跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 05:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴星霓
研究生(外文):Hsing-Ni Lai
論文名稱:探討橫膈膜及呼吸對肩膀運動學和周邊肌肉活性的影響
論文名稱(外文):Influence of diaphragm and breathing on shoulder kinematics and associated muscle activity
指導教授:林居正林居正引用關係
指導教授(外文):Jiu-Jenq Lin
口試委員:林光華蔡鏞申楊靜蘭
口試委員(外文):Kwan-Hwa LinYung-Shen TsaiJing-Lan Yang
口試日期:2022-01-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理治療學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:88
中文關鍵詞:橫膈膜呼吸肩胛骨運動學肌電圖核心穩定超音波影像
外文關鍵詞:diaphragmbreathingscapular kinematicsEMGcore stabilityultrasonography
DOI:10.6342/NTU202200237
相關次數:
  • 被引用被引用:0
  • 點閱點閱:374
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:1
研究背景: 現今臨床上,橫膈式呼吸訓練已被廣泛應用在不同族群,但目前研究僅證明橫膈膜之功能和下背痛的發生較為相關,和其他部位的疼痛之關係則較無著墨,過去研究指出橫膈膜的呼吸功能下降時,呼吸輔助肌會提高活性來達到相同換氣量,而呼吸輔助肌在解剖上直接/間接的連接到肩帶,過度活化可能影響肩胛周邊肌群活性和肩胛骨運動學。另一個橫膈膜可以影響肩帶的途徑為姿勢穩定功能,身為核心穩定肌群的一部分,橫膈膜能影響腹內壓的穩定,若橫膈膜功能下降造成核心不穩定,是否會透過動力鍊對肩關節穩定度及其運動學造成影響仍有待研究。
研究目的: 此研究的目的包括(1)探討在三種呼吸情境下舉手,肩胛骨運動學和肩胛周邊肌群活化之差異,(2) 探討挑戰橫膈膜功能後,對健康成年人在舉手時的肩胛骨運動學、肩胛周邊肌群活化之影響。
研究設計: 本研究為橫斷式研究
研究對象: 本研究將招募30位健康成年人
研究方法: 本實驗將會先進行橫膈膜超音和核心穩定度測試的測量,接著進入主要測試,本研究會設計三種呼吸情境,包含安靜呼吸、吸飽氣後憋氣以及吐氣到底後憋氣,在不同的呼吸情境下做啞鈴負重舉手,收取肩胛骨運動學和肩胛周邊肌群肌電圖數據。主要測試結束後會休息30分鐘,接著讓受試者進行吸氣阻力任務來挑戰橫膈膜功能,結束後在安靜呼吸下再做一次主要測試,最後進行橫膈膜超音波和核心穩定測試的測量。
統計分析: 使用SPSS 22.0進行統計分析,將以重複量數二因子變異數分析去比較不同呼吸情境以及橫膈膜挑戰過後肩胛骨運動學和肌肉活性的差異,α值設在0.005。
結果: 和平靜呼吸相比,吸飽氣後憋氣在舉手任務中呈現顯著較高的肩胛骨上轉 (1.2-1.7度)和內轉(1.3度),胸鎖乳突肌(1.0-1.2%)之肌肉活性也顯著提高;吐氣到底後憋氣在舉手任務則呈現肩胛骨內轉(1.1-5度)顯著下降,伴隨前鉅肌(3.0-5.8%)和下斜方肌(4.5%)之肌肉活性顯著提高以及胸鎖乳突肌之 (0.4-0.8%)肌肉活性顯著下降。除此之外,在吸氣阻力任務後的舉手任務呈現肩胛骨上轉(0.8-2.38度)顯著增加,相關肌肉活性和平靜呼吸時相比則無顯著差異。
結論: 在不同呼吸情境間,肩胛骨運動學和相關肌肉活性的差異可能源於肋腔直徑和胸椎動作的變化,若想在舉手任務時維持較理想的肩胛骨運動學,採用吸飽氣後憋氣可能會是一個較有效率的策略。除此之外,即使在吸氣阻力任務後觀察到肩胛骨上轉提升,高強度的呼吸訓練對肩胛骨運動學的效益仍需更多研究探討。
Background: Diaphragmatic breathing training is commonly applied on different population in clinical field. However, studies only proved the diaphragm function is associated with the occurrence of low back pain. Relationship between diaphragm function and shoulder pain is lack of evidence. Studies indicated that if the diaphragm’s breathing function impaired, breathing accessory muscles will increase activation to reach the same thoracic volume during inspiration. Breathing accessory muscles are direct or indirect attached to shoulder girdle, which may affect the shoulder kinematics and muscle activities around the scapula. Diaphragm may also influence shoulder function through its postural stabilization function. Diaphragm could modulate the intra-abdominal pressure as the superior part of core muscles, which can contribute to core stability. It requires further investigation to know if diaphragm stabilization function will affect the shoulder kinematics and stability through kinetic chain.
Purpose: The purpose of this study were (1) to characterize the kinematics, and associated muscle activations of the scapula in 3 breathing conditions during arm elevation task, (2) to investigate the influence of diaphragm challenge on shoulder kinematics, and associated muscle activation during arm elevation in healthy adult.
Design: This study was a cross-sectional study
Participants: This study recruited 30 healthy adults
Methods: The participants were assessed for maximal inspiratory pressure (PImax), diaphragm ultrasonography and core stability test at first, then the shoulder kinematics and associated muscle activation during weighted arm elevation in three breathing conditions were collected. Three breathing conditions included quiet breathing, breath-holding at the end of inspiration(Apnea-I) and breath-holding at the end of expiration (Apnea-E). There were 30-minutes rest after arm elevation task. After the rest, participants performed the inspiratory resistance loading protocol to challenge their diaphragm function, then the shoulder kinematics and associated muscle activation during weighted arm elevation in quiet breathing were collected after protocol. PImax, diaphragm ultrasonography and core stability test were assessed again at the end of experiment.
Statistical analysis: 2-way repeated ANOVA was used to compare shoulder kinematics and associated muscle activation among 3 breathing conditions. 2-way repeated ANOVA was also used to investigate the influence of diaphragm challenge on the kinematics and muscle activation. Statistical analysis was calculated by using SPSS 22.0 with significant level set as 0.005 after the Bonferroni correction.
Results: There was significant increase in scapular upward rotation (1.2-1.7 degree) and internal rotation (1.3 degree) accompanied with increased SCM (1.0-1.2%) muscle activities in Apnea-I condition compared to quiet breathing. Conversely, Apnea-E condition showed significant decrease in scapular internal rotation (1.1-5 degree) along with increase muscle activities in SA (3.0-5.8%) and LT (4.5%) as well as decrease activities in SCM (0.4-0.8%). In addition, increased scapular upward rotation (0.8-2.38 degree) was found after diaphragm challenge.
Conclusion: The differences between scapular kinematics and muscle activities between Apnea-I and Apnea-E conditions may be resulted from different rib cage diameter and thoracic movement. We suggest breath-holding at the end of inspiration during arm elevation as a more effective strategy in order to maintain ideal scapula kinematics. Though increased scapular upward rotation was found after diaphragm challenge protocol, the clinical relevance of the effect of high intensity breathing training in scapular kinematics still require further research.
口試委員審定書 i
誌謝 ii
中文摘要 iv
Abstract vi
Table of contents ix
Chapter 1 - Nature of the study 1
1.1 BACKGROUND 1
1.2 STATEMENT OF PROBLEMS 4
1.3 PURPOSES OF THE STUDY 5
1.4 HYPOTHESES 5
Chapter 2 - Literature Review 7
2.1 SHOULDER IMPINGEMENT SYNDROME (SIS) AND ITS SCAPULAR KINEMATICS AND MUSCLE ACTIVATION 7
2.2 INSUFFICIENT CORE STABILITY IN PATIENT WITH SHOULDER PAIN 9
2.3 KINETIC CHAIN (KC) 11
2.4 COMPONENTS OF CORE STABILITY 13
2.5 SPECIALTIES OF DIAPHRAGM AND ITS RELATION TO SHOULDER GIRDLE 14
2.6 CLINICAL APPLICATION OF ULTRASONOGRAPHY IN DIAPHRAGM FUNCTION 19
Chapter 3 - Methods 22
3.1 STUDY DESIGN 22
3.1.1 Sample Size Estimate 22
3.1.2 Inclusion and Exclusion Criteria 22
3.2 INSTRUMENTATION 23
3.2.1 Three-dimensional kinematics 23
3.2.2 Surface electromyography (sEMG) 23
3.2.3 Ultrasonography (USG) 24
3.2.4 Maximal inspiratory pressure (MIP) 25
3.2.5 Inspiratory resistive loading (IRL) 25
3.3 PROCEDURES 25
3.4 OUTCOME MEASURES AND DATA REDUCTION 31
3.4.1 Three-dimensional Kinematic Variables 31
3.4.2 Scapular and Respiratory Accessory Muscles Activities 32
3.4.3 Ultrasonography of Diaphragm 32
3.4.4 Core Stability 33
3.5 STATISTICAL ANALYSIS 34
Chapter 4 – Results 36
Chapter 5 – Discussion 40
Chapter 6 – Conclusions 45
References 46
List of Figures 52
FIGURE 1: FLOWCHART OF THE EXPERIMENT 52
FIGURE 2: THE ILLUSTRATION OF MEASUREMENT OF MIP 53
FIGURE 3: THE ILLUSTRATION OF MEASUREMENT DIAPHRAGM THICKNESS 54
FIGURE 4: THE ILLUSTRATION OF MEASUREMENT DIAPHRAGM EXCURSION 55
FIGURE 5: SAHRMANN FIVE-LEVEL CORE STABILITY TEST 56
FIGURE 6: THE ILLUSTRATION OF ELECTRODES OF EMG PLACEMENT 57
FIGURE 7: THE ILLUSTRATION OF MEASUREMENT OF MVIC 58
FIGURE 8: THE ILLUSTRATION OF SENSOR PLACEMENT OF 3SPACE FASTRAK SYSTEM 59
FIGURE 9: THE ILLUSTRATION OF CONDUCTING THE IRL PROTOCOL 60
FIGURE 10: THE ILLUSTRATION OF KINEMATICS BETWEEN DIFFERENT BREATHING CONDITION 62
FIGURE 11: THE ILLUSTRATION OF EMG DATA BETWEEN DIFFERENT BREATHING CONDITION 64
FIGURE 12: THE ILLUSTRATION OF KINEMATICS BETWEEN DIFFERENT QUIET BREATHING AND DIAPHRAGM CHALLENGE 66
FIGURE 13: THE ILLUSTRATION OF EMG DATA BETWEEN DIFFERENT QUIET BREATHING AND DIAPHRAGM CHALLENGE 68
FIGURE 14: THE ILLUSTRATION OF HUMERAL SWAY 69
List of Tables 70
TABLE 1: DEMOGRAPHIC DATA OF PARTICIPANTS 70
TABLE 2: SCAPULAR KINEMATIC DATA BETWEEN DIFFERENT BREATHING CONDITIONS IN ARM ELEVATION TASK 71
TABLE 3: ELECTROMYOGRAM DATA BETWEEN DIFFERENT BREATHING CONDITIONS IN ARM ELEVATION TASK 72
TABLE 4: SCAPULAR KINEMATIC DATA BETWEEN QUIET BREATHING AND DIAPHRAGM CHALLENGE IN ARM ELEVATION TASK 74
TABLE 6: HUMERAL SWAY BETWEEN DIFFERENT BREATHING CONDITIONS IN ARM ELEVATION TASK 77
TABLE 7: HUMERAL SWAY BETWEEN QUIET BREATHING AND DIAPHRAGM CHALLENGE IN ARM ELEVATION TASK 78
TABLE 8: DIAPHRAGM THICKNESS BEFORE AND AFTER DIAPHRAGM CHALLENGE 79
TABLE 9: DIAPHRAGM EXCURSION BEFORE AND AFTER DIAPHRAGM CHALLENGE 80
TABLE 10: DISTRIBUTION OF CORE STABILITY LEVEL BEFORE AND AFTER DIAPHRAGM CHALLENGE 81
TABLE 11: MAXIMAL INSPIRATORY PRESSURE (PIMAX) BEFORE AND AFTER DIAPHRAGM CHALLENGE 82
Appendix 83
1.Van der Windt D, Koes BW, de Jong BA, Bouter LM. Shoulder disorders in general practice: incidence, patient characteristics, and management. Ann Rheum Dis. 1995;54(12):959-964.
2.Mitchell C, Adebajo A, Hay E, Carr A. Shoulder pain: diagnosis and management in primary care. BMJ. 2005;331(7525):1124-1128.
3.Cools AM, Witvrouw EE, Declercq GA, Danneels LA, Cambier DC. Scapular muscle recruitment patterns: trapezius muscle latency with and without impingement symptoms. Am J Sports Med. 2003;31(4):542-549.
4.Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80(3):276-291.
5.Soslowsky LJ, An CH, Johnston SP, Carpenter JE. Geometric and mechanical properties of the coracoacromial ligament and their relationship to rotator cuff disease. Clin Orthop Relat Res. 1994(304):10-17.
6.Kibler BW, McMullen J. Scapular dyskinesis and its relation to shoulder pain. J Am Acad Orthop Surg. 2003;11(2):142-151.
7.Lewis JS, Green A, Wright C. Subacromial impingement syndrome: the role of posture and muscle imbalance. J Shoulder Elbow Surg. 2005;14(4):385-392.
8.Richardson E, Lewis JS, Gibson J, et al. Role of the kinetic chain in shoulder rehabilitation: does incorporating the trunk and lower limb into shoulder exercise regimes influence shoulder muscle recruitment patterns? Systematic review of electromyography studies. BMJ Open Sport Exerc Med. 2020;6(1):e000683.
9.Chu SK, Jayabalan P, Kibler WB, Press J. The kinetic chain revisited: new concepts on throwing mechanics and injury. PM&R. 2016;8:S69-S77.
10.Cools AM, Johansson FR, Borms D, Maenhout A. Prevention of shoulder injuries in overhead athletes: a science-based approach. Braz J Phys Ther. 2015;19(5):331-339.
11.Kibler WB. The role of the scapula in athletic shoulder function. Am J Sports Med. 1998;26(2):325-337.
12.Yorukoglu AC, Savkin R, Buker N, Alsayani KYA. Is there a relation between rotator cuff injury and core stability? J Back Musculoskelet Rehabil. 2019;32(3):445-452.
13.Radwan A, Francis J, Green A, Kahl E, Maciurzynski D, Quartulli A, Schultheiss J, Strang R, Weiss B. Is there a relation between shoulder dysfunction and core instability? Int J Sports Phys Ther. 2014;9(1):8-13.
14.Reeser JC, Joy EA, Porucznik CA, Berg RL, Colliver EB, Willick SE. Risk factors for volleyball-related shoulder pain and dysfunction. PM&R. 2010;2(1):27-36.
15.Pogetti LS, Nakagawa TH, Contecote GP, Camargo PR. Core stability, shoulder peak torque and function in throwing athletes with and without shoulder pain. Phys Ther Sport. 2018;34:36-42.
16.Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36(3):189-198.
17.Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992;5(4):383-397.
18.Anderson BE, Bliven KCH. The Use of Breathing Exercises in the Treatment of Chronic, Nonspecific Low Back Pain. J Sport Rehabil. 2017;26(5):452-458.
19.Thompson W, Patterson JL, Shapiro W. Observations on the scalene respiratory muscles. Arch Intern Med. 1964;113(6):856-865.
20.Harper CJ, Shahgholi L, Cieslak K, Hellyer NJ, Strommen JA, Boon AJ. Variability in diaphragm motion during normal breathing, assessed with B-mode ultrasound. J Orthop Sports Phys Ther. 2013;43(12):927-931.
21.Yach B, Linens SW. The Relationship Between Breathing Pattern Disorders and Scapular Dyskinesis. Athl Train Sports Health Care. 2019;11(2):63-70.
22.Terada M, Kosik KB, McCann RS, Gribble PA. Diaphragm Contractility in Individuals with Chronic Ankle Instability. Med Sci Sports Exerc. 2016;48(10):2040-2045.
23.Sarwal A, Walker FO, Cartwright MS. Neuromuscular ultrasound for evaluation of the diaphragm. Muscle Nerve. 2013;47(3):319-329.
24.Sferrazza Papa GF, Pellegrino GM, Di Marco F, et al. A Review of the Ultrasound Assessment of Diaphragmatic Function in Clinical Practice. Respiration. 2016;91(5):403-411.
25.Laveneziana P, Albuquerque A, Aliverti A, et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur Respir J. 2019;53(6).
26.Cappellini I, Picciafuochi F, Bartolucci M, Matteini S, Virgili G, Adembri C. Evaluation of diaphragm thickening by diaphragm ultrasonography: a reproducibility and a repeatability study. J Ultrasound. 2021;24(4):411-416.
27.Houston J, Fleet M, Cowan M, McMillan N. Comparison of ultrasound with fluoroscopy in the assessment of suspected hemidiaphragmatic movement abnormality. Clin Radiol. 1995;50(2):95-98.
28.Neer CS. Impingement lesions. Clin Orthop Relat Res. 1983;(173):70-77.
29.Hagberg M, Wegman D. Prevalence rates and odds ratios of shoulder-neck diseases in different occupational groups. Br J Ind Med. 1987;44(9):602-610.
30.Gebremariam L, Hay EM, van der Sande R, Rinkel WD, Koes BW, Huisstede BM. Subacromial impingement syndrome--effectiveness of physiotherapy and manual therapy. Br J Sports Med. 2014;48(16):1202-1208.
31.Kibler WB, Sciascia A, Wilkes T. Scapular dyskinesis and its relation to shoulder injury. J Am Acad Orthop Surg. 2012;20(6):364-372.
32.Kibler WB, Kuhn JE, Wilk K, et al. The disabled throwing shoulder: spectrum of pathology-10-year update. Arthroscopy. 2013;29(1):141-161.e126.
33.Kibler WB, Wilkes T, Sciascia A. Mechanics and pathomechanics in the overhead athlete. Clin Sports Med. 2013;32(4):637-651.
34.Lintner D, Noonan TJ, Kibler WB. Injury patterns and biomechanics of the athlete's shoulder. Clin Sports Med. 2008;27(4):527-551.
35.Sciascia A, Thigpen C, Namdari S, Baldwin K. Kinetic chain abnormalities in the athletic shoulder. Sports Med Arthrosc Rev. 2012;20(1):16-21.
36.Wilk KE, Arrigo CA, Hooks TR, Andrews JR. Rehabilitation of the Overhead Throwing Athlete: There Is More to It Than Just External Rotation/Internal Rotation Strengthening. PM&R. 2016;8(3 Suppl):S78-90.
38.Kibler WB, McMullen J, Uhl T. Shoulder rehabilitation strategies, guidelines, and practice. Orthop Clin North Am. 2001;32(3):527-538.
39.Martin C, Bideau B, Bideau N, Nicolas G, Delamarche P, Kulpa R. Energy flow analysis during the tennis serve: comparison between injured and noninjured tennis players. Am J Sports Med. 2014;42(11):2751-2760.
40.Elliott B, Fleisig G, Nicholls R, Escamilia R. Technique effects on upper limb loading in the tennis serve. J Sci Med Sport. 2003;6(1):76-87.
41.Endo Y, Sakamoto M. Correlation of shoulder and elbow injuries with muscle tightness, core stability, and balance by longitudinal measurements in junior high school baseball players. J Phys Ther Sci. 2014;26(5):689-693.
42.Laudner KG, Wong R, Meister K. The influence of lumbopelvic control on shoulder and elbow kinetics in elite baseball pitchers. J Shoulder Elbow Surg. 2019;28(2):330-334.
43.Burkhart SS, Morgan CD, Ben Kibler W. The disabled throwing shoulder: spectrum of pathology part III: the SICK scapula, scapular dyskinesis, the kinetic chain, and rehabilitation. Arthroscopy. 2003;19(6):641-661.
44.Yamauchi T, Hasegawa S, Matsumura A, Nakamura M, Ibuki S, Ichihashi N. The effect of trunk rotation during shoulder exercises on the activity of the scapular muscle and scapular kinematics. J Shoulder Elbow Surg. 2015;24(6):955-964.
45.Werin M, Maenhout A, Smet S, Van Holder L, Cools A. Muscle recruitment during plyometric exercises in overhead athletes with and without shoulder pain. Phys Ther Sport. 2020;43:19-26.
46.Bergmark A. Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop Scand Suppl. 1989;230:1-54.
47.Hodges PW. Core stability exercise in chronic low back pain. Orthop Clin North Am. 2003;34(2):245-254.
48.Kocjan J, Adamek M, Gzik-Zroska B, Czyzewski D, Rydel M. Network of breathing. Multifunctional role of the diaphragm: a review. Adv Respir Med. 2017;85(4):224-232.
49.Faulkner J, Maxwell L, Ruff G, White T. The diaphragm as a muscle: contractile properties. Am Rev Respir Dis. 1979;119(2 Pt 2):89-92.
50.Huang TS, Ou HL, Huang CY, Lin JJ. Specific kinematics and associated muscle activation in individuals with scapular dyskinesis. J Shoulder Elbow Surg. 2015;24(8):1227-1234.
51.Hodges P, Butler J, McKenzie D, Gandevia S. Contraction of the human diaphragm during rapid postural adjustments. J Physiol. 1997;505(Pt 2):539.
52.Shirley D, Hodges P, Eriksson A, Gandevia S. Spinal stiffness changes throughout the respiratory cycle. J Appl Physiol. 2003;95(4):1467-1475.
53.KOLÁŘ P, Neuwirth J, Šanda J, et al. Analysis of diaphragm movement during tidal breathing and during its activation while breath holding using MRI synchronized with spirometry. Physiol Res. 2009;58(3):383-392.
54.Kolar P, Sulc J, Kyncl M, et al. Postural function of the diaphragm in persons with and without chronic low back pain. J Orthop Sports Phys Ther. 2012;42(4):352-362.
55.O'Sullivan PB, Beales DJ. Changes in pelvic floor and diaphragm kinematics and respiratory patterns in subjects with sacroiliac joint pain following a motor learning intervention: a case series. Man Ther. 2007;12(3):209-218.
56.Calvo-Lobo C, Almazan-Polo J, Becerro-de-Bengoa-Vallejo R, et al. Ultrasonography comparison of diaphragm thickness and excursion between athletes with and without lumbopelvic pain. Phys Ther Sport. 2019;37:128-137.
57.Vostatek P, Novak D, Rychnovsky T, Rychnovska S. Diaphragm postural function analysis using magnetic resonance imaging. PLoS One. 2013;8(3):e56724.
58.O’Sullivan PB, Beales DJ, Beetham JA, Cripps J, Graf F, Lin IB, Tucker B, Avery A. Altered motor control strategies in subjects with sacroiliac joint pain during the active straight-leg-raise test. Spine. 2002;27(1):E1-E8.
59.Hodges PW, Gandevia SC. Activation of the human diaphragm during a repetitive postural task. J Physiol. 2000;522(1):165-175.
60.Cohen W. Evaluation of the diaphragm by a subcostal B-scan technique. Paper presented at: Proceeding of the First World Congress on Ultrasound Diagnostics in Medicine and SIDUO III. Vienna1969.
61.Wait JL, Nahormek PA, Yost WT, Rochester DP. Diaphragmatic thickness-lung volume relationship in vivo. J Appl Physiol. 1989;67(4):1560-1568.
62.Goligher EC, Laghi F, Detsky ME, Farias P, Murray A, Brace D, Brochard LJ, Bolz SS, Rubenfeld GD, Kavanagh BP, Ferguson ND. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015;41(4):642-649.
63.McCool FD, Oyieng’o DO, Koo P. The Utility of Diaphragm Ultrasound in Reducing Time to Extubation. Lung. 2020;198(3):499-505.
64.Karduna AR, McClure PW, Michener LA, Sennett B. Dynamic measurements of three-dimensional scapular kinematics: a validation study. J Biomech Eng. 2001;123(2):184-190.
65.Lin JJ, Hanten WP, Olson SL, et al. Functional activity characteristics of individuals with shoulder dysfunctions. J Electromyogr Kinesiol. 2005;15(6):576-586.
66.Lin JJ, Hsieh SC, Cheng WC, Chen WC, Lai Y. Adaptive patterns of movement during arm elevation test in patients with shoulder impingement syndrome. J Orthop Res. 2011;29(5):653-657.
67.Kilding AE, Brown S, McConnell AK. Inspiratory muscle training improves 100 and 200 m swimming performance. Eur J Appl Physiol. 2010;108(3):505-511.
68.Testa A, Soldati G, Giannuzzi R, Berardi S, Portale G, Gentiloni Silveri N. Ultrasound M-mode assessment of diaphragmatic kinetics by anterior transverse scanning in healthy subjects. Ultrasound Med Biol. 2011;37(1):44-52.
69.American Thoracic Society/European Respiratory S. ATS/ERS Statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166(4):518-624.
70.Chan EWM, Hamid MSA, Nadzalan AM, Hafiz E. Abdominal muscle activation: An EMG study of the Sahrmann five-level core stability test. Hong Kong Physiother J. 2020;40(2):89-97.
71.Mitchell RA, Schaeffer MR, Ramsook AH, Wilkie SS, Guenette JA. Sex differences in respiratory muscle activation patterns during high-intensity exercise in healthy humans. Respir Physiol Neurobiol. 2018;247:57-60.
72.Ludewig PM, Hoff MS, Osowski EE, Meschke SA, Rundquist PJ. Relative balance of serratus anterior and upper trapezius muscle activity during push-up exercises. Am J Sports Med. 2004;32(2):484-493.
73.Schüldt K, Harms-Ringdahl K. Activity levels during isometric test contractions of neck and shoulder muscles. Scand J Rehabil Med. 1988;20(3):117-127.
74.Hislop H, Avers D, Brown M. Daniels and Worthingham's muscle Testing-E-Book: Techniques of manual examination and performance testing: Elsevier Health Sciences; 2013.
75.McClure P, Tate AR, Kareha S, Irwin D, Zlupko E. A clinical method for identifying scapular dyskinesis, part 1: reliability. J Athl Train. 2009;44(2):160-164.
76.Bezzi M, Donzel-Raynaud C, Straus C, et al. Unaltered respiratory-related evoked potentials after acute diaphragm dysfunction in humans. Eur Respir J. 2003;22(4):625-630.
77.Janssens L, Brumagne S, McConnell AK, et al. The assessment of inspiratory muscle fatigue in healthy individuals: a systematic review. Respir Med. 2013;107(3):331-346.
78.Sheel AW, Derchak PA, Morgan BJ, Pegelow DF, Jacques AJ, Dempsey JA. Fatiguing inspiratory muscle work causes reflex reduction in resting leg blood flow in humans. J Physiol. 2001;537(1):277-289.
79.Holland AE, Goldfarb JW, Edelman RR. Diaphragmatic and cardiac motion during suspended breathing: preliminary experience and implications for breath-hold MR imaging. Radiology. 1998;209(2):483-489.
80.Al-Bilbeisi F, Dennis McCool F. Diaphragm recruitment during nonrespiratory activities. Am J Respir Crit Care Med. 2000;162(2):456-459.
81.Neumann DA. Kinesiology of the musculoskeletal system-e-book: foundations for rehabilitation: Elsevier Health Sciences; 2016.
82.Culham E, Peat M. Functional anatomy of the shoulder complex. J Orthop Sports Phys Ther. 1993;18(1):342-350.
83.Tsukamoto T, Maruyama H, Kato M, Uchida M, Kubo A. Characteristics of respiratory muscle fatigue upon inhalation resistance with a maximal inspiratory mouth pressure of 50%. J Phys Ther Sci. 2019;31(4):318-325.
84.Ramonatxo M, Mercier J, Cohendy R, Prefaut C. Effect of resistive loads on pattern of respiratory muscle recruitment during exercise. J Appl Physiol. 1991;71(5):1941-1948.
85. Tang A, Bordoni B. Anatomy, Thorax, Muscles. In StatPearls. StatPearls Publishing. 2021.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top