跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 08:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Felita Johanna Listiawan
研究生(外文):Felita Johanna Listiawan
論文名稱:基於 RAMI 4.0 於小批量多樣化生產系統整合之研究
論文名稱(外文):System Integration for High-Variety Low-Volume Production Systems based on RAMI 4.0
指導教授:周碩彥周碩彥引用關係郭伯勳
指導教授(外文):Shuo-Yan ChouPo-Hsun Kuo
口試委員:周碩彥郭伯勳許聿靈
口試委員(外文):Shuo-Yan ChouPo-Hsun KuoYu-Ling Hsu
口試日期:2022-01-21
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:65
外文關鍵詞:RAMI 4.0Asset Administration Shell (AAS)High-Variety and Low- Volume Production SystemInformation Model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Individualized and customized products demand are increasing from time to time. The complexity of the manufacturing process will rise, requiring the use of a flexible system that can easily adjust to changing environmental conditions. The industry has challenges not only in terms of variety of products and processes, but also in terms of controlling the quantity of carbon emissions contained in each product. The actual issues are quite complex, requiring the use of an integrated system capable of communicating and coordinating between assets in the production system. It is required to implement Reference Architecture Model Industry 4.0 (RAMI 4.0)'s functions to deal with these problems, particularly at the integration, communication, and information layers. RAMI 4.0 integration layer contains an Asset Administration Shell (AAS). The AAS can also be referred to as the digital twin of a manufacturing component.
This study designed system integration using AAS by demonstrating it through an information model to improve system flexibility. This study showed AAS identification, interaction between AAS, and information model of system integration. The flow of communication and information in the production system will be divided into several scenarios. The scenarios created are based on several possible activities that may occur, such as determining which machine is the best machine for each product, determining the route, and determining when uncertain activities occur.
ABSTRACT iii
ACKNOWLEDGMENT iv
CHAPTER 1 1
INTRODUCTION 1
1.1 Background 1
1.2 Objectives 3
1.3 Scope and Limitation 3
1.4 Organization of Thesis 3
CHAPTER 2 LITERATURE REVIEW 5
2.1 Industry 4.0 5
2.2 Reference Architecture Model Industry 4.0 (RAMI 4.0) 5
2.3 Asset Administration Shell (AAS) 8
2.4 Communication Relationship between I4.0 Components 12
2.5 Network Protocols in Industry 4.0 Applications 13
2.6 Concept of I4.0 Language 13
2.7 Open Platform Communication Unified Architecture 15
2.8 Research Gap 15
CHAPTER 3 17
METHODOLOGY 17
3.1 Problem Definition, Objectives, and Limitation 18
3.2 Literature Review 18
3.3 Case Study Description 18
3.4 AAS Identification 21
3.5 Interaction between AAS 21
3.6 Information model of System Integration 21
CHAPTER 4 RESULT AND DISCUSSION 22
4.1 AAS Identification 22
4.2 Interaction between AAS 29
4.2.1 Horizontal Interaction between Active AAS 32
4.2.2 Vertical Interactions between Active AAS 37
4.2.3 Vertical Interactions between Active and Passive AAS 38
4.2.4 Message Structure of Interaction between AAS 39
4.3 Information Model of System Integration 40
4.3.1 Case Study Data Flow 41
4.3.2 Production Systems Scenarios Information Model 42
4.3.3 Security Requirements and Mechanisms in System Integration 57
CHAPTER 5 CONCLUSION 59
5.1 Conclusion 59
5.2 Future Research 60
REFERENCES 61
APPENDIX 1 65
[1] A. Khan and K. Turowski, “A perspective on industry 4.0: From challenges to opportunities in production systems,” in IoTBD 2016 - Proceedings of the International Conference on Internet of Things and Big Data, 2016, pp. 441–448. doi: 10.5220/0005929704410448.
[2] K. Ahmed, J. O. Blech, M. A. Gregory, and H. W. Schmidt, “Software defined networks in industrial automation,” Journal of Sensor and Actuator Networks, vol. 7, no. 3, Aug. 2018, doi: 10.3390/jsan7030033.
[3] E. Hannon, T. Nauclér, A. Suneson, and F. Yüksel, “The zero-carbon car: Abating material emissions is next on the agenda,” 2020.
[4] A. G. Frank, L. S. Dalenogare, and N. F. Ayala, “Industry 4.0 technologies: Implementation patterns in manufacturing companies,” International Journal of Production Economics, vol. 210, pp. 15–26, Apr. 2019, doi: 10.1016/j.ijpe.2019.01.004.
[5] H. S. Park and R. A. Febriani, “Modelling a platform for smart manufacturing system,” in Procedia Manufacturing, 2019, vol. 38, pp. 1660–1667. doi: 10.1016/j.promfg.2020.01.118.
[6] Y. Wang, T. Towara, and R. Anderl, “Topological Approach for Mapping Technologies in Reference Architectural Model Industrie 4.0 (RAMI 4.0),” 2017.
[7] X. Ye and S. H. Hong, “An AutomationML/OPC UA-based Industry 4.0 Solution for a Manufacturing System,” in IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, Oct. 2018, vol. 2018-September, pp. 543–550. doi: 10.1109/ETFA.2018.8502637.
[8] P. F. S. Melo, E. P. Godoy, P. Ferrari, and E. Sisinni, “Open source control device for industry 4.0 based on RAMI 4.0,” Electronics (Switzerland), vol. 10, no. 7, Apr. 2021, doi: 10.3390/electronics10070869.
[9] B. Boss, R. Bosch Gmbh, and S. Malakuti, “Digital Twin and Asset Administration Shell Concepts and Application in the Industrial Internet and Industrie 4.0 An Industrial Internet Consortium and Plattform Industrie 4.0 Joint Whitepaper.” [Online]. Available: www.iiconsortium.org
[10] Plattform Industrie 4.0, “Details of the Asset Administration Shell,” 2018.
[11] German Electrical and Electronic Manufacturers’ Association, “Examples of the Asset Administration Shell for Industrie 4.0 Components-Basic Part Continuing Development of the Reference Model for Industrie 4.0 Components,” 2017. [Online]. Available: www.zvei.org
[12] J. Arm et al., “Automated design and integration of asset administration shells in components of industry 4.0,” Sensors, vol. 21, no. 6, pp. 1–20, Mar. 2021, doi: 10.3390/s21062004.
[13] J. Arm et al., “Automated design and integration of asset administration shells in components of industry 4.0,” Sensors, vol. 21, no. 6, pp. 1–20, Mar. 2021, doi: 10.3390/s21062004.
[14] A. Belyaev and C. Diedrich, “Specification ‘Demonstrator I4.0-Language’ v3.0 Advanced Analytics of production data View project,” 2019. [Online]. Available: https://www.researchgate.net/publication/334429449
[15] Plattform Industrie 4.0, “Secure Communication for Industrie 4.0,” 2016. [Online]. Available: www.bmwi.de
[16] 5G Alliance for Connected Industries and Automation, “Using Digital Twins to Integrate 5G into Production Networks,” 2021.
[17] R. Henßen and M. Schleipen, “Interoperability between OPC UA and AutomationML,” in Procedia CIRP, 2014, vol. 25, no. C, pp. 297–304. doi: 10.1016/j.procir.2014.10.042.
[18] S. Kannoth, F. Schnicke, and P. O. Antonino, “Enabling Industry 4.0 Communication Protocol Interoperability: An OPC UA Case Study,” May 2021. doi: 10.1145/3459960.3459977.
[19] A. Sidorenko, M. Volkmann, W. Motsch, A. Wagner, and M. Ruskowski, “An OPC UA Model of the Skill Execution Interaction Protocol for the Active Asset Administration Shell,” Procedia Manufacturing, vol. 55, pp. 191–199, 2021, doi: 10.1016/j.promfg.2021.10.027.
[20] S. Cavalieri and M. G. Salafia, “A model for predictive maintenance based on asset administration shell,” Sensors (Switzerland), vol. 20, no. 21, pp. 1–20, Nov. 2020, doi: 10.3390/s20216028.
[21] X. Ye, J. Jiang, C. Lee, N. Kim, M. Yu, and S. H. Hong, “Toward the Plug-and-Produce Capability for Industry 4.0: An Asset Administration Shell Approach,” IEEE Industrial Electronics Magazine, vol. 14, no. 4, pp. 146–157, Dec. 2020, doi: 10.1109/MIE.2020.3010492.
[22] J. I. García, R. E. Cano, and J. D. Contreras, “Digital retrofit: A first step toward the adoption of Industry 4.0 to the manufacturing systems of small and medium-sized enterprises,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 234, no. 8, pp. 1156–1169, Jun. 2020, doi: 10.1177/0954405420904852.
[23] C. Toro, A. Seif, and H. Akhtar, “Modeling and Connecting Asset Administrative Shells for Mini Factories,” Cybernetics and Systems, vol. 51, no. 2, pp. 232–245, Feb. 2020, doi: 10.1080/01969722.2019.1705554.
[24] Panepistēmio Kyprou, IEEE Industrial Electronics Society, and Institute of Electrical and Electronics Engineers, Semantic interoperability for asset communication within smart factories. 2017.
[25] E. Tantik and R. Anderl, “Potentials of the Asset Administration Shell of Industrie 4.0 for Service-Oriented Business Models,” in Procedia CIRP, 2017, vol. 64, pp. 363–368. doi: 10.1016/j.procir.2017.03.009.
[26] M. Bertolini, G. Romagnoli, and F. Zammori, “2MTO, a new mapping tool to achieve lean benefits in high-variety low-volume job shops,” Production Planning and Control, vol. 28, no. 5, pp. 444–458, Apr. 2017, doi: 10.1080/09537287.2017.1302615.
[27] X. Ye and S. H. Hong, “Toward Industry 4.0 Components: Insights into and Implementation of Asset Administration Shells,” IEEE Industrial Electronics Magazine, vol. 13, no. 1, pp. 13–25, Mar. 2019, doi: 10.1109/MIE.2019.2893397.
[28] J. Wang, S. Yao, J. Sheng, and H. Yang, “Minimizing total carbon emissions in an integrated machine scheduling and vehicle routing problem,” Journal of Cleaner Production, vol. 229, pp. 1004–1017, Aug. 2019, doi: 10.1016/j.jclepro.2019.04.344.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top