Cao and P. Chen, "A Two Mode Control Scheme with Input Voltage Feed Forward for the Two Switch Buck Boost DC-DC Converter", IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 2037-2048, April 2014.
[ 20 ]P.-J. Liu and C.-W. Chang, "CCM noninverting buck–boost converter with fast Duty-cycle calculation control for line transient improvement", IEEE Trans. Power Electron., vol. 33, no. 6, pp. 5097-5107, Jun. 2018.
[ 21 ]C. Restrepo, T. Konjedic, J. Calvente and R. Giral, "Hysteretic transition method for avoiding the dead-zone effect and subharmonics in a nonin-verting buck-boost converter", IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3418-3430, 2015.
[ 22 ]K. Kim, H. Lee, S. Hong and G. H. Cho, "A noninverting buck-boost converter with state-based current control for Li-ion battery management in mobile applications", IEEE Trans. Ind. Electron., vol. 66, no. 12, pp. 9623-9627, Dec. 2019.
[ 23 ]C. Yao, X. Ruan, W. Cao and P. Chen, "A Two Mode Control Scheme with Input Voltage Feed Forward for the Two Switch Buck Boost DC-DC Converter", IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 2037-2048, April 2014.
[ 24 ]R. Paul and D. Maksimovic, "Smooth transition and ripple reduction in 4-switch non-inverting buck-boost power converter for wcdma rf power amplifier," in Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on, pp. 3266-3269, may 2008.
[ 25 ]B. Sahu and G. A. Rincon-Mora, "A low voltage dynamic noninverting synchronous buck-boost converter for portable applications", IEEE Trans. Power Electron., vol. 19, no. 2, pp. 443-452, Mar. 2004.
[ 26 ]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA, USA: Kluwer, 2001.
[ 27 ]Phillip E. Allen, CMOS Analog Circuit Design, 3rd ed. Oxford University Press, 2011.
[ 28 ]K. Woo, J. Oh and B. Yang, "DC – DC Buck Converter Using Analog Coarse-Fine Self-Tracking Zero-Current Detection Scheme", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 66, no. 11, pp. 1850-1854, Nov. 2019.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top