跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 15:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳建霖
研究生(外文):JAIN-LIN CHEN
論文名稱:三硫化磷鐵與三硒化磷鐵層狀半導體之單晶成長與特性研究
論文名稱(外文):Crystal growth and characterization of FePS3 and FePSe3 layered single crystals
指導教授:何清華何清華引用關係
指導教授(外文):Ching-Hwa Ho
口試委員:李奎毅趙良君周宏隆劉昌樺
口試委員(外文):Kuei-Yi LeeLiang -Chiun ChaoHung-Lung ChouChang-Hua Liu
口試日期:2022-01-17
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:應用科技研究所
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:89
中文關鍵詞:化學氣相傳導法反鐵磁過渡性金屬化三硫化物過渡性金屬化三硒化物
外文關鍵詞:Chemical vapor transportAntiferromagneticTMPS3TMPSe3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用化學氣相傳導法成功生長三硫化磷鐵和三硒化磷鐵晶體,皆為單晶層狀反鐵磁性材料,樣品表面呈金屬亮面且容易撕薄。首先利用能量散佈光譜儀確認晶體的成分比例為1:1:3與X射線光電子能譜儀確認所含之元素化學態和電子態,結果符合預期。接著利用X射線晶體繞射分析儀分析出材料結構和晶格常數,結果顯示三硫化磷鐵為單斜晶系而三硒化磷鐵為六方晶系,低溫X-光繞射也發現三硫化磷鐵和三硒化磷鐵因結構改變產生新的峰值,而晶格常數也隨著溫度變低而變小,在變溫拉曼實驗中,首先將樣品利用機械撥離法撕成微奈米級通過波長532 奈米的雷射激發,三硫化磷鐵主要顯示四種拉曼振動模態而三硒化磷鐵則有三種拉曼振動模態,隨著溫度下降拉曼模態往高波數位移,實驗結果中也發現三硫化磷鐵在峰值98 cm-1位置當溫度高於120 K時,出現寬且不對稱的峰,且當溫度低於60K時,此98 cm-1的峰分離為兩個尖峰,我們推測此振動模態可能與材料磁性有關,為了找出拉曼光譜與磁性的相關性,我們利用超導量子干涉磁量儀量測三硫化磷鐵和三硒化磷鐵變溫磁特性,結果發現他們的尼爾溫度分別在120K與110K,其中三硫化磷鐵磁矩方向改變的溫度與拉曼峰98 cm-1改變的溫度相近。本論文持續探討三硫化磷鐵和三硒化磷鐵的光學與電學特性,三硫化磷鐵的能隙位置由室溫到低溫為1.32到1.41 eV,三硒化磷鐵能隙位置則在0.75到0.85 eV,它們屬於間接能隙,熱探針實驗中三硫化磷鐵以及三硒化磷鐵的主要載子為電洞,在四點量測變溫電阻率實驗中,三硫化磷鐵和三硒化磷鐵之電阻率分別為1.7k (Ω-cm)和116 (Ω-cm)並且隨著溫度降低而電阻率變大符合一般半導體的特性,經過霍爾量測的計算結果三硒化磷鐵載子濃度為1016 cm-3,載子遷移率為3 (cm2/V·Sec)。
In this thesis, the chemical vapor transport method is used to grow layered single crystals of antiferromagnetic materials FePS3 and FePSe3. The sample surfaces of as grow crystals are bright and the layer are easy to exfoliate. EDS and XPS are used to confirm composition and structure in the crystals. The XRD measurements reveal that FePS3 possesses a monoclinic structure, whereas FePSe3 possesses a hexagonal structure. Some new peaks of FePS3 and FePSe3 in XRD are appeared owing to a result of structural changes at low temperatures. The lattice constant decreases when the temperature is decreased. For the Raman measurement, the exfoliated samples are transferred onto a SiO2 silicon substrate and a 532 nm laser used as the excitation source. The Raman modes for both FePS3 and FePSe3 shift to higher wavenumber as the temperature is decreased. Raman result of FePS3 shows an asymmetrical peak at 98 cm-1 from 300 K to 120 K. After passing through the Neel temperature at 120 K, the peak divided into two sharp peaks as the temperature is lowered. The Raman peak at 98 cm-1 may reflect the magnetic characteristic of FePS3 . To further find out the correlation between Raman result and magnetism, temperature dependent magnetic measurement of superconducting quantum interference device from 5K to 300K was implemented. The difference in temperature between the Raman peak and magnetic moment direction is consistent with the change occurred at Neel temperature of 120K. At room temperature, FePS3 has an indirect bandgap at 1.32 eV, while FePSe3 is at 0.75 eV. The value of resistivity are 1.7k (Ω-cm) and 116 (Ω-cm) for FePS3 and FePSe3 at 300K. According to Hall measurement, both FePS3 and FePSe3 are p-type semiconductors.. the temperature dependent resistivity measurement reveal the carrier activation energies are ΔE = 306 meV for FePS3 and ΔE = 127 meV for FePSe3, respectively.
中文摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖索引 VI
表索引 X
第一章 緒論 1
第二章 晶體成長 4
2.1 晶體成長方法 4
2.2 單晶成長的系統配置 5
2.2.1 高真空系統 6
2.2.2 高溫長晶爐系統 7
2.3 晶體秤重與成長流程 8
2.3.1 元素比例秤重和石英管玻璃清洗 8
2.3.2 單晶化合及成長 9
第三章 實驗原理及量測技術 11
3.1 能量散佈能譜儀 (EDS) 11
3.2 X射線光電子能譜儀 (XPS) 13
3.3 X-ray晶格繞射分析儀 (XRD) 14
3.4 超導量子干涉磁量儀 (SQUID) 17
3.4.1 磁性的基本理論 18
3.5 拉曼散射系統 (Raman) 23
3.6 光穿透實驗原理 (Transmittance) 26
3.6.1 光穿透系統架構與實驗方法 27
3.7 電阻率量測(Resistivity measurement) 28
3.8.1 熱探針實驗 (Hot probe) 29
3.8.2 照光電阻率量測 (Photo VI measurement) 30
3.8.3 四點電阻率量測 (Van der Pauw method) 31
3.8 霍爾量測 (Hall effect) 33
第四章 實驗結果與討論 35
4.1 能量散佈能譜儀分析 35
4.2 X射線光電子能譜儀分析 37
4.3 X-ray晶格繞射實驗分析 44
4.3.1 變溫X-ray晶格繞射實驗分析 49
4.4 超導量子干涉磁量儀實驗分析 52
4.5 拉曼散射光譜實驗分析 55
4.6 光穿透光譜實驗結果 60
4.7 電阻率量測結果 65
4.7.1 熱探針實驗結果 65
4.7.2 照光電阻率實驗結果 65
4.7.3 四點電阻率量測實驗結果 68
4.8 霍爾量測結果 70
第五章 結論 71
參考文獻 73
[1] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol, Vol. 7, pp. 699-712, 2012.
[2] J.-U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim, P. Kim, C.-H. Park, J.-G. Park, and H. Cheong, “Ising-type magnetic ordering in atomically thin FePS3,” Nano Lett., Vol. 16, pp. 7433-7438, 2016.
[3] M. Scagliotti, M. Jouanne, M. Balkanski, G. Ouvrard, and G. Benedek, “Raman scattering in antiferromagnetic FePS3 and FePSe3 crystals,” Phys. B: Condens. Matter, Vol. 35, pp. 7097-7104, 1987.
[4] Y. Zheng, X. Jiang, X. Xue, J. Dai, and Y. Feng, “Ab initio study of pressure-driven phase transition in FePS3 and FePSe3,” Phys. Rev. B, Vol. 100, 174102 (6pp), 2019.
[5] 林旻翰,「II-Ⅳ族與Ⅲ-Ⅳ族寬能隙半導體硫屬化合物半導體之單晶成長與特性研究」,國立台灣科技大學應用科技研究所博士論文,2018。
[6] H. Schäfer, Chemical transport reactions, Academic Press, USA, Cambridge, 1964.
[7] 何清華,「二硫化鐵之單晶成長與特性研究」,國立台灣工業技術學院工程技術研究所碩士論文,1991。
[8] C. M. Becchi, and M. D'Elia, Introduction to the Basic Concepts of Modern Physics, Springer, 2nd ed., USA, New York, 2007.
[9] 許樹恩、吳泰伯,「X光繞射原理與材料結構分析」,中國材料科學學會,1996。
[10] 郭庭瑋,「第一型反鐵電反鐵磁多磁性」,國立中山大學物理學系研究所碩士論文,2020。
[11] 賴相儒,「鉻摻雜二硒化鉬與三硒化鉻之單晶成長與特性研究」,國立台灣科技大學應用科技研究所碩士論文,2018。
[12] 張竣揚,「摻鐵釔錳氧化物的磁性研究」,國立交通大學電子物理系碩士論文,2010。
[13] B. D. Cullity, and C. D. Graham, Introduction to Magnetic Materials, John Wiley & Sons, 2nd ed., USA, Piscataway, 2009.
[14] D. J. Griffiths, Introduction to Electrodynamics, Prentice Hall, USA, Upper Saddle River, 1981.
[15] D. K. Cheng, Field and Wave Electromagnetics, Addison-Wesley, USA, Menlo Park, 1989.
[16] J. Nogues and I. K. Schuller, “Exchange bias,” J.Magn.Magn.Mater, Vol.192, pp.192-203, 1999.
[17] G. S. Bumbrah, and R. M. Sharma, “Raman spectroscopy - Basic principle, instrumentation and selected applications for the characterization of drugs of abuse,” Egypt. J. Forensic Sci., Vol. 6, pp. 209-215, 2016.
[18] P. Graves, and D. Gardiner, Practical Raman spectroscopy, Springer, Germany, Berlin, 1989.
[19] K. Siegbahn, ESCA: atomic, molecular and solid state structure studies by means of electron spectroscopy, Almqvist & Wiksells, Sweden, Uppsala, 1967.
[20] O. Philips’Gloeilampenfabrieken, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Res. Rep, Vol. 13, pp. 1-9, 1958.
[21] D. K. Schroder, Semiconductor material and device characterization, John Wiley & Sons, USA, Hoboken, 2015.
[22] 林昱翰,「高導電性過渡性金屬鈮和鉭雙硫屬化合物之晶體成長與載子傳輸性質研究」,國立台灣科技大學應用科技研究所碩士論文,2021。
[23] 倪祥圃,「熱電優值ZT量測方法之研究與實作」,國立台灣大學機械工程研究所碩士論文,2016。
[24] C. C. Li, M. Gong, X. D. Chen, S. Li, B.W. Zhao, Y. Dong, G. C. Guo and F. W. Sun, “Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation,” Diam. Relat. Mater, Vol. 74, pp. 119-124, 2017.
[25] K. K. Tiong, C. H. Ho, and S. Huang, “The electrical transport properties of ReS2 and ReSe2 layered crystals,” Solid State Commun., Vol. 111, pp. 119-124, 1999.
[26] J. Chastain, and R. C. King Jr, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer, USA, Minnesota, 1992.
[27] H. Xu, S. Wang, J. Ouyang, X. He, H. Chen, Y. Li, Y. Liu, R. Chen, and J. Yang, “Surface modification of multilayer FePS3 by Ga ion irradiation,” Sci Rep, Vol. 9, 15219 (10pp), 2019.
[28] B. Taylor, J. Steger, A. Wold, and E. Kostinerlb, “Preparation and Properties of Iron FePSe3, FePSe3,” Inorganic Chemistry, Vol. 13, pp. 2719-2731, 1974.
[29] A. Aruchamy, H. Berger, and F. Levy, “Photoelectronic Properties of the p-type Layered Trichalcogenophos-phates FePS3 and FePSe3,” J. Solid State Chem., Vol. 72, pp. 316-323, 1988.
[30] Y. Jing, L. J. Wei, Z. Hongsen, Z. Fei, L, Rumin, X. Y. Cheng, Z. Limin, Z. Hang, W. Jun, “Metallic FePSe3 nanoparticles anchored on N-doped carbon framework for All-pH hydrogen evolution reaction,” Nano Energy, Vol.57, pp. 222-229, 2018.
[31] Q. Y. Xie, M. Wu, L. M. Chen, G. Bai, W. Q. Zou, W. Wang, and L. He, “Crystallographic and magnetic properties of van der Waals layered FePS3 crystal,” Chin. Phys. B, Vol. 28, 056102 (6pp), 2019.
[32] S. Zhang, D. Xu, C. Su, W. Tang, H. Ju, J. Zhang, and B. Tian, “Hermetically encapsulating sulfur by FePS3 flakes for high-performance lithium sulfur batteries,” ChemComm, Vol. 56, pp. 810-813, 2020.
[33] S. Chikara, K. Atsushi, and N. I. Shun, “X-Ray Spectroscopic Investigation of the Valence-Band Structure of Layered Compounds MPS3 (M = Mn, Fe, Ni, Zn, Mg),” J. Phys. Soc. Jpn, Vol. 65, pp. 2152-2157, 1996.
[34] H. Zhang, C. Niu, J. Zhang, L. Zou, Z. Zeng, and X. Wang, “Spin-crossover induced ferromagnetism and layer stacking-order change in pressurized 2D antiferromagnet MnPS3,” Phys. Chem., Vol.23, pp. 9679-9685, 2001.
[35] A. Yildiz, S. B. Lisesivdin, M. Kasap, and D. Mardare, “Non-adiabatic small polaron hopping conduction in Nb-doped TiO2 thin film,” Phys. B: Condens. Matter, Vol. 404, pp. 1423-1426, 2009.
[36] A. Wiedenmann, J. Rossat-Mignod, A. Louisy, R. Bree and J. Rouxel “Neutron Diffraction Study Of The Layered Compounds MnPSe3 And FePSe3,” Solid State Commun., Vol. 40, pp. 1067-1072, 1981.
[37] N. Nagasundaram, and A. H. Francis, “Frit Electronic Spectra Of Fe2P2S6 And Co2P2S6: Trigonal Field Splitting And Lithium Intercalation Effects,” J. Phys. Chem. Solids, Vol. 50, pp. 163-170, 1989.
[38] C. Xingguo, Y. Chuluo, Q. Jingui, I. Makoto, F. Yohei, K. Minoru, Y. Kenji and Y. Kyuya, “The Characterization and Magnetic Properties of Inorganic-Organic Hybrid Nanocomposites, Stilbazoliums Inserted into Layered FePS3,” J. Incl. Phenom. Macrocycl. Chem., Vol. 42, pp. 71-75, 2002.
[39] M. Scagliotti, M. Jouanne, M. Balkanski, G. Ouvrard, and G. Benedek, “Raman scattering in antiferromagnetic FePS3 and FePSe3 crystals,” Phys. B: Condens. Matter, Vol. 35, pp. 7097-7104, 1987.
[40] X. Wang, K. Du, Y. Y. Fredrik Liu, P. Hu, J. Zhang and Q. Zhang, “Raman spectroscopy of atomically thin two-dimensional magnetic iron FePS3 crystals,” 2D Materials, Vol. 3, 031009 (10pp), 2016.
電子全文 電子全文(網際網路公開日期:20270121)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊