跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/20 05:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖勇翔
研究生(外文):Yung-Hsiang Liao
論文名稱:基於奈米蕭特基二極體與快速熱退火處理建構之侷域式表面電漿子共振生物感測器
論文名稱(外文):Localized Surface Plasmon Resonance Biosensor Based On Schottky Nanodiode and Rapid Thermal Annealing
指導教授:林啟萬林啟萬引用關係
指導教授(外文):Chii-Wann Lin
口試委員:林致廷黃念祖
口試委員(外文):Chih-Ting LinNien-Tsu Huang
口試日期:2020-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:52
中文關鍵詞:生物感測器侷域式表面電漿子共振效應蕭特基二極體快速熱退火處理
外文關鍵詞:BiosensorLocalized Surface Plasmon Resonance effectSchottky diodeRapid Thermal Annealing
DOI:10.6342/NTU202200069
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,針對高風險族群推行阿茲海默症、帕金森氏症等神經退化性疾病早期篩檢已納入政府長照政策,對於高敏感度、易於操作同時兼具低成本的生物醫學感測系統的需求呼之欲出,且越來越多的突發傳染性疾病,例如當下肆虐全球的新型冠狀病毒肺炎等,令社會醫療資源吃緊、負擔日益嚴重,也對感生物感測技術提出高通量、高效率的要求。傳統的光學式SPR生物感測器具有即時、免標記、高靈敏度、高特異性等優點,卻也因其光學系統架構精密、複雜,體積龐大又昂貴使得應用場域大大受限。
本研究基於表面電漿共振激發產生熱載流子的理論,設計及製造具有Au-TiO2蕭特基勢壘(能障)結構的生物感測元件,用於激發表面電漿共振,同時有效分離、提取與表面電漿共振相關之熱電子。在原理和元件設計上,本研究吸納實驗室先前經驗和國內外類似研究成果,採用金屬奈米孔洞結構作為關鍵結構,以激發侷限式表面電漿共振,以期提升訊雜比,提升感測器性能指標,進一步討論在表面電漿共振生物感測器應用中,以電訊號量測取代傳統基於影像的光訊號量測的可行性,從而達到簡化機構、降低成本的目標。本研究以微影、真空鍍膜、快速熱退火等奈米微機電技術完成所設計之感測元件的製程,使用專門製作的測試系統,對元件進行電學、光學特性及感測性能分析;此外,我們也借助AFM等方法評估製程品質。
實驗結果顯示,感測器能透過光電流的大小成功地辨別出不同的實驗樣品,且當折射率增加時,相對應的光電流會降低,兩者之間存在一線性關係,且估算出的靈敏度約為-21.183pA/RIU;此外,相較於前人研究的結果,本研究在訊雜比方面亦有顯著的提升改進,經過計算從約-3.5至4.4 dB。本研究針對先前提出欲改善的問題皆有很好的完成,但仍有些問題能被加以改進,因而也在後續章節對此提供未來可能的改善方向。
In recent years, early-stage detection for neurodegenerative diseases, such as Alzheimer's disease and Parkinson’s disease, has been included in the government’s long-term care policy for high-risk groups. Thus, the demand for low-cost biomedical sensing system with high sensitivity and simple operation increased. Furthermore, more and more sudden diseases, such as recent pandemic COVID-19, caused the deficiency of medical resources and became the burden to society, and made the requirement for high throughput and high efficiency higher. The conventional optical SPR biosensor possessed the advantages of real time, free label, high sensitivity and specificity, etc. However, its application field was greatly limited by the complex optical system structure, bulky equipment and its price.
Based on the principle of hot-carrier generation by the excitation of SPR, we designed and fabricated the biosensing chips with Au-TiO2 Schottky barrier structure in order to excite SPR and simultaneously separate and extract hot electrons corresponding to surface plasmon resonance. In the aspect of principles and components design, we assimilated many experiences from previous studies in our lab and domestic and overseas researches. Applying metal nanohole structure played a key role structure in the excitation of LSPR to enhance signal-to-noise ratio and improve sensor performance. Furthermore, further discussions focused on the feasibility of replacing conventional optical signal measurement based on images with electrical signal measurement in the SPR biosensor application. Thus, simplifying structure and costs reduction would be achieved. With the help of MEMS fabrication technique, such as lithography, vacuum deposition and rapid thermal annealing, we accomplished the fabrication of sensing chips and utilized specialized test system to conduct electrical and optical characterization and sensing performance analysis. Besides, AFM images assisted us with the evaluation of fabrication quality.
Experimental results revealed that the sensor could recognize samples through photocurrent measurement successfully. As the refractive index increased, the corresponding photocurrent decreased. Linearity relation existed between the refractive index and the photocurrent, while the sensitivity is -21.183pA/RIU. Furthermore, compared to previous studies, it was also a great improvement in SNR from -3.5 to 4.4 dB. We improved some problems faced in previous studies in this study, but still some of them could become better. Thus, subsequent chapter will provide some possible solution for it.
目錄
誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1研究背景 1
1.2研究動機與貢獻 3
1.2.1光學式SPR生物感測器 3
1.2.2改以電訊號量測的可行性與優勢 5
1.3論文架構 6
第二章 基本原理與文獻回顧 7
2.1表面電漿子共振效應 7
2.1.1表面電漿子共振效應之現象介紹 7
2.1.2侷域式表面電漿子共振效應對折射率變化之反應性 10
2.1.3侷域式表面電漿子共振效應於生物感測器之應用 12
2.2表面電漿子共振效應於熱電子產生之應用 16
2.3蕭特基二極體 19
2.3.1金屬—半導體接觸與蕭特基勢壘 20
2.3.2蕭特基二極體的整流性質 23
2.3.3表面電漿子共振效應用於蕭特基接觸的光電性質 26
2.4前人研究 27
第三章 研究方法 30
3.1 生物感測器量測架構 30
3.1.1硬體架構介紹 30
3.1.2量測儀器及韌體介紹 32
3.2感測晶片材料之選擇 33
3.2.1蕭特基接觸材料 34
3.2.2歐姆接觸材料 34
3.3平面圖形定義 35
3.4製程方式 35
3.4.1光阻塗布 37
3.4.2曝光 37
3.4.3顯影 38
3.4.4薄膜沉積 38
3.4.5剝離成形 39
3.5製程步驟 39
3.6製程後處理 40
第四章 研究結果 42
4.1晶片功能驗證 42
4.1.1晶片電學特性 42
4.1.2晶片光學特性 43
4.2晶片表面型態 44
4.3樣品量測實驗 46
第五章 結論與未來展望 48
參考文獻 49

圖目錄
圖 1生物感測器架構之示意圖[1] 1
圖 2生物感測器的潛在應用場域示意圖[1] 2
圖 3 SPR生物感測器之系統架構圖[12] 4
圖 4(a)稜鏡耦合、(b)光柵耦合 激發表面電漿波[12] 4
圖 5 SPR感測技術基於(a)單一入射角度下的波長調變、(b)單一入射波長下的角度調變,以及(c)固定入射波長與角度下的光強度調變之光學架構[12] 4
圖 6 SPR光學架構之示意圖 (a)側視圖,其中右側的暗帶表示衰減的光 ,(b)俯視圖,可以看到在偵測區上的三個流道 [14] 5
圖 7 Lycurgus Cup,(a)為平時的樣子,杯身呈現綠色,(b)使用白光光源自杯子內照射出來,杯身呈現紅色 [26] 7
圖 8(a)Kretschmann 及(b)Otto運用ATR方法製成的稜鏡耦合架構[30] 8
圖 9 (a)SPR效應造成的反射光強度改變,(b)LSPR效應[31] 9
圖 10 SPR及LSPR效應差異[32] 9
圖 11 Johnson和Christy實驗得出的Au(黃色曲線)與Ag(灰色曲線)複數介電函數之(a)實部(b)虛部,以及(c)於膠體溶液中金粒子的吸收光譜[33] 12
圖 12(a)依序通入空氣(紅色線)、水(藍色線)、乙醇(綠色線)、甲醯胺(黑色線)於金奈米棒薄層後得到的光學吸收性對波長作圖(b)將(a)圖內各個物質的峰值對物質的折射率作圖 [33] 14
圖 13消光光譜波長與奈米結構形狀關係圖[35] 14
圖 14 LSPR生物感測器的示意圖。步驟(a)為選擇基底;步驟(b)利用奈米微影技術將金屬奈米粒子附著於基底上;步驟(c)將受體分子修飾於金屬奈米粒子上;步驟(d)通入帶有待測物質的溶液,當待測物與表面修飾的受體分子接合,則導致折射率的改變,並看到LSPR訊號的平移[36] 15
圖 15 (a)穿透式、(b)反射式、(c)暗場散射式、(d)全內反射式之LSPR生物感測器架構式意圖[35] 15
圖 16(a)光電效應與(b)光伏效應之示意圖[37] 16
圖 17 (a)金的電子能帶圖(Au 〔Xe〕4f145d106s1)。5d及6sp軌域分別作為價帶及傳導帶,並在低於費米能階的位子有部分重疊。旁邊的狀態密度(DOS)是電子能帶投影繪製出來的[42] (b)4種金屬中電磁波能量ħω的吸收機制[43] 18
圖 18奈米結構的製程技術(a)化學合成、(b)電子束微影技術、(c)球型微影技術、(d)奈米轉印微影技術[45] 19
圖 19(a)為RTA處理後金屬的表面型態變化之示意圖,(b-e)為分別利用120、160、200、240 ℃做1小時RTA處理的SEM圖,(f)為不同溫度的RTA處理後對於光電流大小的影響(藍色曲線),以及對於金屬與介電質相對接觸比例的影響(紅色曲線) [17] 19
圖 20金屬—半導體接觸時的能帶分布圖,其中左側為金屬,右側為n-type半導體,其中qϕm為金屬的功函數,qχ為半導體的電子親和力(electron affinity) ,q(ϕn - χ)為半導體的功函數(work function),qϕn為傳導帶(conduction band)與費米能階(Fermi level,EF)的差值。(a)最初,兩者處於分離的系統內,(b、c、d)為兩者間的距離δ逐漸縮小至其遠小於原子間距時 [46] 21
圖 21歐姆接觸以及蕭特基接觸的I-V特性曲線圖,其中歐姆接觸的電阻值為104Ω/cm2 [48] 22
圖 22真空中金屬的功函數(eV) [46] 22
圖 23在施加不同的偏壓下,蕭特基效應對於金屬—n-type半導體接觸能帶圖的影響 [46] 23
圖 24金屬分別與n-type與p-type半導體接觸,並施以(a)零偏壓、(b)順向偏壓、(c)逆向偏壓下的能帶圖[46] 24
圖 25蕭特基二極體與P-N接面二極體之I-V曲線[49] 24
圖 26電漿子激發熱電子,並透過(a)蕭特基接觸以及(b)歐姆接觸觀察反應。其中(c)為蕭特基接觸的能帶圖;以及(d)為歐姆接觸的能帶圖 [23] 27
圖 27 Au-TiO2-Ti 架構蕭特基表面電漿子共振感測器設計圖示 27
圖 28量測實驗操作原理(a)進行角度調變之操作原理圖(b)經探針台光學顯微鏡 觀察滴有液體樣品的感測器晶片 28
圖 29針對去離子水、50mg/ml氯化鈉水溶液、100mg/ml葡萄糖水溶液的量測結果 28
圖 30 64對蕭特基二極體平行排列構成微指狀結構之感測晶片(a)概念圖(b)實際圖 28
圖 31針對不同折射率樣品之量測 (光電流/反射率 vs. 折射率) 29
圖 32(a)只用凸透鏡準直,以及(b)加入物鏡準直後的光學架構圖,其中紅色的線代表光線 30
圖 33光電流量測架構搭配吸收光譜量測之架構示意圖;其中紅色線為入射光 31
圖 34 EVERBEIGN EB-050微定位器[53] 31
圖 35光電流及I-V曲線量測之架構 31
圖 36光電流/反射強度對應照光狀態[52] 32
圖 37 KEITHLEY 6487 Picoammeter/Voltage source 32
圖 38(a)電流量測之接線圖,以及(b)量測I-V曲線之接線圖 33
圖 39(a)I-V圖量測之流程圖,以及(b)光電流量測之流程圖 33
圖 40 Au-TiO2-Ti接觸之能帶圖 35
圖 41感測器平面圖形 35
圖 42剝離成型流程圖 36
圖 43光罩設計圖 38
圖 44對準標記 38
圖 45電子束蒸鍍機示意圖[61] 39
圖 46感測晶片之3D模型圖 40
圖 47 ADVANCE RIKO, Inc. MILA-5050[63] 41
圖 48 (a)6.2kΩ電阻與(b)1N5817蕭特基二極體之I-V曲線 42
圖 49 感測晶片的I-V曲線圖 43
圖 50穿透光譜圖量測概念圖 44
圖 51 感測晶片的(a)穿透光譜以及(b)吸收光譜圖 44
圖 52 感測晶片外觀 45
圖 53 (a)未退火及(b)400℃退火後的AFM影像 45
圖 54 (a)未退火及(b)400℃退火後的粒徑大小分布 45
圖 55 40ul半圓球狀的液滴 46
圖 56 量測的概念圖 47
圖 57以605nm波長的光源入射400℃熱退火處理的感測晶片,觀察晶片在不同介質下產生的光電流大小。右上角的插圖是只畫出DI water、5mg/ml、10mg/ml及15mg/ml葡萄糖溶液之光電流對折射率圖,並以線性擬和後得到其線性關係 47

表目錄
表 1現行主流的生物感測技術與SPR感測技術之比較 3
表 2金屬—半導體接觸與功函數的關係對接觸性質的影響,其中為金屬的功函數,為半導體的電子親和力22
表 3光學微影製程操作標準 36
表 4感測晶片製作流程 40
1. Mohanty, S.P. and E. Kougianos, Biosensors: a tutorial review. IEEE Potentials, 2006. 25(2): p. 35-40.
2. Nagel, B., H. Dellweg, and L.M. Gierasch, Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992). Pure and Applied Chemistry, 1992. 64(1): p. 143-168.
3. Engvall, E. and P. Perlmann, Enzyme-linked immunosorbent assay (ELISA). Protides of the biological fluids, 1971: p. 553-556.
4. Kalló, G., et al., Changes in the Chemical Barrier Composition of Tears in Alzheimer’s Disease Reveal Potential Tear Diagnostic Biomarkers. PLOS ONE, 2016. 11(6): p. e0158000.
5. Aguilar, M.-I. and D.H. Small, Surface plasmon resonance for the analysis of β-amyloid interactions and fibril formation in Alzheimer’s disease research. Neurotoxicity research, 2005. 7(1-2): p. 17-27.
6. FDA, U., Quality considerations in demonstrating biosimilarity of a therapeutic protein product to a reference product. Guidance for Industry, 2015.
7. Hoshino, A., et al., Tumour exosome integrins determine organotropic metastasis. Nature, 2015. 527(7578): p. 329-35.
8. Grasso, L., et al., Molecular screening of cancer-derived exosomes by surface plasmon resonance spectroscopy. Anal Bioanal Chem, 2015. 407(18): p. 5425-32.
9. Wood, R.W., On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proceedings of the Physical Society of London, 1902. 18(1): p. 269.
10. Kretschmann, E. and H. Raether, Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A, 1968. 23(12): p. 2135-2136.
11. Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei, 1968. 216(4): p. 398-410.
12. Homola, J. and M. Piliarik, Surface plasmon resonance (SPR) sensors, in Surface plasmon resonance based sensors. 2006, Springer.
13. GE Healthcare Bio-Sciences Corp.: Label-free interaction analysis Biacore™ 8K.
14. Sjoelander, S. and C. Urbaniczky, Integrated fluid handling system for biomolecular interaction analysis. Analytical chemistry, 1991. 63(20): p. 2338-2345.
15. Pillai, S., et al., Surface plasmon enhanced silicon solar cells. Journal of applied physics, 2007. 101(9): p. 093105.
16. Catchpole, K.R. and A. Polman, Plasmonic solar cells. Optics Express, 2008. 16(26): p. 21793-21800.
17. Lee, Y.K., et al., Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes. Nano Lett, 2011. 11(10): p. 4251-5.
18. Lee, H., et al., Enhanced Surface Plasmon Effect of Ag/TiO2Nanodiodes on Internal Photoemission. The Journal of Physical Chemistry C, 2014. 118(11): p. 5650-5656.
50
19. Maier, S.A., Plasmonics: fundamentals and applications. 2007: Springer Science & Business Media.
20. Guo, X., Surface plasmon resonance based biosensor technique: a review. Journal of biophotonics, 2012. 5(7): p. 483-501.
21. Clavero, C., Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics, 2014. 8(2): p. 95.
22. Atwater, H.A. and A. Polman, Plasmonics for improved photovoltaic devices. Nat Mater, 2010. 9(3): p. 205-13.
23. Zheng, B.Y., et al., Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nature Communications, 2015. 6(1): p. 7797.
24. Homola, J., Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 2003. 377(3): p. 528-539.
25. Miller, M.M. and A.A. Lazarides, Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment. The Journal of Physical Chemistry B, 2005. 109(46): p. 21556-21565.
26. The British Museum: The Lycurgus Cup. Available from: https://britishmuseum.tumblr.com/post/120689869617/the-lycurgus-cup.
27. Ritchie, R.H., Plasma Losses by Fast Electrons in Thin Films. Physical Review, 1957. 106(5): p. 874-881.
28. Liedberg, B., C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators, 1983. 4: p. 299-304.
29. Englebienne, P., Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst, 1998. 123(7): p. 1599-1603.
30. Zhang, D., L. Men, and Q. Chen, Microfabrication and Applications of Opto-Microfluidic Sensors. Sensors (Basel, Switzerland), 2011. 11: p. 5360-82.
31. Masson, J.F., Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst, 2020. 145(11): p. 3776-3800.
32. Takemura, K., Surface Plasmon Resonance (SPR)- and Localized SPR (LSPR)-Based Virus Sensing Systems: Optical Vibration of Nano- and Micro-Metallic Materials for the Development of Next-Generation Virus Detection Technology. Biosensors (Basel), 2021. 11(8).
33. Mayer, K.M. and J.H. Hafner, Localized surface plasmon resonance sensors. Chem Rev, 2011. 111(6): p. 3828-57.
34. Bohren, C.F. and D.R. Huffman, Absorption and scattering of light by small particles. 2008: John Wiley & Sons.
35. Hammond, J.L., et al., Localized surface plasmon resonance as a biosensing platform for developing countries. Biosensors (Basel), 2014. 4(2): p. 172-88.
36. Sepúlveda, B., et al., LSPR-based nanobiosensors. Nano Today, 2009. 4(3): p. 244-251.
37. Photovoltaic Thin Film Solar Cells. Available from: https://asdn.net/asdn/energy/solar.php.
38. Shi, X., et al., Plasmon-Enhanced Photocurrent Generation and Water Oxidation with a Gold Nanoisland-Loaded Titanium Dioxide Photoelectrode. The Journal of Physical Chemistry C, 2013. 117(6): p. 2494-2499.
39. Lee, Y.K., J. Park, and J.Y. Park, The Effect of Dye Molecules and Surface Plasmons in Photon-Induced Hot Electron Flows Detected on Au/TiO2
51
Nanodiodes. The Journal of Physical Chemistry C, 2012. 116(35): p. 18591-18596.
40. Lee, Y.K., et al., Hot carrier multiplication on graphene/TiO2 Schottky nanodiodes. Scientific Reports, 2016. 6(1): p. 27549.
41. Akbari, A., R.N. Tait, and P. Berini, Surface plasmon waveguide Schottky detector. Optics Express, 2010. 18(8): p. 8505-8514.
42. Rangel, T., et al., Band structure of gold from many-body perturbation theory. Physical Review B, 2012. 86(12): p. 125125.
43. Khurgin, J.B., How to deal with the loss in plasmonics and metamaterials. Nature Nanotechnology, 2015. 10(1): p. 2-6.
44. Lee, H., et al., Nanoscale Schottky behavior of Au islands on TiO2 probed with conductive atomic force microscopy. Applied Physics Letters, 2013. 103(17): p. 173103.
45. Petryayeva, E. and U.J. Krull, Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Analytica Chimica Acta, 2011. 706(1): p. 8-24.
46. Sze, S.M. and K.K. Ng, Metal-Semiconductor Contacts. Physics of Semiconductor Devices, 2006: p. 134-196.
47. Shimizu, Y., et al., High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd. Sensors and Actuators B: Chemical, 2002. 83(1): p. 195-201.
48. The Metal-Semiconductor Junction.; Available from: https://in.ncu.edu.tw/ncume_ee/SchottkyDiode.htm.
49. Understanding Schottky Diode Characteristics & Specifications. Available from: https://www.electronics-notes.com/articles/electronic_components/diode/schottky-barrier-diode-characteristics-specifications-parameters.php.
50. Cheung, S.K. and N.W. Cheung, Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied Physics Letters, 1986. 49(2): p. 85-87.
51. Chao, W., Metal-Dielectric-Metal Structure Based Schottky Barrier Surface Plasmon Resonance Biosensor: Design, Fabrication, and Verification. 2017.
52. Chao, W., et al. Hot electron based surface plasmon resonance sensor with Au-TiO2-Ti planar micro comb-structure Schottky diodes. in Proc.SPIE. 2019.
53. corp., E.i.l. EVERBEING int'l corp. EB-050 Micropositioner. Available from: https://www.probestation.tw/product/37.
54. Schider, G., et al., Plasmon dispersion relation of Au and Ag nanowires. Physical Review B, 2003. 68(15): p. 155427.
55. Nowotny, M.K., et al., Observations of p-type semiconductivity in titanium dioxide at room temperature. Materials Letters, 2010. 64(8): p. 928-930.
56. Du, L., et al., Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013. 15: p. 21-30.
57. Sachtler, W.M.H., G.J.H. Dorgelo, and A.A. Holscher, The work function of gold. Surface Science, 1966. 5(2): p. 221-229.
58. Butler, M.A., Prediction of Flatband Potentials at Semiconductor-Electrolyte Interfaces from Atomic Electronegativities. Journal of The Electrochemical Society, 1978. 125(2): p. 228.
52
59. Park, J.Y., et al., Probing Hot Electron Flow Generated on Pt Nanoparticles with Au/TiO2 Schottky Diodes during Catalytic CO Oxidation. Nano Letters, 2008. 8(8): p. 2388-2392.
60. Michaelson, H.B., The work function of the elements and its periodicity. Journal of Applied Physics, 1977. 48(11): p. 4729-4733.
61. JOEL: Electron Beam Source for Electron Beam Deposition. Available from: https://www.jeol.co.jp/en/science/eb.html.
62. Cho, J.H., et al., Recrystallization and grain growth of cold-drawn gold bonding wire. Metallurgical and Materials Transactions A, 2003. 34(5): p. 1113-1125.
63. ADVANCE RIKO, Inc. MILA-5050. Available from: https://showcase.ulvac.co.jp/en/products/heat-treatment-and-thermal-properties/infrared-gold-image-furnace-rta/tabletop-lamp-heating/mila-5050.html.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top