跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡舜宇
研究生(外文):Shuen-Yu Tsai
論文名稱:CP-OTFS系統中的迭代符元決策方法
論文名稱(外文):Iterative Symbol Decision Methods in CP-OTFS
指導教授:鐘嘉德鐘嘉德引用關係陳維昌
指導教授(外文):Char-Dir ChungChar-Dir Chung
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:65
中文關鍵詞:正交時頻空間調變約束最小平方訊息傳遞演算法符元決策靜態多路徑通道線性時變性通道
外文關鍵詞:Orthogonal time frequency space modulationConstrained least-squareMessage passing algorithmSymbol decisionStatic multipath channelLinear time-varying channel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
正交時頻空間(OTFS)調變系統因其在稀疏多路徑的線性時變通道上的優異表現而在無線通訊領域獲得關注。然而,這種系統在接收端的等化與資料決策會需要極高的運算資源,因此研究同時具有優異性能表現與可接受複雜度的接收端符元決策方法是至關重要的。在循環前綴碼式正交時頻空間調變系統(CP-OTFS)中,因為塊狀等化的較低複雜度,我們可以引入迭代符元決策方法來提高系統性能。本論文基於迭代決策反饋混合式等化演算法(IDFHE),提出了兩種CP-OTFS系統的迭代符元決策方法,能在保有可接受複雜度的同時也提高錯誤率表現。除了一般常討論的線性時變通道,本論文也研究了CP-OTFS系統應用在靜態多路徑通道的可能,以拓展其應用價值。數值分析的結果展示出兩種迭代符元決策方法所帶來的優異性能表現,而計算複雜度的分析也證明了所提出的迭代符元決策方法的可行性。
Orthogonal Time Frequency Space (OTFS) modulation has gained importance in the area of wireless communication networks due to its prominent performance over linear time-varying (LTV) channel exhibiting sparse path delays and Doppler spreads. However, such system experiences tremendously high complexity when performing equalization and data decision at receiver side. Thus, it is crucial to investigate some pragmatic symbol decision methods that encompass acceptable error performance and complexity simultaneously. In cyclic-prefixed-OTFS (CP-OTFS) , since the block-wise equalization is feasible, the iterative symbol decision methods can be introduced to enhance system performance with allowable low-complexity. In this thesis, based on iterative decision-feedback hybrid equalization (IDFHE), an iterative symbol decision method in CP-OTFS, i.e. LM-IDFHE is proposed to improve system performance while maintains realizable complexity. In addition to LTV channel, the iterative symbol decision methods in CP-OTFS over static multipath channel are also developed. It is found that the popular message passing algorithm (MPA) can be incorporated with LM-IDFHE to improve system performance whereas the advantages of both are preserved. The performance results from numerical analysis validate the performance of proposed iterative methods, and the elaboration on computational complexity of each symbol decision method also verifies the feasibility of the proposed symbol decision methods.
Contents
Abstract i
Contents ii
List of Figures iv
List of Tables vii
1 Introduction 1
1.1 Introduction to OTFS System 1
1.2 Review on Symbol Decision Methods in OTFS System 4
1.3 Thesis Motivation 7
2 CP-OTFS System on Static Multipath Channel 10
2.1 System Model 10
2.2 Noniteratively Equalized Symbol Decision Methods and Message Passing Decision 16
2.2.1 Zero-Forcing 18
2.2.2 Linear Minimum Mean Square Error 18
2.2.3 Constrained Least-Square 19
2.2.4 Message Passing Decision 20
2.3 Iterative Decision-Feedback Hybrid Equalization 23
2.3.1 LM-IDFHE Scheme 23
2.3.2 MPA-IDFHE Scheme 26
2.4 Performance Characteristics 29
2.4.1 Random Rician Multipath Channel 30
2.4.2 Effective SINR of LMMSE and CLS Equalizers and Semi-Analytical Bound 31
2.4.3 Bit Error Rate Performance 33
2.4.4 Computational Complexity 36
3 CP-OTFS System on LTV Channel 41
3.1 System Model 42
3.2 Noniteratively Equalized Symbol Decision Methods and Message Passing Decision 48
3.2.1 Linear Minimum Mean Square Error 48
3.2.2 Constrained Least-Square 49
3.2.3 Message Passing Decision 50
3.3 Iterative Decision-Feedback Hybrid Equalization 50
3.4 Performance Characteristics 53
3.4.1 Random Doubly Dispersive Multipath Channel 53
3.4.2 Bit Error Rate Performance 54
3.4.3 Computational Complexity 57
4 Conclusion 61
Bibliography 62
[1] R. Hadani et al., “Orthogonal time frequency space modulation,” in Proc. IEEE Wireless Commun. Netw. Conf., San Francisco, Mar. 2017, pp. 1–6.
[2] P. Raviteja, E. Viterbo and Y. Hong, “OTFS performance on static multipath channels,” IEEE Wireless Commun. Lett., vol. 8, no. 3, pp. 745-748, Jun. 2019.
[3] Rangamgari, V., Tiwari, S., Das, S. and Mondal, S., 2020. “OTFS: Interleaved OFDM with block CP”. [online] arXiv.org.
[4] N. Hashimoto, N. Osawa, K. Yamazaki and S. Ibi, “Channel estimation and equalization for CP-OFDM-based OTFS in fractional doppler channels,” in Proc. IEEE Int. Conf. Commun., Virtual/Montreal, Jun. 2021, pp. 1-7.
[5] Raviteja, P., Phan, K., Hong, Y. and Viterbo, E., 2021 “Interference cancellation and iterative decision for orthogonal time frequency space modulation”. [online] arXiv.org.
[6] S. S. Das, V. Rangamgari, S. Tiwari and S. C. Mondal, “Time domain channel estimation and equalization of CP-OTFS under multiple fractional dopplers and residual Synchronization errors,” IEEE Access, vol. 9, pp. 10561-10576, 2021.
[7] D.Bandeira, D. Le Ruyet, M.Pischella and J.Mota, “Performance evaluation of lowcomplexity algorithms for orthogonal time-frequency space modulation,” J. Commun. and Information Systems, Brazilian Telecommunications Society (SBrT), 2020, 35 (1), pp.138-149.
[8] Z. Q. Zhang, H. Liu, Q. L. Wang, et al., “A survey on low complexity detectors for OTFS systems,” ZTE Commun., vol. 19, no. 4, pp. 03–15, Dec. 2021.
[9] A. Naikoti and A. Chockalingam,“Signal detection and channel estimation in OTFS,” ZTE Commun., vol. 19, no. 4, pp. 16–33, Dec. 2021.
[10] G. D. Surabhi and A. Chockalingam, “Low-complexity linear equalization for OTFS modulation,” IEEE Commun. Lett., vol. 24, no. 2, pp. 330-334, Feb. 2020.
[11] S. Tiwari, S. S. Das and V. Rangamgari, “Low complexity LMMSE receiver for OTFS,” IEEE Commun. Lett., vol. 23, no. 12, pp. 2205-2209, Dec. 2019.
[12] A. Gunturu, A. R. Godala, A. K. Sahoo and A. K. R. Chavva, “Performance analysis of OTFS waveform for 5G NR mmWave communication system,” in Proc. IEEE Wireless Commun. Netw. Conf., Nanjing/Virtual, Mar. 2021, pp. 1-6.
[13] L.-Y. Ma, W.-C. Chen, and C.-D. Chung, “Iterative decision-feedback hybrid equalization in SC-FDM,” in Proc. IEEE Symp. Person. Indoor Mobile Radio Commun. (Virtual), Sep. 2022, pp. 1-6.
[14] L. Xiang, Y. Liu, L. -L. Yang and L. Hanzo, “Gaussian approximate message passing detection of orthogonal time frequency space modulation,” IEEE Trans. Veh. Technol., vol. 70, no. 10, pp. 10999-11004, Oct. 2021.
[15] Z. Yuan, F. Liu, W. Yuan, Q. Guo, Z. Wang and J. Yuan, “Iterative detection for orthogonal time frequency space modulation with unitary approximate message passing,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 714-725, Feb. 2022.
[16] W. Yuan, Z. Wei, J. Yuan and D. W. K. Ng, “A simple variational Bayes detector for orthogonal time frequency space (OTFS) modulation,” IEEE Trans. Veh. Technol., vol.69, no. 7, pp. 7976-7980, July 2020.
[17] T. Thaj and E. Viterbo, “Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 15606-15622, Dec. 2020.
[18] S.Weinstein and P. Ebert, “Data transmission by frequency-division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun. Technol., vol. 19, no. 5, pp. 628-634, Oct. 1971.
[19] J. G. Proakis, Digital Communications, 5th ed., McGraw Hill, 2007.
[20] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, 1996.
[21] R.-Y. Yen, H. Liu and W.-K. Tsai, “QAM symbol error rate in OFDM systems over frequency-selective fast Rician-fading channels,” IEEE Trans.Veh. Technol., vol. 57, no.2, pp. 1322-1325, Mar. 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top