跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 07:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許富順
研究生(外文):Fu-Shun Hsu
論文名稱:尋找克服尿路上皮癌化學治療抗藥性的治療策略──探討組織蛋白去乙醯酶抑制劑及去泛素化酶抑制劑治療之機轉
論文名稱(外文):Explore new treatment strategies for overcoming the chemoresistance of urothelial carcinoma ── Using histone deacetylase inhibitor and deubiquitinating enzymes inhibitor as new treatment targets
指導教授:黃國皓林家齊林家齊引用關係
指導教授(外文):Kuo-How HuangChia-Chi Lin
口試委員:劉興華黃凱文廖俊厚杜元博
口試委員(外文):Shing-Hwa LiuKai-Wen HuangChung-Hou LiaoYuan-Po Tu
口試日期:2022-01-06
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:90
中文關鍵詞:尿路上皮癌化學抗藥性克莫抗癌組織蛋白去乙醯酶去泛素化酶
外文關鍵詞:Urothelial carcinomachemoresistancecisplatinpaclitaxelhistone deacetylasedeubiquitinating enzymeMAPK pathway
DOI:10.6342/NTU202200029
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
尿路上皮癌(Urothelial carcinoma, UC)在全世界癌症發生率排名前十位,在台灣發生率也有上升的趨勢。接受根除性手術後,仍有 20-50% 的患者會復發和轉移。當患者出現轉移腫瘤時,五年存活率將不到20%。目前的一線化學治療藥物(包括cisplatin和gemcitabine),總體反應率只有約為 50-60%。雖然已開發出用於晚期和轉移性 UC 的二線化療藥物與免疫治療,然而大部分患者的腫瘤仍持續出現抗藥性,最終治療失敗而造成死亡。因此,尋找新的治療方法來克服UC的抗藥性刻不容緩的。
在本研究第一與第二部分中,我們目標在研究組織蛋白去乙醯酶(Histone deacetylase;HDAC)抑制劑: 曲古抑菌素-A (Trichostatin A, TSA) ,在UC的上抗腫瘤效果,並探討TSA能否增加化療藥物對UC的毒殺作用,進一步去釐清其機轉。我們使用了三種膀胱尿路上皮癌細胞株(NTUB1,T24和BFTC-905)以及一種發生於腎臟的上泌尿道尿路上皮癌細胞株(BFTC-909)。實驗證實,TSA 與第一線化療藥物:cisplatin、gemcitabine、doxorubicin和第二線化療藥物 paclitaxel等四種化療藥物合併使用後,皆在UC細胞毒殺作用中產生了顯著的協同作用(Combination index < 1);TSA並同時抑制了化療藥物所活化的MAPK/ERK抗藥機轉。而此細胞實驗結果,也在腫瘤異體移植的動物實驗中獲得了相同驗證。此外我們也發現,在臨床上對化療反應不佳的病人之UC檢體上,MAPK/ERK磷酸化表現量明顯高於對化療反應良好的UC病人檢體。前兩部分研究的結果證實:TSA與化療藥物合併使用下,經由抑制MAPK/ERK 磷酸化的抗藥機轉,進而增強化療藥物毒殺UC的效用。
在第三部分中,我們探討了去泛素化酶(deubiquitinating enzymes, DUB)抑製劑: PR-619,在cisplatin-resistant UC 中的抗腫瘤作用。首先,在免疫組織化學染色的結果顯示,USP14 和 USP21在化療無效的UC病人檢體中有高度表現,說明了DUB可能與腫瘤抗藥性有正相關,並有潛力成為克服化學抗藥性的新標靶。我們建立了一株對cisplatin具有抗藥性的UC細胞株T24/R。我們發現,PR-619和cisplatin併用時,增強了對T24/R的細胞毒殺作用和凋亡。此外,我們也證明了PR-619可經由抑制c-Myc致癌基因,逆轉UC抗藥性細胞株的抗藥性,進而明顯增強cisplatin對抗藥性UC地毒殺效果。這些結果也在腫瘤異種移植的動物實驗中,獲得相同結果。
總結以上的研究,我們證實了組織蛋白去乙醯酶抑製劑和去泛素化酶抑製劑,除了單獨使用下能有效毒殺UC細胞之外,在兩者個別合併化療藥物使用下,也顯著增強了化療藥物毒殺UC的效果,並抑制了腫瘤細胞抗藥性機轉的產生。這些成果釐清了藥物機轉之外,也提供了克服 UC 抗藥性的新治療策略,具有相當高的臨床應用價值。
Urothelial carcinoma (UC) ranks fourth in cancer incidence among men and eleventh in women worldwide. Recurrence and metastasis occurs in 20%–50% of patients after radical surgery. The overall response rate to treatment with first-line regimen, including cisplatin and gemcitabine, remains at 50%–60%. Second-line chemotherapy, including paclitaxel and vinflunine, have been developed for advanced and metastatic UC. Most patients experience chemoresistance, however, which leads to disease relapse. Therefore, the development of innovative UC treatments that address chemoresistance is urgently needed.
In chapter 1 and 2 of this study, we evaluated the antitumor effects of trichostatin A (TSA), an antifungal antibiotic that inhibits histone deacetylases (HDACs), alone or in combination with other chemotherapeutic agents, including cisplatin, gemcitabine, doxorubicin, and paclitaxel, for the treatment of human UC. Cytotoxicity and apoptotic effects were assessed in vitro using fluorescence-activated flow cytometry and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay, and the underlying mechanism was measured by western blotting. The data showed that TSA co-treatment with any one of the four chemotherapeutic agents induced synergistic cytotoxicity (combination index < 1) and concomitantly suppressed chemotherapeutic drug-induced activation of the mitogen-activated protein kinase (MAPK) / extracellular signal-regulated kinase (ERK) pathway. These observations were confirmed in a xenograft nude mouse model. The activated MAPK/ERK pathway was also observed in human bladder specimens from chemoresistant UC patients. These findings support that TSA elicited a synergistic cytotoxic response in combination with chemotherapy by targeting the MAPK/ERK pathway.
In chapter 3, we investigated the antitumor effect of the deubiquitylating enzyme inhibitor PR-619 in cisplatin-resistant bladder UC cells. By deubiquitinase (ubiquitin-specific protease 14 [USP14] and USP21) immunohistochemical staining, deubiquitination was related to chemoresistance in patients with metastatic UC. PR-619 was found to enhance the cytotoxic and apoptotic effects of cisplatin in cisplatin-resistant T24/R cells. Mitigated cisplatin chemoresistance was associated with concurrent suppression of c-Myc expression in T24/R cells. Moreover, c-Myc expression was upregulated in human bladder specimens from chemoresistant UC patients. In the xenograft nude mouse model, PR-619 also enhanced the antitumor effects of cisplatin. Our findings suggest that, by disrupting the c-Myc pathway, therapeutic strategies can prevent UC chemoresistance through the combined use of chemotherapeutic agents and deubiquitinating inhibitors (PR-619).
This study describes novel therapeutic strategies to overcome chemoresistance in UC. Our results substantiate the potential clinical applications of histone deacetylase inhibitors and deubiquitinating enzyme inhibitors, and the importance of identifying and developing chemosensitizers that improve the therapeutic efficacy of treatments for chemoresistant UC cells.
致謝....................................................................................................................... 1
中文摘要....................................................................................................................... 3
Abstract ................................................................................................................... 5
Abbreviations................................................................................................................ 8
Introduction................................................................................................................. 9
Materials and Methods ............................................................................................... 17
Results ........................................................................................................................ 23
Ⅰ. Trichostatin A, a Histone Deacetylase inhibitor, Induces Synergistic Cytotoxicity with Chemotherapy via Suppression of Raf/MEK/ERK Pathway in Urothelial Carcinoma .............................................................................................................. 23
Ⅱ. Trichostatin A synergistically enhances paclitaxel-induced cytotoxicity in urothelial carcinoma cells by suppressing the ERK pathway…...............................................27
ⅡI. PR-619, a General Inhibitor of Deubiquitylating Enzymes, Diminishes Cisplatin Resistance in Urothelial Carcinoma Cells through the Suppression of c-Myc: An In Vitro and In Vivo Study…...................................................................................... 30
Discussion................................................................................................................... 34
Summary..................................................................................................................... 41
Perspectives................................................................................................................. 42
Figures and Tables....................................................................................................... 44
References................................................................................................................... 82
1.Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin 2012, 62(1):10-29.
2.Ploeg M, Aben KK, Kiemeney LA: The present and future burden of urinary bladder cancer in the world. World J Urol 2009, 27(3):289-293.
3.Latini DM, Lerner SP, Wade SW, Lee DW, Quale DZ: Bladder cancer detection, treatment and outcomes: opportunities and challenges. Urology 2010, 75(2):334-339.
4.http://tcr.cph.ntu.edu.tw/main.php?Page=A5 TCRW.
5.Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T: Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 2005, 5(9):744-749.
6.Shah JB, McConkey DJ, Dinney CP: New strategies in muscle-invasive bladder cancer: on the road to personalized medicine. Clin Cancer Res 2011, 17(9):2608-2612.
7.Hsu FS, Wu JT, Lin JY, Yang SP, Kuo KL, Lin WC, Shi CS, Chow PM, Liao SM, Pan CI et al: Histone Deacetylase Inhibitor, Trichostatin A, Synergistically Enhances Paclitaxel-Induced Cytotoxicity in Urothelial Carcinoma Cells by Suppressing the ERK Pathway. Int J Mol Sci 2019, 20(5).
8.Lin WC, Hsu FS, Kuo KL, Liu SH, Shun CT, Shi CS, Chang HC, Tsai YC, Lin MC, Wu JT et al: Trichostatin A, a histone deacetylase inhibitor, induces synergistic cytotoxicity with chemotherapy via suppression of Raf/MEK/ERK pathway in urothelial carcinoma. J Mol Med (Berl) 2018, 96(12):1307-1318.
9.Harker WG, Meyers FJ, Freiha FS, Palmer JM, Shortliffe LD, Hannigan JF, McWhirter KM, Torti FM: Cisplatin, methotrexate, and vinblastine (CMV): an effective chemotherapy regimen for metastatic transitional cell carcinoma of the urinary tract. A Northern California Oncology Group study. JClinOncol 1985, 3(11):1463-1470.
10.Sternberg CN, Yagoda A, Scher HI, Watson RC, Geller N, Herr HW, Morse MJ, Sogani PC, Vaughan ED, Bander N et al: Methotrexate, vinblastine, doxorubicin, and cisplatin for advanced transitional cell carcinoma of the urothelium. Efficacy and patterns of response and relapse. Cancer 1989, 64(12):2448-2458.
11.von der MH, Hansen SW, Roberts JT, Dogliotti L, Oliver T, Moore MJ, Bodrogi I, Albers P, Knuth A, Lippert CM et al: Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. JClinOncol 2000, 18(17):3068-3077.
12.Xu WS, Parmigiani RB, Marks PA: Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 2007, 26(37):5541-5552.
13.Bolden JE, Peart MJ, Johnstone RW: Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006, 5(9):769-784.
14.Romero D: HDAC inhibitors tested in phase III trial. Nat Rev Clin Oncol 2019, 16(8):465.
15.McClure JJ, Li X, Chou CJ: Advances and Challenges of HDAC Inhibitors in Cancer Therapeutics. Adv Cancer Res 2018, 138:183-211.
16.He S, Dong G, Li Y, Wu S, Wang W, Sheng C: Potent Dual BET/HDAC Inhibitors for Efficient Treatment of Pancreatic Cancer. Angew Chem Int Ed Engl 2020, 59(8):3028-3032.
17.Suraweera A, O'Byrne KJ, Richard DJ: Combination Therapy With Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi. Front Oncol 2018, 8:92.
18.Giordano TJ: The cancer genome atlas research network: a sight to behold. Endocr Pathol 2014, 25(4):362-365.
19.Poyet C, Jentsch B, Hermanns T, Schweckendiek D, Seifert HH, Schmidtpeter M, Sulser T, Moch H, Wild PJ, Kristiansen G: Expression of histone deacetylases 1, 2 and 3 in urothelial bladder cancer. BMC Clin Pathol 2014, 14(1):10.
20.Buckley MT, Yoon J, Yee H, Chiriboga L, Liebes L, Ara G, Qian X, Bajorin DF, Sun TT, Wu XR et al: The histone deacetylase inhibitor belinostat (PXD101) suppresses bladder cancer cell growth in vitro and in vivo. J Transl Med 2007, 5:49.
21.Vallo S, Xi W, Hudak L, Juengel E, Tsaur I, Wiesner C, Haferkamp A, Blaheta RA: HDAC inhibition delays cell cycle progression of human bladder cancer cells in vitro. Anticancer Drugs 2011, 22(10):1002-1009.
22.Qu W, Kang YD, Zhou MS, Fu LL, Hua ZH, Wang LM: Experimental study on inhibitory effects of histone deacetylase inhibitor MS-275 and TSA on bladder cancer cells. Urologic oncology 2010, 28(6):648-654.
23.Ozawa A, Tanji N, Kikugawa T, Sasaki T, Yanagihara Y, Miura N, Yokoyama M: Inhibition of bladder tumour growth by histone deacetylase inhibitor. BJU international 2010, 105(8):1181-1186.
24.Li DR, Zhang H, Peek E, Wang S, Du L, Li G, Chin AI: Synergy of Histone-Deacetylase Inhibitor AR-42 with Cisplatin in Bladder Cancer. The Journal of urology 2015, 194(2):547-555.
25.Yoon CY, Park MJ, Lee JS, Lee SC, Oh JJ, Park H, Chung CW, Abdullajanov MM, Jeong SJ, Hong SK et al: The histone deacetylase inhibitor trichostatin A synergistically resensitizes a cisplatin resistant human bladder cancer cell line. J Urol 2011, 185(3):1102-1111.
26.Yeh BW, Li WM, Li CC, Kang WY, Huang CN, Hour TC, Liu ZM, Wu WJ, Huang HS: Histone deacetylase inhibitor trichostatin A resensitizes gemcitabine resistant urothelial carcinoma cells via suppression of TG-interacting factor. Toxicol Appl Pharmacol 2016, 290:98-106.
27.Abrams SL, Steelman LS, Shelton JG, Wong EW, Chappell WH, Basecke J, Stivala F, Donia M, Nicoletti F, Libra M et al: The Raf/MEK/ERK pathway can govern drug resistance, apoptosis and sensitivity to targeted therapy. Cell Cycle 2010, 9(9):1781-1791.
28.McCubrey JA, Steelman LS, Abrams SL, Chappell WH, Russo S, Ove R, Milella M, Tafuri A, Lunghi P, Bonati A et al: Emerging MEK inhibitors. Expert Opin Emerg Drugs 2010, 15(2):203-223.
29.McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, Cervello M, Libra M, Candido S, Malaponte G et al: Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 2012, 3(10):1068-1111.
30.Schwartz AL, Ciechanover A: Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 2009, 49:73-96.
31.Amerik AY, Hochstrasser M: Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 2004, 1695(1-3):189-207.
32.Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R: A genomic and functional inventory of deubiquitinating enzymes. Cell 2005, 123(5):773-786.
33.Sun T, Liu Z, Yang Q: The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer 2020, 19(1):146.
34.Deng L, Meng T, Chen L, Wei W, Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 2020, 5(1):11.
35.Hsu FS, Lin WC, Kuo KL, Chiu YL, Hsu CH, Liao SM, Dong JR, Liu SH, Chang SC, Yang SP et al: PR-619, a General Inhibitor of Deubiquitylating Enzymes, Diminishes Cisplatin Resistance in Urothelial Carcinoma Cells through the Suppression of c-Myc: An In Vitro and In Vivo Study. Int J Mol Sci 2021, 22(21).
36.Dasari S, Tchounwou PB: Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 2014, 740:364-378.
37.Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G: Molecular mechanisms of cisplatin resistance. Oncogene 2012, 31(15):1869-1883.
38.Stordal B, Davey M: Understanding cisplatin resistance using cellular models. IUBMB Life 2007, 59(11):696-699.
39.Stordal B, Pavlakis N, Davey R: A systematic review of platinum and taxane resistance from bench to clinic: an inverse relationship. Cancer Treat Rev 2007, 33(8):688-703.
40.Chen SH, Chang JY: New Insights into Mechanisms of Cisplatin Resistance: From Tumor Cell to Microenvironment. Int J Mol Sci 2019, 20(17).
41.Madden SK, de Araujo AD, Gerhardt M, Fairlie DP, Mason JM: Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol Cancer 2021, 20(1):3.
42.Miller DM, Thomas SD, Islam A, Muench D, Sedoris K: c-Myc and cancer metabolism. Clin Cancer Res 2012, 18(20):5546-5553.
43.Gabay M, Li Y, Felsher DW: MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med 2014, 4(6).
44.Tanguturi P, Kim KS, Ramakrishna S: The role of deubiquitinating enzymes in cancer drug resistance. Cancer Chemother Pharmacol 2020, 85(4):627-639.
45.Tian X, Isamiddinova NS, Peroutka RJ, Goldenberg SJ, Mattern MR, Nicholson B, Leach C: Characterization of selective ubiquitin and ubiquitin-like protease inhibitors using a fluorescence-based multiplex assay format. Assay Drug Dev Technol 2011, 9(2):165-173.
46.Mullally JE, Moos PJ, Edes K, Fitzpatrick FA: Cyclopentenone prostaglandins of the J series inhibit the ubiquitin isopeptidase activity of the proteasome pathway. J Biol Chem 2001, 276(32):30366-30373.
47.Wang L, Li M, Sha B, Hu X, Sun Y, Zhu M, Xu Y, Li P, Wang Y, Guo Y et al: Inhibition of deubiquitination by PR-619 induces apoptosis and autophagy via ubi-protein aggregation-activated ER stress in oesophageal squamous cell carcinoma. Cell Prolif 2021, 54(1):e12919.
48.Yu HJ, Tsai TC, Hsieh TS, Chiu TY: Characterization of a newly established human bladder carcinoma cell line, NTUB1. J Formos Med Assoc 1992, 91(6):608-613.
49.Huang KH, Kuo KL, Chen SC, Weng TI, Chuang YT, Tsai YC, Pu YS, Chiang CK, Liu SH: Down-regulation of glucose-regulated protein (GRP) 78 potentiates cytotoxic effect of celecoxib in human urothelial carcinoma cells. PLoS One 2012, 7(3):e33615.
50.Kuo KL, Lin WC, Ho IL, Chang HC, Lee PY, Chung YT, Hsieh JT, Pu YS, Shi CS, Huang KH: 2-methoxyestradiol induces mitotic arrest, apoptosis, and synergistic cytotoxicity with arsenic trioxide in human urothelial carcinoma cells. PLoS One 2013, 8(8):e68703.
51.Ho IL, Kuo KL, Liu SH, Chang HC, Hsieh JT, Wu JT, Chiang CK, Lin WC, Tsai YC, Chou CT et al: MLN4924 Synergistically Enhances Cisplatin-induced Cytotoxicity via JNK and Bcl-xL Pathways in Human Urothelial Carcinoma. Sci Rep 2015, 5:16948.
52.Chou TC, Talalay P: Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984, 22:27-55.
53.Sridhar SS, Hedley D, Siu LL: Raf kinase as a target for anticancer therapeutics. Molecular cancer therapeutics 2005, 4(4):677-685.
54.Kuo KL, Liu SH, Lin WC, Hsu FS, Chow PM, Chang YW, Yang SP, Shi CS, Hsu CH, Liao SM et al: Trifluoperazine, an Antipsychotic Drug, Effectively Reduces Drug Resistance in Cisplatin-Resistant Urothelial Carcinoma Cells via Suppressing Bcl-xL: An In Vitro and In Vivo Study. Int J Mol Sci 2019, 20(13).
55.Xu P, Xiao H, Yang Q, Hu R, Jiang L, Bi R, Jiang X, Wang L, Mei J, Ding F et al: The USP21/YY1/SNHG16 axis contributes to tumor proliferation, migration, and invasion of non-small-cell lung cancer. Exp Mol Med 2020, 52(1):41-55.
56.Zhou P, Song T, Sun C, He N, Cheng Q, Xiao X, Ran J, Liu M, Xie S: USP21 upregulation in cholangiocarcinoma promotes cell proliferation and migration in a deubiquitinase-dependent manner. Asia Pac J Clin Oncol 2020.
57.Lei H, Shan H, Wu Y: Targeting deubiquitinating enzymes in cancer stem cells. Cancer Cell Int 2017, 17:101.
58.Chen Y, Zhou B, Chen D: USP21 promotes cell proliferation and metastasis through suppressing EZH2 ubiquitination in bladder carcinoma. Onco Targets Ther 2017, 10:681-689.
59.Poondla N, Chandrasekaran AP, Kim KS, Ramakrishna S: Deubiquitinating enzymes as cancer biomarkers: new therapeutic opportunities? BMB Rep 2019, 52(3):181-189.
60.Ma YS, Wang XF, Zhang YJ, Luo P, Long HD, Li L, Yang HQ, Xie RT, Jia CY, Lu GX et al: Inhibition of USP14 Deubiquitinating Activity as a Potential Therapy for Tumors with p53 Deficiency. Mol Ther Oncolytics 2020, 16:147-157.
61.Melo-Cardenas J, Zhang Y, Zhang DD, Fang D: Ubiquitin-specific peptidase 22 functions and its involvement in disease. Oncotarget 2016, 7(28):44848-44856.
62.Kuo KL, Lin WC, Liu SH, Hsu FS, Kuo Y, Liao SM, Yang SP, Wang ZH, Hsu CH, Huang KH: THZ1, a covalent CDK7 inhibitor, enhances gemcitabine-induced cytotoxicity via suppression of Bcl-2 in urothelial carcinoma. Am J Cancer Res 2021, 11(1):171-180.
63.Huang HS, Su HY, Li PH, Chiang PH, Huang CH, Chen CH, Hsieh MC: Prognostic impact of tumor infiltrating lymphocytes on patients with metastatic urothelial carcinoma receiving platinum based chemotherapy. Sci Rep 2018, 8(1):7485.
64.Sonpavde G, Pond GR, Choueiri TK, Mullane S, Niegisch G, Albers P, Necchi A, Di Lorenzo G, Buonerba C, Rozzi A et al: Single-agent Taxane Versus Taxane-containing Combination Chemotherapy as Salvage Therapy for Advanced Urothelial Carcinoma. Eur Urol 2016, 69(4):634-641.
65.Terakawa T, Miyake H, Yokoyama N, Miyazaki A, Tanaka H, Inoue T, Fujisawa M: Clinical outcome of paclitaxel and carboplatin as second-line chemotherapy for advanced urothelial carcinoma resistant to first-line therapy with gemcitabine and cisplatin. Urol Int 2014, 92(2):180-185.
66.Brousell SC, Fantony JJ, Van Noord MG, Harrison MR, Inman BA: Vinflunine for the treatment of advanced or metastatic transitional cell carcinoma of the urothelial tract: an evidence-based review of safety, efficacy, and place in therapy. Core Evid 2018, 13:1-12.
67.Hsu F-S, Su C-H, Huang K-H: A comprehensive review of US FDA-approved immune checkpoint inhibitors in urothelial carcinoma. Journal of immunology research 2017, 2017.
68.Oing C, Rink M, Oechsle K, Seidel C, von Amsberg G, Bokemeyer C: Second Line Chemotherapy for Advanced and Metastatic Urothelial Carcinoma: Vinflunine and Beyond-A Comprehensive Review of the Current Literature. J Urol 2016, 195(2):254-263.
69.De Santis M, Bellmunt J, Mead G, Kerst JM, Leahy M, Maroto P, Gil T, Marreaud S, Daugaard G, Skoneczna I et al: Randomized phase II/III trial assessing gemcitabine/carboplatin and methotrexate/carboplatin/vinblastine in patients with advanced urothelial cancer who are unfit for cisplatin-based chemotherapy: EORTC study 30986. J Clin Oncol 2012, 30(2):191-199.
70.Yeh BW, Li WM, Li CC, Kang WY, Huang CN, Hour TC, Liu ZM, Wu WJ, Huang HS: Histone deacetylase inhibitor trichostatin A resensitizes gemcitabine resistant urothelial carcinoma cells via suppression of TG-interacting factor. Toxicol Appl Pharmacol 2016, 290:98-106.
71.Dowdy SC, Jiang S, Zhou XC, Hou X, Jin F, Podratz KC, Jiang SW: Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells. Mol Cancer Ther 2006, 5(11):2767-2776.
72.McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A et al: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et biophysica acta 2007, 1773(8):1263-1284.
73.Jebar AH, Hurst CD, Tomlinson DC, Johnston C, Taylor CF, Knowles MA: FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene 2005, 24(33):5218-5225.
74.Todi SV, Paulson HL: Balancing act: deubiquitinating enzymes in the nervous system. Trends Neurosci 2011, 34(7):370-382.
75.Altun M, Kramer HB, Willems LI, McDermott JL, Leach CA, Goldenberg SJ, Kumar KG, Konietzny R, Fischer R, Kogan E et al: Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem Biol 2011, 18(11):1401-1412.
76.Kuo KL, Liu SH, Lin WC, Chow PM, Chang YW, Yang SP, Shi CS, Hsu CH, Liao SM, Chang HC et al: The Deubiquitinating Enzyme Inhibitor PR-619 Enhances the Cytotoxicity of Cisplatin via the Suppression of Anti-Apoptotic Bcl-2 Protein: In Vitro and In Vivo Study. Cells 2019, 8(10).
77.Chen H, Liu H, Qing G: Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther 2018, 3:5.
78.Polischouk AG, Holgersson A, Zong D, Stenerlow B, Karlsson HL, Moller L, Viktorsson K, Lewensohn R: The antipsychotic drug trifluoperazine inhibits DNA repair and sensitizes non small cell lung carcinoma cells to DNA double-strand break induced cell death. Mol Cancer Ther 2007, 6(8):2303-2309.
79.Zhu Y, Zhang C, Gu C, Li Q, Wu N: Function of Deubiquitinating Enzyme USP14 as Oncogene in Different Types of Cancer. Cell Physiol Biochem 2016, 38(3):993-1002.
80.Li Y, Seto E: HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harbor perspectives in medicine 2016, 6(10):a026831.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊