|
[1] F. Krausmann, A. Schaffartzik, A. Mayer, N. Eisenmenger, S. Gingrich, H. Haberl, M. Fischer-Kowalski, Long-term trends in global material and energy use, Social Ecology, Springer2016, pp. 199-216. [2] S. Weitemeyer, D. Kleinhans, T. Vogt, C. Agert, Integration of Renewable Energy Sources in future power systems: The role of storage, Renewable Energy, 75 (2015) 14-20. [3] M. Armand, P. Axmann, D. Bresser, M. Copley, K. Edström, C. Ekberg, D. Guyomard, B. Lestriez, P. Novák, M. Petranikova, Lithium-ion batteries–Current state of the art and anticipated developments, Journal of Power Sources, 479 (2020) 228708. [4] D. Deng, Li‐ion batteries: basics, progress, and challenges, Energy Science and Engineering, 3 (2015) 385-418. [5] M. Ge, X. Fang, J. Rong, C. Zhou, Review of porous silicon preparation and its application for lithium-ion battery anodes, Nanotechnology, 24 (2013) 422001. [6] P. Ruetschi, Energy storage and the environment: the role of battery technology, Journal of power sources, 42 (1993) 1-7. [7] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific 2011, pp. 171-179. [8] J. Xu, S. Dou, H. Liu, L. Dai, Cathode materials for next generation lithium ion batteries, Nano Energy, 2 (2013) 439-442. [9] J.-K. Park, Principles and applications of lithium secondary batteries, John Wiley & Sons2012. [10] M.S. Whittingham, Lithium batteries and cathode materials, Chemical reviews, 104 (2004) 4271-4302. [11] P. Guan, L. Zhou, Z. Yu, Y. Sun, Y. Liu, F. Wu, Y. Jiang, D. Chu, Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries, Journal of Energy Chemistry 43 (2020) 220-235. [12] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, Journal of Power Sources, 257 (2014) 421-443. [13] J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries, Electrochemical Energy Reviews, 1 (2018) 35-53. [14] Y. Pan, S. Gao, F. Sun, H. Yang, P.F. Cao, Polymer Binders Constructed through Dynamic Noncovalent Bonds for High-Capacity Silicon-Based Anodes, Chem. Eur. J., 25 (2019) 10976-10994. [15] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater., 22 (2010) 587-603. [16] K. Hayashi, Y. Nemoto, S.-i. Tobishima, J.-i. Yamaki, Mixed solvent electrolyte for high voltage lithium metal secondary cells, Electrochimica Acta, 44 (1999) 2337-2344. [17] Z. Xu, J. Yang, H. Li, Y. Nuli, J. Wang, Electrolytes for advanced lithium ion batteries using silicon-based anodes, J. Mater. Chem. A, 7 (2019) 9432-9446. [18] A.M. Haregewoin, A.S. Wotango, B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy & Environmental Science, 9 (2016) 1955-1988. [19] R. Younesi, G.M. Veith, P. Johansson, K. Edström, T. Vegge, Lithium salts for advanced lithium batteries: Li–metal, Li–O 2, and Li–S, Energy Environ. Sci., 8 (2015) 1905-1922. [20] J. Kalhoff, G.G. Eshetu, D. Bresser, S. Passerini, Safer electrolytes for lithium‐ion batteries: state of the art and perspectives, ChemSusChem, 8 (2015) 2154-2175. [21] C.F. Francis, I.L. Kyratzis, A. Best, Lithium‐ion battery separators for ionic‐liquid electrolytes: a review, Adv.Mater., 32 (2020) 1904205. [22] H. Zhang, M.-Y. Zhou, C.-E. Lin, B.-K. Zhu, Progress in polymeric separators for lithium ion batteries, RSC Adv., 5 (2015) 89848-89860. [23] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy and Environmental Science, 7 (2014) 3857-3886. [24] P. Zhu, D. Gastol, J. Marshall, R. Sommerville, V. Goodship, E. Kendrick, A review of current collectors for lithium-ion batteries, Journal of Power Sources, 485 (2021) 229321. [25] H. Chang, Y.-R. Wu, X. Han, T.-F. Yi, Recent progress of advanced anode materials of lithium-ion batteries, Energy Mater., 1 (2021) 100003. [26] J.-Y. Li, Q. Xu, G. Li, Y.-X. Yin, L.-J. Wan, Y.-G. Guo, Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries, Materials Chemistry Frontiers, 1 (2017) 1691-1708. [27] A. Franco Gonzalez, N.-H. Yang, R.-S. Liu, Silicon Anode Design for Lithium-Ion Batteries: Progress and Perspectives, The Journal of Physical Chemistry C, 121 (2017) 27775-27787. [28] R.Z.A. Manj, F. Zhang, W.U. Rehman, W. Luo, J. Yang, Toward Understanding the Interaction within Silicon-based Anodes for Stable Lithium Storage, Chemical Engineering Journal, (2019) 123821. [29] K.A. Hays, B. Key, J. Li, D.L. Wood, G.M. Veith, Si Oxidation and H2 Gassing During Aqueous Slurry Preparation for Li-Ion Battery Anodes, J. Phys. Chem. C 122 (2018) 9746-9754. [30] C.J. Wen, R.A. Huggins, Chemical diffusion in intermediate phases in the lithium-silicon system, Journal of solid state chemistry, 37 (1981) 271-278. [31] H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, 7 (2012) 414-429. [32] Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery, Advanced Energy Materials, 7 (2017) 1700715. [33] M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv Mater, 25 (2013) 4966-4985. [34] J. Li, J. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si, Journal of The Electrochemical Society, 154 (2007) A156. [35] M. Obrovac, L. Krause, Reversible cycling of crystalline silicon powder, Journal of the Electrochemical Society, 154 (2006) A103. [36] X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, J.Y. Huang, Size-Dependent Fracture of Silicon Nanoparticles During Lithiation, ACS Nano, 6 (2012) 1522-1531. [37] Z. Zeng, N. Liu, Q. Zeng, S.W. Lee, W.L. Mao, Y. Cui, In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy, Nano Energy, 22 (2016) 105-110. [38] X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Silicon based lithium-ion battery anodes: A chronicle perspective review, Nano Energy, 31 (2017) 113-143. [39] F. Wang, G. Chen, N. Zhang, X. Liu, R. Ma, Engineering of carbon and other protective coating layers for stabilizing silicon anode materials, Carbon Energy., 1 (2019) 219-245. [40] J.W.A. Choi, Doron Promise and reality of post-lithium-ion batteries with high energy densities, Nature Reviews Materials, 1 (2016) 1-16. [41] B.D. Assresahegn, D. Belanger, Effects of the Formulations of Silicon-Based Composite Anodes on their Mechanical, Storage, and Electrochemical Properties, ChemSusChem, 10 (2017) 4080-4089. [42] S. Jiang, B. Hu, R. Sahore, L. Zhang, H. Liu, L. Zhang, W. Lu, B. Zhao, Z. Zhang, Surface-Functionalized Silicon Nanoparticles as Anode Material for Lithium-Ion Battery, ACS Appl. Mater. Interfaces 10 (2018) 44924-44931. [43] Y. Oumellal, N. Delpuech, D. Mazouzi, N. Dupre, J. Gaubicher, P. Moreau, P. Soudan, B. Lestriez, D. Guyomard, The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries, Journal of Materials Chemistry, 21 (2011) 6201-6208. [44] C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström, T. Gustafsson, Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive, Chemistry of Materials, 27 (2015) 2591-2599. [45] K. Van Havenbergh, S. Turner, K. Driesen, J.-S. Bridel, G. Van Tendeloo, Solid-Electrolyte Interphase Evolution of Carbon-Coated Silicon Nanoparticles for Lithium-Ion Batteries Monitored by Transmission Electron Microscopy and Impedance Spectroscopy, Energy Technology, 3 (2015) 699-708. [46] H. Shobukawa, J. Shin, J. Alvarado, C.S. Rustomji, Y.S. Meng, Electrochemical reaction and surface chemistry for performance enhancement of a Si composite anode using a bis (fluorosulfonyl) imide-based ionic liquid, Journal of Materials Chemistry A, 4 (2016) 15117-15125. [47] J. Li, J.-Y. Yang, J.-T. Wang, S.-G. Lu, A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries, Rare Met., 38 (2019) 199-205. [48] T.D. Bogart, D. Oka, X. Lu, M. Gu, C. Wang, B.A. Korgel, Lithium ion battery peformance of silicon nanowires with carbon skin, ACS Nano, 8 (2014) 915-922. [49] Z. Wen, G. Lu, S. Mao, H. Kim, S. Cui, K. Yu, X. Huang, P.T. Hurley, O. Mao, J. Chen, Silicon nanotube anode for lithium-ion batteries, Electrochemistry Communications, 29 (2013) 67-70. [50] Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W.D. Nix, Y. Cui, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Lett., 11 (2011) 2949-2954. [51] J. Wang, W. Huang, Y.S. Kim, Y.K. Jeong, S.C. Kim, J. Heo, H.K. Lee, B. Liu, J. Nah, Y. Cui, Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries, Nano Research, 13 (2020) 1558-1563. [52] B. Zhu, Y. Jin, Y. Tan, L. Zong, Y. Hu, L. Chen, Y. Chen, Q. Zhang, J. Zhu, Scalable production of Si nanoparticles directly from low grade sources for lithium-ion battery anode, Nano letters, 15 (2015) 5750-5754. [53] N. Lin, Y. Han, J. Zhou, K. Zhang, T. Xu, Y. Zhu, Y. Qian, A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries, Energy Environ. Sci. , 8 (2015) 3187-3191. [54] S. Jing, H. Jiang, Y. Hu, C. Li, Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries, Nanoscale, 6 (2014) 14441-14445. [55] C. Shen, R. Fu, H. Guo, Y. Wu, C. Fan, Y. Xia, Z. Liu, Compounds, Scalable synthesis of Si nanowires interconnected SiOx anode for high performance lithium-ion batteries, Journal of Alloys and Compounds, 783 (2019) 128-135. [56] X.-W. Jiao, Y.-H. Tian, X.-J. Zhang, Hollow Si nanospheres with amorphous TiO2 layer used as anode for high-performance Li-ion battery, Applied Surface Science 566 (2021) 150682. [57] J.-I. Lee, S. Park, High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching, Nano Energy, 2 (2013) 146-152. [58] F. Wang, L. Sun, W. Zi, B. Zhao, H. Du, Solution synthesis of porous silicon particles as an anode material for lithium ion batteries, Chem. Eur.J., 25 (2019) 9071-9077. [59] T. Zhao, D. Zhu, W. Li, A. Li, J. Zhang, Novel design and synthesis of carbon-coated porous silicon particles as high-performance lithium-ion battery anodes, Journal of Power Sources, 439 (2019) 227027. [60] Z. Lu, B. Li, D. Yang, H. Lv, M. Xue, C. Zhang, A self-assembled silicon/phenolic resin-based carbon core–shell nanocomposite as an anode material for lithium-ion batteries, RSC Adv., 8 (2018) 3477-3482. [61] T. Shen, X.-h. Xia, D. Xie, Z.-j. Yao, Y. Zhong, J.-y. Zhan, D.-h. Wang, J.-b. Wu, X.-l. Wang, J.-p. Tu, Encapsulating silicon nanoparticles into mesoporous carbon forming pomegranate-structured microspheres as a high-performance anode for lithium ion batteries, J. Mater. Chem. A, 5 (2017) 11197-11203. [62] D. Wang, C. Zhou, B. Cao, Y. Xu, D. Zhang, A. Li, J. Zhou, Z. Ma, X. Chen, H. Song, One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries, Energy Storage Materials, 24 (2020) 312-318. [63] Y. Shi, X. Zhou, G. Yu, Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries, Acc. Chem. Res. , 50 (2017) 2642-2652. [64] J. Li, L. Christensen, M. Obrovac, K. Hewitt, J. Dahn, Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder, Journal of the electrochemical Society, 155 (2008) A234-A238. [65] I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries, Science, 334 (2011) 75-79. [66] X. Zhao, V.P. Lehto, Challenges and prospects of nanosized silicon anodes in lithium-ion batteries, Nanotechnology, 32 (2021) 042002. [67] Z. Karkar, D. Guyomard, L. Roué, B. Lestriez, A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes, Electrochimica Acta, 258 (2017) 453-466. [68] R. Guo, S. Zhang, H. Ying, W. Yang, J. Wang, W. Han, Preparation of an Amorphous Cross‐Linked Binder for Silicon Anodes, ChemSusChem, 12 (2019) 4838-4845. [69] P. Li, G. Chen, Y. Lin, F. Chen, L. Chen, N. Zhang, Y. Cao, R. Ma, X. Liu, 3D Network Binder via In Situ Cross‐Linking on Silicon Anodes with Improved Stability for Lithium‐Ion Batteries, Macromolecular Chemistry and Physics, 221 (2019). [70] S. Chen, H.Y. Ling, H. Chen, S. Zhang, A. Du, C. Yan, Development of cross-linked dextrin as aqueous binders for silicon based anodes, Journal of Power Sources, 450 (2020). [71] S. Chen, H.Y. Ling, H. Chen, S. Zhang, A. Du, C. Yan, Development of cross-linked dextrin as aqueous binders for silicon based anodes, Journal of Power Sources, 450 (2020) 227671. [72] X. Wang, Y. Zhang, Y. Shi, X. Zeng, R. Tang, L. Wei, Conducting polyaniline/poly (acrylic acid)/phytic acid multifunctional binders for Si anodes in lithium ion batteries, Ionics, (2019) 1-9. [73] M. Zheng, C. Wang, Y. Xu, K. Li, D. Liu, A water-soluble binary conductive binder for Si anode lithium ion battery, Electrochimica Acta, 305 (2019) 555-562. [74] H. Mi, X. Yang, F. Li, X. Zhuang, C. Chen, Y. Li, P. Zhang, Self-healing silicon-sodium alginate-polyaniline composites originated from the enhancement hydrogen bonding for lithium-ion battery: A combined simulation and experiment study, Journal of Power Sources, 412 (2019) 749-758. [75] I.A. Profatilova, C. Stock, A. Schmitz, S. Passerini, M. Winter, Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate, Journal of Power Sources, 222 (2013) 140-149. [76] D.A. Dalla Corte, A.C. Gouget-Laemmel, K. Lahlil, G. Caillon, C. Jordy, J.-N. Chazalviel, T. Gacoin, M. Rosso, F. Ozanam, Molecular grafting on silicon anodes: artificial Solid-Electrolyte Interphase and surface stabilization, Electrochimica Acta, 201 (2016) 70-77. [77] S.-W. Song, S.-W. Baek, Silane-derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries, Electrochemical and Solid-State Letters, 12 (2009) A23-A27. [78] C. Li, T. Shi, D. Li, H. Yoshitake, H. Wang, Effect of surface modification on electrochemical performance of nano-sized Si as an anode material for Li-ion batteries, RSC Advances, 6 (2016) 34715-34723. [79] Y. Gao, R. Yi, Y.C. Li, J. Song, S. Chen, Q. Huang, T.E. Mallouk, D. Wang, General Method of Manipulating Formation, Composition, and Morphology of Solid-Electrolyte Interphases for Stable Li-Alloy Anodes, J Am Chem Soc, 139 (2017) 17359-17367. [80] B.H. Shen, G.M. Veith, W.E. Tenhaeff, Silicon Surface Tethered Polymer as Artificial Solid Electrolyte Interface, Scientific reports, 8 (2018) 11549. [81] S. Jiang, B. Hu, R. Sahore, H. Liu, G.F. Pach, G.M. Carroll, L. Zhang, B. Zhao, N.R. Neale, Z. Zhang, Tailoring the Surface of Silicon Nanoparticles for Enhanced Chemical and Electrochemical Stability for Li-Ion Batteries, ACS Applied Energy Materials, (2019). [82] J. Liu, X. Sun, Elegant design of electrode and electrode/electrolyte interface in lithium-ion batteries by atomic layer deposition, Nanotechnology, 26 (2014) 024001. [83] W. Luo, X. Chen, Y. Xia, M. Chen, L. Wang, Q. Wang, W. Li, J. Yang, Surface and interface engineering of silicon‐based anode materials for lithium‐ion batteries, Adv. Energy Mater., 7 (2017) 1701083. [84] T. Tan, P.-K. Lee, N. Zettsu, K. Teshima, Y. Denis, Highly stable lithium-ion battery anode with polyimide coating anchored onto micron-size silicon monoxide via self-assembled monolayer, Journal of Power Sources, 453 (2020) 227874. [85] R. Na, K. Minnici, G. Zhang, N. Lu, M.A. Gonzalez, G. Wang, E. Reichmanis, Electrically Conductive Shell-Protective Layer Capping on the Silicon Surface as the Anode Material for High-Performance Lithium-Ion Batteries, ACS Appl Mater Interfaces, 11 (2019) 40034-40042. [86] M. Tian, P. Wu, Nature Plant Polyphenol Coating Silicon Sub-microparticle Conjugated with Polyacrylic Acid for Achieving a High-performance Anode of Lithium-ion Battery, ACS Appl. Energy Mater., (2019). [87] Q. Ma, H. Xie, J. Qu, Z. Zhao, B. Zhang, Q. Song, P. Xing, H. Yin, Tailoring the Polymer-Derived Carbon Encapsulated Silicon Nanoparticles for High-Performance Lithium-Ion Battery Anodes, ACS Appl. Energy Mater., 3 (2019) 268-278. [88] Q. Ma, H. Xie, J. Qu, Z. Zhao, B. Zhang, Q. Song, P. Xing, H. Yin, Tailoring the polymer-derived carbon encapsulated silicon nanoparticles for high-performance Lithium-ion battery anodes, ACS Appl. Energy Mater., (2019). [89] L. Hu, B. Luo, C. Wu, P. Hu, L. Wang, H. Zhang, Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes, Journal of Energy Chemistry, 32 (2019) 124-130. [90] A.A. Leonardi, M.J.L. Faro, A. Irrera, Biosensing platforms based on silicon nanostructures: A critical review, Analytica Chimica Acta 1160 (2021) 338393. [91] T. Vo-Dinh, Nanotechnology in biology and medicine: methods, devices, and applications, CRC Press 2007. [92] S.P. Pujari, L. Scheres, A.T. Marcelis, H. Zuilhof, Covalent surface modification of oxide surfaces, Angew. Chem. Int. Ed., 53 (2014) 6322-6356. [93] J. Veerbeek, J. Huskens, Applications of Monolayer‐Functionalized H‐Terminated Silicon Surfaces: A Review, Small Methods, 1 (2017) 1700072. [94] M.R. Linford, P. Fenter, P.M. Eisenberger, C.E. Chidsey, Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon, Journal of the American Chemical Society, 117 (1995) 3145-3155. [95] Y. Wang, S. Hu, W. Brittain, Polymer brush grafted from an allylsilane-functionalized surface, Macromolecules, 39 (2006) 5675-5678. [96] C. Bao, J.M. Horton, Z. Bai, D. Li, T.P. Lodge, B. Zhao, Stimuli‐triggered phase transfer of polymer‐inorganic hybrid hairy particles between two immiscible liquid phases, J Polym Sci B, 52 (2014) 1600-1619. [97] B.V. Tawade, I.E. Apata, N. Pradhan, A. Karim, D. Raghavan, Recent Advances in the Synthesis of Polymer-Grafted Low-K and High-K Nanoparticles for Dielectric and Electronic Applications, Molecules, 26 (2021) 2942. [98] J.M. Giussi, M.L. Cortez, W.A. Marmisollé, O. Azzaroni, Practical use of polymer brushes in sustainable energy applications: interfacial nanoarchitectonics for high-efficiency devices, Chem. Soc. Rev., 48 (2019) 814-849. [99] S. Ma, X. Zhang, B. Yu, F. Zhou, Brushing up functional materials, Ma et al. NPG Asia Materials, 11 (2019) 1-39. [100] W. Choi, H.-C. Shin, J.M. Kim, J.-Y. Choi, W.-S. Yoon, Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries, Journal of Electrochemical Science Technology, 11 (2020) 1-13. [101] J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C.E. Lyman, E. Lifshin, L. Sawyer, J.R. Michael, The SEM and Its Modes of Operation, Scanning Electron Microscopy and X-ray Microanalysis: Third Edition, Springer US, Boston, MA, 2003, pp. 21-60. [102] A. Mane, V. Patil, X-ray photoelectron spectroscopy of nanofillers and their polymer nanocomposites, Spectroscopy of Polymer Nanocomposites, Elsevier 2016, pp. 452-467. [103] L. Li, Y.-c.K. Chen-Wiegart, J. Wang, P. Gao, Q. Ding, Y.-S. Yu, F. Wang, J. Cabana, J. Wang, S. Jin, Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging, Nature communications, 6 (2015) 1-8. [104] J. Meckling, J. Nahm, The politics of technology bans: Industrial policy competition and green goals for the auto industry, Energy Policy, 126 (2019) 470-479. [105] S.A. Sulaiman, Energy Efficiency in Mobility Systems, Springer 2020. [106] M. Coren, Nine countries say they’ll ban internal combustion engines. So far, it’s just words. Quartz, 7 August 2018, 2018. [107] K. Jermsittiparsert, T. Chankoson, Behavior of Tourism Industry under the Situation of Environmental Threats and Carbon Emission: Time Series Analysis from Thailand, International Journal of Energy Economics and Policy, 9 (2019) 366-372. [108] Y.-F. Xing, Y.-H. Xu, M.-H. Shi, Y.-X. Lian, The impact of PM2. 5 on the human respiratory system, Journal of thoracic disease, 8 (2016) E69. [109] S. Karuppiah, C. Keller, P. Kumar, P.-H. Jouneau, D. Aldakov, J.-B. Ducros, G. Lapertot, P. Chenevier, C. Haon, A Scalable Silicon Nanowires-Grown-On-Graphite Composite for High-Energy Lithium Batteries, ACS nano, 14 (2020) 12006-12015. [110] R. Shao, F. Zhu, Z. Cao, Z. Zhang, M. Dou, J. Niu, B. Zhu, F. Wang, Heteroatom-doped carbon networks enabling robust and flexible silicon anodes for high energy Li-ion batteries, Journal of Materials Chemistry A, 8 (2020) 18338-18347. [111] L.M. Housel, W. Li, C.D. Quilty, M.N. Vila, L. Wang, C.R. Tang, D.C. Bock, Q. Wu, X. Tong, A.R. Head, K.J. Takeuchi, A.C. Marschilok, E.S. Takeuchi, Insights into reactivity of silicon negative electrodes: analysis using isothermal microcalorimetry, ACS applied materials & interfaces, 11 (2019) 37567-37577. [112] K. Ogata, D.-S. Ko, C. Jung, J.-H. Lee, S. Sul, H.-G. Kim, J. Seo, J. Jang, M. Koh, K. Kim, J.H. Kim, I.-S. Jung, M.S. Park, K. Takei, S. Saito, S. Wakita, K. Ito, Y. Kubo, K. Uosaki, S. Doo, S. Han, J.K. Shin, S. Jeon, Spontaneous pseudo-topological silicon quantization for redesigned Si-based Li-ion batteries, Nano energy, 56 (2019) 875-883. [113] J. Wang, X. Wang, B. Liu, H. Lu, G. Chu, J. Liu, Y.-G. Guo, X. Yu, F. Luo, Y. Ren, L. Chen, H. Li, Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode, Nano Energy, 78 (2020) 105101. [114] L.C. Loaiza, L. Monconduit, V. Seznec, Si and Ge‐Based Anode Materials for Li‐, Na‐, and K‐Ion Batteries: A Perspective from Structure to Electrochemical Mechanism, Small, 16 (2020) 1905260. [115] M.H. Parekh, A.D. Sediako, A. Naseri, M.J. Thomson, V.G. Pol, In Situ Mechanistic Elucidation of Superior Si‐C‐Graphite Li‐Ion Battery Anode Formation with Thermal Safety Aspects, Advanced Energy Materials, 10 (2020) 1902799. [116] Y. Zeng, Y. Huang, N. Liu, X. Wang, Y. Zhang, Y. Guo, H.-H. Wu, H. Chen, X. Tang, Q. Zhang, N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries, Journal of Energy Chemistry, 54 (2021) 727-735. [117] T. Azib, N. Bibent, M. Latroche, F. Fischer, J.-C. Jumas, J. Olivier-Fourcade, C. Jordy, P.-E. Lippens, F. Cuevas, Ni–Sn intermetallics as an efficient buffering matrix of Si anodes in Li-ion batteries, Journal of Materials Chemistry A, 8 (2020) 18132-18142. [118] Q. Zhang, C. Zhang, W. Luo, L. Cui, Y.J. Wang, T. Jian, X. Li, Q. Yan, H. Liu, C. Ouyang, Y. Chen, C.-L. Chen, J. Zhang, Sequence‐Defined Peptoids with -OH and -COOH Groups As Binders to Reduce Cracks of Si Nanoparticles of Lithium‐Ion Batteries, Advanced Science, 7 (2020) 2000749. [119] I.S. Aminu, H. Geaney, S. Imtiaz, T.E. Adegoke, N. Kapuria, G.A. Collins, K.M. Ryan, A Copper Silicide Nanofoam Current Collector for Directly Grown Si Nanowire Networks and their Application as Lithium‐Ion Anodes, Advanced Functional Materials, 30 (2020) 2003278. [120] B. Anothumakkool, F. Holtstiege, S. Wiemers-Meyer, S. Nowak, F. Schappacher, M. Winter, Electropolymerization Triggered in Situ Surface Modification of Electrode Interphases: Alleviating First-Cycle Lithium Loss in Silicon Anode Lithium-Ion Batteries, ACS Sustainable Chemistry & Engineering, 8 (2020) 12788-12798. [121] Y. Gao, R. Yi, Y.C. Li, J. Song, S. Chen, Q. Huang, T.E. Mallouk, D. Wang, General method of manipulating formation, composition, and morphology of solid-electrolyte interphases for stable Li-alloy anodes, Journal of the American Chemical Society, 139 (2017) 17359-17367. [122] T. Alemu, S.A. Pradanawati, S.-C. Chang, P.-L. Lin, Y.-L. Kuo, Q.-T. Pham, C.-H. Su, F.-M. Wang, In operando measurements of kinetics of solid electrolyte interphase formation in lithium-ion batteries, Journal of Power Sources, 400 (2018) 426-433. [123] J. Cardoso, A. Mayrén, I. Romero-Ibarra, D. Nava, J. Vazquez-Arenas, Nanocomposite polymer electrolytes based on poly (poly (ethylene glycol) methacrylate), MMT or ZSM-5 formulated with LiTFSI and PYR 11 TFSI for Li-ion batteries, RSC advances, 6 (2016) 7249-7259. [124] F.-M. Wang, C.-C. Hu, S.-C. Lo, Y.-Y. Wang, C.-C. Wan, Definition of ionic transfer mechanisms based on positron annihilation studies in lithium batteries, Journal of Electroanalytical Chemistry, 644 (2010) 25-29. [125] P. Thissen, T. Peixoto, R.C. Longo, W. Peng, W.G. Schmidt, K. Cho, Y.J. Chabal, Activation of surface hydroxyl groups by modification of H-terminated Si(111) surfaces, J Am Chem Soc, 134 (2012) 8869-8874. [126] V. Dugas, Y. Chevalier, Chemical Reactions in Dense Monolayers: In Situ Thermal Cleavage of Grafted Esters for Preparation of Solid Surfaces Functionalized with Carboxylic Acids, Langmuir, 27 (2011) 14188-14200. [127] T.-E. Kim, K.-E. Khishigbayar, K.Y. Cho, Effect of heating rate on the properties of silicon carbide fiber with chemical-vapor-cured polycarbosilane fiber, Journal of Advanced Ceramics, 6 (2017) 59-66. [128] T. Hatchard, J. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc., 151 (2004) A838-A842 [129] J. Li, J. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si, J. Electrochem. Soc., 154 (2007) A156-A161. [130] L. Yang, H. Li, J. Liu, Z. Sun, S. Tang, M. Lei, Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries, Scientific reports, 5 (2015) 10908. [131] M. Ratyński, B. Hamankiewicz, M. Krajewski, M. Boczar, A. Czerwiński, The effect of compressive stresses on a silicon electrode’s cycle life in a Li-ion battery, RSC Adv., 8 (2018) 22546-22551. [132] M. Obrovac, L. Krause, Reversible cycling of crystalline silicon powder, J. Electrochem. Soc., 154 (2006) A103-A108. [133] Y. Gao, R. Yi, Y.C. Li, J. Song, S. Chen, Q. Huang, T.E. Mallouk, D. Wang, General method of manipulating formation, composition, and morphology of solid-electrolyte interphases for stable Li-alloy anodes, J. Am. Chem. Soc., 139 (2017) 17359-17367. [134] H. Wu, G. Yu, L. Pan, N. Liu, M.T. McDowell, Z. Bao, Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nat. Commun., 4 (2013) 1-6. [135] C. Sun, Y. Deng, L. Wan, X. Qin, G. Chen, Graphene oxide-immobilized NH(2)-terminated silicon nanoparticles by cross-linked interactions for highly stable silicon negative electrodes, ACS Appl Mater Interfaces, 6 (2014) 11277-11285. [136] C.-C. Wu, C.-C. Li, Distribution Uniformity of Water-Based Binders in Si Anodes and the Distribution Effects on Cell Performance, ACS Sustainable Chem. Eng. , 8 (2020) 6868-6876. [137] Y. Cai, Y. Li, B. Jin, A. Ali, M. Ling, D. Cheng, J. Lu, Y. Hou, Q. He, X. Zhan, F. Chen, Q. Zhang, Dual cross-linked fluorinated binder network for high-performance silicon and silicon oxide based anodes in lithium-ion batteries, ACS Appl. Mater. Interfaces, 11 (2019) 46800-46807. [138] F.-M. Wang, J. Rick, Synergy of Nyquist and Bode electrochemical impedance spectroscopy studies to commercial type lithium ion batteries, Solid State Ionics, 268 (2014) 31-34. [139] Y. Wang, Z. Zhang, L. Zhang, Z. Luo, J. Shen, H. Lin, J. Long, J.C. Wu, X. Fu, X. Wang, C. Li, Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@ 2D-MoS2 heterostructure, J. Am. Chem. Soc., 140 (2018) 14595-14598. [140] W. Wang, R. Snoeckx, X. Zhang, M.S. Cha, A. Bogaerts, Modeling plasma-based CO2 and CH4 conversion in mixtures with N2, O2, and H2O: the bigger plasma chemistry picture, J. Phys. Chem. C, 122 (2018) 8704-8723. [141] R. Bywalez, H. Karacuban, H. Nienhaus, C. Schulz, H. Wiggers, Stabilization of mid-sized silicon nanoparticles by functionalization with acrylic acid, Nanoscale Res. Lett., 7 (2012) 1-7. [142] B. Sivaranjini, R. Mangaiyarkarasi, V. Ganesh, S. Umadevi, Vertical alignment of liquid crystals over a functionalized flexible substrate, Scientific reports, 8 (2018) 1-13. [143] Y. Yu, C.M. Hessel, T.D. Bogart, M.G. Panthani, M.R. Rasch, B.A. Korgel, Room temperature hydrosilylation of silicon nanocrystals with bifunctional terminal alkenes, Langmuir, 29 (2013) 1533-1540. [144] C.K. Chan, R. Ruffo, S.S. Hong, Y. Cui, Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes, Journal of Power Sources, 189 (2009) 1132-1140. [145] S.P. Pujari, A.D. Filippov, S. Gangarapu, H. Zuilhof, High-Density Modification of H-Terminated Si (111) Surfaces Using Short-Chain Alkynes, Langmuir, 33 (2017) 14599-14607. [146] R. Bywalez, H. Karacuban, H. Nienhaus, C. Schulz, H. Wiggers, Stabilization of mid-sized silicon nanoparticles by functionalization with acrylic acid, Nanoscale research letters, 7 (2012) 76. [147] W. Xu, S.S.S. Vegunta, J.C. Flake, Surface-modified silicon nanowire anodes for lithium-ion batteries, Journal of Power Sources, 196 (2011) 8583-8589. [148] C.C. Nguyen, D.M. Seo, K. Chandrasiri, B.L. Lucht, Improved Cycling Performance of a Si Nanoparticle Anode Utilizing Citric Acid as a Surface-Modifying Agent, Langmuir, 33 (2016) 9254-9261. [149] T. Jaumann, J. Balach, M. Klose, S. Oswald, U. Langklotz, A. Michaelis, J. Eckert, L. Giebeler, SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: the role of electrode preparation, FEC addition and binders, Physical Chemistry Chemical Physics, 17 (2015) 24956-24967. [150] M.S. Tahir, M. Weinberger, P. Balasubramanian, T. Diemant, R.J. Behm, M. Lindén, M. Wohlfahrt-Mehrens, Silicon carboxylate derived silicon oxycarbides as anodes for lithium ion batteries, J. Mater. Chem. A,, 5 (2017) 10190-10199. [151] F. Jeschull, F. Scott, S. Trabesinger, Interactions of silicon nanoparticles with carboxymethyl cellulose and carboxylic acids in negative electrodes of lithium-ion batteries, Journal of Power Sources, 431 (2019) 63-74. [152] D.J. Lee, M.-H. Ryou, J.-N. Lee, B.G. Kim, Y.M. Lee, H.-W. Kim, B.-S. Kong, J.-K. Park, J.W. Choi, Nitrogen-doped carbon coating for a high-performance SiO anode in lithium-ion batteries, Electrochem. Commun., 34 (2013) 98-101. [153] J.-H. Kim, H.-J. Sohn, H. Kim, G. Jeong, W. Choi, Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries, J. Power Sources, 170 (2007) 456-459. [154] B.A. Kahsay, F.-M. Wang, A.G. Hailu, X.-C. Wang, R.A. Yuwono, C.-H. Su, Synthesis, characteristics, and electrochemical performance of N, N-(p-phenylene) bismaleamate and its fluorosubstitution compound on organic anode materials in lithium-ion batteries, Electrochem. Acta, 365 (2021) 137342. [155] B. Atsbeha Kahsay, F.-M. Wang, A.G. Hailu, C.-H. Su, Maleamic acid as an organic anode material in lithium-ion batteries, Polymers, 12 (2020) 1109. [156] M. Xia, Y. Li, Z. Zhou, Y. Wu, N. Zhou, H. Zhang, X. Xiong, Improving the electrochemical properties of SiO@ C anode for high-energy lithium ion battery by adding graphite through fluidization thermal chemical vapor deposition method, Ceram. Int., 45 (2019) 1950-1959. [157] M. Nie, D.P. Abraham, Y. Chen, A. Bose, B.L. Lucht, Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy, The Journal of Physical Chemistry C, 117 (2013) 13403-13412. [158] C.P. Grey, D.S. Hall, Prospects for lithium-ion batteries and beyond—a 2030 vision, Nat. commun., 11 (2020) 1-4. [159] F. Duffner, N. Kronemeyer, J. Tübke, J. Leker, M. Winter, R. Schmuch, Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure, Nature Energy, 6 (2021) 123-134. [160] G.G. Eshetu, H. Zhang, X. Judez, H. Adenusi, M. Armand, S. Passerini, E. Figgemeier, Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes, Nat. commun., 12 (2021) 1-14. [161] X. Zhang, D. Wang, X. Qiu, Y. Ma, D. Kong, K. Müllen, X. Li, L. Zhi, Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation, Nat. commun., 11 (2020) 1-9. [162] A. Stoddart, Lithium-ion batteries: Stress relief for silicon, Nat. Rev. Mater., 2 (2017) 17057. [163] H. Li, T. Yamaguchi, S. Matsumoto, H. Hoshikawa, T. Kumagai, N.L. Okamoto, T. Ichitsubo, Circumventing huge volume strain in alloy anodes of lithium batteries, Nat. commun., 11 (2020) 1-8. [164] S. Suh, H. Choi, K. Eom, H.-J. Kim, Compounds, Enhancing the electrochemical properties of a Si anode by introducing cobalt metal as a conductive buffer for lithium-ion batteries, Journal of Alloys and Compounds, 827 (2020) 154102. [165] W. An, B. Gao, S. Mei, B. Xiang, J. Fu, L. Wang, Q. Zhang, P.K. Chu, K. Huo, Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes, Nat. commun., 10 (2019) 1-11. [166] H.F. Andersen, C.E.L. Foss, J. Voje, R. Tronstad, T. Mokkelbost, P.E. Vullum, A. Ulvestad, M. Kirkengen, J.P. Mæhlen, Silicon-carbon composite anodes from industrial battery grade silicon, Sci. Rep. , 9 (2019) 1-9. [167] Z. Zhang, X. Han, L. Li, P. Su, W. Huang, J. Wang, J. Xu, C. Li, S. Chen, Y. Yang, Tailoring the interfaces of silicon/carbon nanotube for high rate lithium-ion battery anodes, Journal of Power Sources 450 (2020) 227593. [168] M. Cui, L. Wang, X. Guo, E. Wang, Y. Yang, T. Wu, D. He, S. Liu, H. Yu, Designing of hierarchical mesoporous/macroporous silicon-based composite anode material for low-cost high-performance lithium-ion batteries, J. Mater. Chem. A, 7 (2019) 3874-3881. [169] A. Jamaluddin, B. Umesh, F. Chen, J.-K. Chang, C.-Y. Su, Facile synthesis of core–shell structured Si@ graphene balls as a high-performance anode for lithium-ion batteries, Nanoscale, 12 (2020) 9616-9627. [170] S.-W. Park, H.-W. Shim, J.-C. Kim, D.-W. Kim, Uniform Si nanoparticle-embedded nitrogen-doped carbon nanofiber electrodes for lithium ion batteries, Journal of Alloys and Compounds, 728 (2017) 490-496. [171] R. Larter, Surface-modified silicon improves lithium-ion battery performance, Surf. Sci. Spectra 27 (2020) 016801 [172] F. Wu, H. Wang, J. Shi, Z. Yan, S. Song, B. Peng, X. Zhang, Y. Xiang, Surface modification of silicon nanoparticles by an “ink” layer for advanced lithium ion batteries, ACS Appl. Mater. Interfaces, 10 (2018) 19639-19648. [173] J. Rao, N. Liu, L. Li, J. Su, F. Long, Z. Zou, Y. Gao, A high performance wire-shaped flexible lithium-ion battery based on silicon nanoparticles within polypyrrole/twisted carbon fibers, RSC Adv., 7 (2017) 26601-26607. [174] Q. Wang, R. Li, X. Zhou, J. Li, Z. Lei, Polythiophene-coated nano-silicon composite anodes with enhanced performance for lithium-ion batteries, J Solid State Electrochem, 20 (2016) 1331-1336. [175] H.-Y. Lin, C.-H. Li, D.-Y. Wang, C.-C. Chen, Chemical doping of a core–shell silicon nanoparticles@ polyaniline nanocomposite for the performance enhancement of a lithium ion battery anode, Nanoscale, 8 (2016) 1280-1287. [176] Y. Shi, G. Liu, R. Jin, H. Xu, Q. Wang, S. Gao, Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: a review, Carbon Energy, 1 (2019) 253-275. [177] H. Wu, G. Yu, L. Pan, N. Liu, M.T. McDowell, Z. Bao, Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nat. commun., 4 (2013) 1943. [178] L. Xiao, Y.H. Sehlleier, S. Dobrowolny, F. Mahlendorf, A. Heinzel, C. Schulz, H. Wiggers, Novel Si-CNT/polyaniline nanocomposites as lithium-ion battery anodes for improved cycling performance, Materials Today: Proceedings 4(2017) S263-S268. [179] M.L. Para, D. Versaci, J. Amici, M.F. Caballero, M.V. Cozzarin, C. Francia, S. Bodoardo, M. Gamba, Synthesis and characterization of montmorillonite/polyaniline composites and its usage to modify a commercial separator, Journal of Electroanalytical Chemistry, 880 (2021) 114876. [180] Y. Luo, R. Guo, T. Li, F. Li, Z. Liu, M. Zheng, B. Wang, Z. Yang, H. Luo, Y. Wan, Applications of polyaniline for Li-ion batteries, Li-sulfur batteries and supercapacitors, ChemSusChem, 12 (2019) 1591-1611. [181] J. Zhou, L. Zhou, L. Yang, T. Chen, J. Li, H. Pan, Y. Yang, Z. Wang, Carbon free silicon/polyaniline hybrid anodes with 3D conductive structures for superior lithium-ion batteries, Chem Commun (Camb), 56 (2020) 2328-2331. [182] H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, interfaces, Effect of graphene oxide on the properties of its composite with polyaniline, ACS Appl. Mater. Interfaces, 2 (2010) 821-828. [183] S.M. Hammo, Effect of Acidic Dopants properties on the Electrical Conductivity of Poly aniline.pdf, Tikrit Journal of Pure Science, 17 (2012) 1813. [184] J. Tu, L. Hu, W. Wang, J. Hou, H. Zhu, S. Jiao, In-Situ Synthesis of Silicon/Polyaniline Core/Shell and Its Electrochemical Performance for Lithium-Ion Batteries, Journal of The Electrochemical Society, 160 (2013) A1916-A1921. [185] I.A. Stenina, R.R. Shaydullin, T.L. Kulova, A.M. Skundin, A.B. Yaroslavtsev, Influence of carbon coating and PANI modification on the electrochemical performance of Li4Ti5O12, Ionics, 25 (2019) 2077-2085. [186] J. Tu, L. Hu, W. Wang, J. Hou, H. Zhu, S. Jiao, In-situ synthesis of silicon/polyaniline core/shell and its electrochemical performance for lithium-ion batteries, Journal of The Electrochemical Society, 160 (2013) A1916. [187] S.N. Alam, N. Sharma, L. Kumar, Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO)*, Graphene, 06 (2017) 1-18. [188] C. Zhang, Q. Chen, X. Ai, X. Li, Q. Xie, Y. Cheng, H. Kong, W. Xu, L. Wang, M.-S. Wang, Conductive polyaniline doped with phytic acid as a binder and conductive additive for a commercial silicon anode with enhanced lithium storage properties, J. Mater. Chem. A, 8 (2020) 16323-16331. [189] G. Capilli, D.R. Sartori, M.C. Gonzalez, E. Laurenti, C. Minero, P. Calza, Non-purified commercial multiwalled carbon nanotubes supported on electrospun polyacrylonitrile@ polypyrrole nanofibers as photocatalysts for water decontamination, RSC Adv., 11 (2021) 9911-9920. [190] X. Wan, T. Mu, B. Shen, Q. Meng, G. Lu, S. Lou, P. Zuo, Y. Ma, C. Du, G. Yin, Stable Silicon Anodes Realized by Multifunctional Dynamic Cross-linking Structure with Self-healing Chemistry and Enhanced Ionic Conductivity for Lithium-ion Batteries, Nano Energy, (2022) 107334. [191] Y. Chen, A review of polyaniline based materials as anodes for lithiumion batteries, IOP Conf. Series: Materials Science and Engineering, IOP Publishing, 2019, pp. 022115. [192] Y. Wang, Preparation and application of polyaniline nanofibers: an overview, Polym Int 67 (2018) 650-669. [193] C. Toigo, C. Arbizzani, K.-H. Pettinger, M. Biso, Study on different water-based binders for Li4Ti5O12 electrodes, Molecules, 25 (2020) 2443. [194] J. Nam, E. Kim, K. Rajeev, Y. Kim, T.-H. Kim, A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries, Scientific Reports, 10 (2020) 1-12. [195] X. Gu, W. Tian, X. Tian, Y. Ding, X. Jia, L. Wang, Y. Qin, Improving Cycling Performance of Si-Based Lithium Ion Batteries Anode with Se-Loaded Carbon Coating, ACS Applied Energy Materials, 2 (2019) 5124-5132. [196] X. Huang, D. Cen, R. Wei, H. Fan, Z. Bao, Synthesis of porous Si/C composite nanosheets from vermiculite with a hierarchical structure as a high-performance anode for lithium-ion battery, ACS Appl. Mater. Interfaces 11 (2019) 26854-26862. [197] S. Zhao, Y. Xu, X. Xian, N. Liu, W. Li, Fabrication of Porous Si@C Composites with Core-Shell Structure and Their Electrochemical Performance for Li-ion Batteries, Batteries, 5 (2019). [198] S. Tardif, E. Pavlenko, L. Quazuguel, M. Boniface, M. Maréchal, J.-S. Micha, L. Gonon, V. Mareau, G. Gebel, P. Bayle-Guillemaud, R. François, L. Sandrine, Operando Raman spectroscopy and synchrotron X-ray diffraction of lithiation/delithiation in silicon nanoparticle anodes, ACS Nano, 11 (2017) 11306-11316. [199] S. Golczak, A. Kanciurzewska, M. Fahlman, K. Langer, J.J. Langer, Comparative XPS surface study of polyaniline thin films, Solid State Ionics, 179 (2008) 2234-2239. [200] W. Wu, Z. Lin, H.-Y. Shi, L. Lin, X. Yang, Y. Song, X.-X. Liu, X. Sun, Realizing the leucoemeraldine-emeraldine-pernigraniline redox reactions in polyaniline cathode materials for aqueous zinc-polymer batteries, Chemical Engineering Journal, 427 (2022). [201] F.-M. Wang, D.-T. Shieh, J.-H. Cheng, C.-R. Yang, An investigation of the salt dissociation effects on solid electrolyte interface (SEI) formation using linear carbonate-based electrolytes in lithium ion batteries, Solid State Ionics, 180 (2010) 1660-1666. [202] Y. Yan, Z. Xu, C. Liu, H. Dou, J. Wei, X. Zhao, J. Ma, Q. Dong, H. Xu, Y.-s. He, Z.-F. Ma, X. Yang, Rational Design of the Robust Janus Shell on Silicon Anodes for High-Performance Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, (2019). [203] Z. Deng, X. Lin, Z. Huang, J. Meng, Y. Zhong, G. Ma, Y. Zhou, Y. Shen, H. Ding, Y. Huang, Recent Progress on Advanced Imaging Techniques for Lithium‐Ion Batteries, Adv. Energy Mater., 11 (2021) 2000806. [204] K. Sun, Z. Peng, Intermetallic interphases in lithium metal and lithium ion batteries, InfoMat, 3 (2021) 1083-1109. [205] N. Harpak, G. Davidi, F. Patolsky, Breathing parylene-based nanothin artificial SEI for highly-stable long life three-dimensional silicon lithium-ion batteries, Chemical Engineering Journal, 429 (2022) 132077. [206] G. Zhu, D. Chao, W. Xu, M. Wu, H. Zhang, Microscale Silicon-Based Anodes: Fundamental Understanding and Industrial Prospects for Practical High-Energy Lithium-Ion Batteries, ACS Nano, 15 (2021) 15567-15593. [207] M.A. Rahman, G. Song, A.I. Bhatt, Y.C. Wong, C. Wen, Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries, Adv. Funct. Mater., 26 (2016) 647-678. [208] F. Zhang, G. Zhu, K. Wang, X. Qian, Y. Zhao, W. Luo, J. Yang, Boosting the initial coulombic efficiency in silicon anodes through interfacial incorporation of metal nanocrystals, J. Mater. Chem. A, 7 (2019) 17426-17434. [209] C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nature nanotechnology, 3 (2008) 31. [210] F. Dou, L. Shi, G. Chen, D. Zhang, Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries, Electrochemical Energy Reviews, 2 (2019) 149-198. [211] N. Liu, J. Liu, D. Jia, Y. Huang, J. Luo, X. Mamat, Y. Yu, Y. Dong, G. Hu, Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries, Energy Storage Materials, 18 (2019) 165-173. [212] W. Li, X. Guo, Y. Lu, L. Wang, A. Fan, M. Sui, H. Yu, Amorphous nanosized silicon with hierarchically porous structure for high-performance lithium ion batteries, Energy Storage Materials, 7 (2017) 203-208. [213] J.-S. Bridel, T. Azais, M. Morcrette, J.-M. Tarascon, D. Larcher, Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries, Chem. Mater., 22 (2009) 1229-1241. [214] A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C.F. Huebner, T.F. Fuller, I. Luzinov, G. Yushin, Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid, ACS Appl. Mater. Interfaces 2(2010) 3004-3010. [215] S. Huang, J. Ren, R. Liu, M. Yue, Y. Huang, G. Yuan, The progress of novel binder as a non-ignorable part to improve the performance of Si-based anodes for Li-ion batteries, Int J Energy Res., 42 (2018) 919-935. [216] J. Shin, T.-H. Kim, Y. Lee, E. Cho, Key functional groups defining the formation of Si anode solid-electrolyte interphase towards high energy density Li-ion batteries, Energy Storage Materials, 25 (2020) 764-781. [217] T. Kennedy, M. Brandon, F. Laffir, K.M. Ryan, Understanding the influence of electrolyte additives on the electrochemical performance and morphology evolution of silicon nanowire based lithium-ion battery anodes, Journal of Power Sources, 359 (2017) 601-610. [218] G. Zhu, S. Yang, Y. Wang, Q. Qu, H. Zheng, Dimethylacrylamide, a novel electrolyte additive, can improve the electrochemical performances of silicon anodes in lithium-ion batteries, RSC Adv., 9 (2019) 435-443. [219] K. Xu, X. Liu, K. Guan, Y. Yu, W. Lei, S. Zhang, Q. Jia, H. Zhang, Research Progress on Coating Structure of Silicon Anode Materials for Lithium‐Ion Batteries, ChemSusChem, 14 (2021) 5135-5160. [220] M. Sadeghipari, A. Mashayekhi, S. Mohajerzadeh, Novel approach for improving the performance of Si-based anodes in lithium-ion batteries, Nanotechnology, 29 (2018) 055403. [221] G. Qin, X. Wu, J. Wen, J. Li, M. Zeng, A Core‐Shell NiFe2O4@ SiO2 Structure as a High‐Performance Anode Material for Lithium‐Ion Batteries, ChemElectroChem, 6 (2019) 911-916. [222] A.G. Hailu, F.-M. Wang, N.-L. Wu, N.-H. Yeh, C.-C. Hsu, Y.-J. Chang, P.-W.L. Tiong, R.A. Yuwono, C. Khotimah, C.-C. Wang, a.A. Ramar, Investigations of intramolecular hydrogen bonding effect of a polymer brush modified silicon in lithium-ion batteries, Adv. Mater. Interfaces, In press (2022). [223] M.-A. Chen, X.-B. Lu, Z.-H. Guo, R. Huang, Influence of hydrolysis time on the structure and corrosion protective performance of (3-mercaptopropyl) triethoxysilane film on copper, Corrosion science, 53 (2011) 2793-2802. [224] Z. Wen, W. Fang, L. Chen, Z. Guo, N. Zhang, X. Liu, G. Chen, Anticorrosive Copper Current Collector Passivated by Self‐Assembled Porous Membrane for Highly Stable Lithium Metal Batteries, Adv. Funct. Mater., 31 (2021) 2104930. [225] M.M. Aboelhassan, A.F. Peixoto, C. Freire, Sulfonic acid functionalized silica nanoparticles as catalysts for the esterification of linoleic acid, NewJ. Chem., 41 (2017) 3595-3605. [226] J. Wu, L. Ling, J. Xie, G. Ma, B. Wang, Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: Experimental and theoretical study on the surface interaction, Chemical Physics Letters, 591 (2014) 227-232. [227] L. Peña, K.L. Hohn, J. Li, X.S. Sun, D. Wang, Synthesis of Propyl-Sulfonic Acid-Functionalized Nanoparticles as Catalysts for Cellobiose Hydrolysis, Journal of Biomaterials and Nanobiotechnology, 05 (2014) 241-253. [228] L. Zhu, F. Du, Y. Zhuang, H. Dai, H. Cao, J. Adkins, Q. Zhou, J. Zheng, Effect of crosslinking binders on Li-storage behavior of silicon particles as anodes for lithium ion batteries, Journal of Electroanalytical Chemistry, 845 (2019) 22-30. [229] M. Tian, P. Wu, Nature Plant Polyphenol Coating Silicon Submicroparticle Conjugated with Polyacrylic Acid for Achieving a High-Performance Anode of Lithium-Ion Battery, ACS Applied Energy Materials, 2 (2019) 5066-5073. [230] T. Mu, S. Lou, N.G. Holmes, C. Wang, M. He, B. Shen, X. Lin, P. Zuo, Y. Ma, R. Li, C. Du, J. Wang, G. Yin, X. Sun, Reversible Silicon Anodes with Long Cycles by Multifunctional Volumetric Buffer Layers, ACS Appl Mater Interfaces, 13 (2021) 4093-4101. [231] S.-H. Baek, Y.-M. Jeong, S. Chul Shin, B. Joon Choi, J. Hwan Han, Tunable solid electrolyte interphase formation on SiO anodes using SnO artificial layers for Lithium-ion batteries, Applied Surface Science, 549 (2021). [232] A. Schiele, B. Breitung, T. Hatsukade, B.z.B. Berkes, P. Hartmann, J.r. Janek, T. Brezesinski, The critical role of fluoroethylene carbonate in the gassing of silicon anodes for lithium-ion batteries, ACS Energy Lett., 2 (2017) 2228-2233. [233] R. Bernhard, M. Metzger, H.A. Gasteiger, Gas evolution at graphite anodes depending on electrolyte water content and SEI quality studied by on-line electrochemical mass spectrometry, Journal ofThe Electrochemical Society, 162 (2015) A1984. [234] C.C. Nguyen, D.M. Seo, K. Chandrasiri, B.L. Lucht, Improved cycling performance of a Si nanoparticle anode utilizing citric acid as a surface-modifying agent, Langmuir, 33 (2017) 9254-9261. [235] K.T. Sarang, X. Li, A. Miranda, T. Terlier, E.-S. Oh, R. Verduzco, J.L. Lutkenhaus, Tannic Acid as a Small-Molecule Binder for Silicon Anodes, ACS Appl. Energy Mater., 3 (2020) 6985-6994. [236] P. Li, G. Chen, N. Zhang, R. Ma, X. Liu, β‐cyclodextrin as Lithium‐ion Diffusion Channel with Enhanced Kinetics for Stable Silicon Anode, Energy Environ. Mater. , 4 (2020) 72-80. [237] G. Xu, X. Wang, J. Li, X. Shangguan, S. Huang, D. Lu, B. Chen, J. Ma, S. Dong, X. Zhou, Tracing the Impact of Hybrid Functional Additives on a High-Voltage (5 V-class) SiOx-C/LiNi0.5Mn1.5O4 Li-Ion Battery System, Chem. Mater., 30 (2018) 8291-8302. [238] X. Zuo, X. Deng, X. Ma, J. Wu, H. Liang, J. Nan, 3-(Phenylsulfonyl) propionitrile as a higher voltage bifunctional electrolyte additive to improve the performance of lithium-ion batteries, J. Mater. Chem. A,, 6 (2018) 14725-14733. [239] S. Jiang, Z. Yang, Y. Liu, N. Johnson, I. Bloom, L. Zhang, Z. Zhang, Engineering the Si Anode Interface via Particle Surface Modification: Embedded Organic Carbonates Lead to Enhanced Performance, ACS Appl. Energy Mater. , 4 (2021) 8193-8200. [240] C.C. Nguyen, B.L. Lucht, Comparative study of fluoroethylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries, Journal of the Electrochemical Society, 161 (2014) A1933. [241] Y.B. Yohannes, S.D. Lin, N.-L. Wu, In Situ DRIFTS Analysis of Solid Electrolyte Interphase of Si-Based Anode with and without Fluoroethylene Carbonate Additive, Journal of The Electrochemical Society, 164 (2017) A3641-A3648. [242] B.H. Shen, S. Wang, W.E. Tenhaeff, Ultrathin conformal polycyclosiloxane films to improve silicon cycling stability, Sci Adv, 5 (2019) eaaw4856.
|