跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 11:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:Mia Tri Utami
研究生(外文):Mia Tri Utami
論文名稱:駕駛介面、身體與心智負荷對情境知覺與績效知影響
論文名稱(外文):Effect of Interface, Physical and Mental Workload on the Situation Awareness and Performance in Driving Task
指導教授:林久翔林久翔引用關係
指導教授(外文):Chiu-Hsiang Lin
口試委員:許聿靈林承哲
口試委員(外文):Yu-Ling HsuCheng-Jhe Lin
口試日期:2021-01-26
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:102
中文關鍵詞:體力工作量腦力工作量駕駛性能態勢感知駕駛任務
外文關鍵詞:physical workloadmental workloaddriving performancesituational awarenessdriving task
相關次數:
  • 被引用被引用:0
  • 點閱點閱:52
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
交通運輸系統在幫助實現人員和貨物的流動性方面具有非常重要的作用。 2014 年至 2018 年期間,機動車輛數量的增長有所增加,印度尼西亞每年增長 6.49%(BPS,2018 年)。每項研究都必須確保在駕駛模擬器研究中獲得的結果不能歸因於實際交通環境中不存在的駕駛模擬器的特定特性。高分辨率圖形的處理非常重要,這樣駕駛員才能獲得真實的感覺並對駕駛環境做出反應。在這項研究中,我們想通過使用因變量 LF/HF 比、駕駛性能、ASA 和 NASA TLX 來證明哪種界面更適合測量 SA。這項研究的結果是,當用於測量體力工作量時,VR 優於顯示器。
The transportation system has a very important role in helping the implementation of the mobility of people and goods. The increase in number of motorized vehicles has increased in the 2014 – 2018 period, increasing by 6.49% per year in Indonesia (BPS, 2018). Each research must ensure that the results obtained in the driving simulator study cannot be attributed to specific characteristics of the driving simulator that do not exist in the actual traffic environment. Processing of high-resolution graphics is very important so that the driver has a realistic feeling and reacts to the driving environment. In this study, we want to prove which interface is better to measure SA by using the dependent variable LF/HF ratio, driving performance, ASA and NASA TLX. The results in this study are that when used to measure physical workload, VR i s better than monitors.
摘 要 iv
ABSTRACT v
Table of Contents vi
List of Table viii
List of Figure ix
CHAPTER I 1
INTRODUCTION 1
1.1 Background 1
1.2 Formulation Problem 3
1.3 Problem Limitation 3
1.4 Research Objectives 4
1.5 Research Benefits 4
CHAPTER II 5
LITERATURE REVIEW 5
2.1 Effect of Interface on SA 5
2.2 Effect of Physical Workload on SA 6
2.3 Effect of Mental Workload on SA 6
CHAPTER III 9
THEORETICAL BASIS 9
3.1 Situational Awareness 9
3.2 Method SA 11
3.3 Quantitative Analysis of Situational Awareness (QUASA) 13
3.4 Workload 14
3.4.1 Mental Workload 14
3.4.2 Measurement Mental Workload 14
3.4.3 Physical Workload 17
3.4.5 Measurement Physical Workload 17
3.5 Interface Visual Driving Simulator 19
3.6 Interface Visual VR 20
3.7 Signal Detection Theory (SDT) 20
3.8 Virtual Reality and Driving Simulator 23
CHAPTER IV 24
RESEARCH METHODS 24
4.1 Research subject 24
4.2 Instrumental 24
4.4 Design of Experiment (DoE) 25
4.5 Hypothesis 28
4.6 Research Stage 30
4.7 Experimental Stage 31
CHAPTER V 35
RESULT AND DISCUSSION 35
5.1 Virtual Reality vs Monitor 35
5.2 Effect of Interaction Heart Rate 36
5.2.1 Effect of Interface on LF/HF ratio 36
5.2.2 Effect of Mental Workload on LF/HF ratio 38
5.2.3 Effect of Interface on Physical Workload 39
5.3 Effect of Interface on Performance 40
5.3.1 The effect of Interface on Performance 40
5.3.2 Effect of Mental Workload on Performance 41
5.3.3 Effect of Physical Workload on Performance 41
5.4 Effect of Interface on Situation Awareness 42
5.4.1 The effect of Interface on ASA 42
5.4.1.1 The Effect of Mental Workload on ASA 43
5.4.1.2 The effect of Physical Workload on ASA 43
5.4.2 The effect of Interface (BIAS) 44
5.4.2.1 The Effect of Mental Workload on BIAS 45
5.4.2.2 The Effect Physical Workload on BIAS 46
5.4.3 The effect of Interface on PSA 46
5.4.3.1 The Effect Mental Workload on PSA 47
5.4.3.2 The Effect Physical Workload on PSA 47
5.5 EEG Analysis 48
5.6 NASA TLX Questionnaire based on scenario interface. 50


List of Table

Table 2. 1 Riset GAP 8
Table 3. 1 Rating Scale and Definisi NASATLX 16
Table 3. 2 Bruce protocol data observations. 19
Table 4. 1 Experiment Scenario Design 25
Table 4. 2 Operational Definition 26
Table 4. 3 Experiment Factorial 28
Table 5. 1 Riset Scenario 35
Table 5. 2 Factor and Level Factor 36
Table 5. 3. RM ANOVA Hear Rate 36
Table 5. 4 Mean heart rate 37
Table 5. 5 RM ANOVA on Performance 40
Table 5. 6 Summary of RM ANOVA result for Performance 40
Table 5. 7 Summary of RM ANOVA result for ASA 42
Table 5. 8 Summary score ASA 43
Table 5. 9 Summary of RM ANOVA result for BIAS 44
Table 5. 10. Summary score BIAS SA 45
Table 5. 11 Summary of RM ANOVA result for PSA 46
Table 5. 12. Summary score PSA SA 47
Table 5. 13. Summary average and SD EEG 48














List of Figure

Figure 2. 1 Research framework 8
Figure 3. 1 SA Model in Dynamic Decision Making 9
Figure 3. 2 Examples of QUASA pertanyaan questions and answers 13
Figure 3. 3 Self rating QUASA 14
Figure 3. 4 EEG waveform 15
Figure 3. 5 Electrodeposition based on the International 10-20 system 16
Figure 3. 6 Bruce Protocol 18
Figure 3. 7 Results of possible wrong or right responses 21
Figure 3. 8 Combined Representation of VR and DS. 23
Figure 4. 1 Experimental Design 26
Figure 4. 2 Riset Hypothesis 28
Figure 4. 3 Research Stages 30
Figure 4. 4 Experimental Procedure 32
Figure 5. 1 Teta wave 50
Figure 5. 2 Mental Demand NASA TLX 51
Figure 5. 3 Physical Demand NASA TLX 52
Figure 5. 4 Temporal Demand NASA TLX 53
Figure 5. 5 Performance NASA TLX 54
Figure 5. 6 Effort NASA TLX 55
Figure 5. 7 Frustation NASA TLX 56
Anggadamari, B., & Wijayanto, T. (2015). Analisis Pengaruh Physical Workload Terhadap Situation Awareness Dan Performansi Mengemudi Di Pagi Dan Malam Hari [UGM]. http://etd.repository.ugm.ac.id/home/detail_pencarian/90089
Choi, M., Ahn, S., & Seo, J. O. (2020). VR-Based investigation of forklift operator situation awareness for preventing collision accidents. Accident Analysis and Prevention, 136(November 2019), 105404. https://doi.org/10.1016/j.aap.2019.105404
Cremer, J., Kearney, J., & Papelis, Y. (1996). Driving simulation: Challenges for VR technology. IEEE Computer Graphics and Applications, 16(5), 16–20. https://doi.org/10.1109/38.536270
de Winter, J. C. F., de Groot, S., Mulder, M., Wieringa, P. A., Dankelman, J., & Mulder, J. A. (2009). Relationships between driving simulator performance and driving test results. Ergonomics, 52(2), 137–153. https://doi.org/10.1080/00140130802277521
Fallahi, M., Motamedzade, M., Heidarimoghadam, R., Soltanian, A. R., & Miyake, S. (2016). Effects of mental workload on physiological and subjective responses during traffic density monitoring: A field study. Applied Ergonomics, 52, 95–103. https://doi.org/10.1016/j.apergo.2015.07.009
Faure, V., Lobjois, R., & Benguigui, N. (2016). The effects of driving environment complexity and dual tasking on drivers’ mental workload and eye blink behavior. Transportation Research Part F: Traffic Psychology and Behaviour, 40, 78–90. https://doi.org/10.1016/j.trf.2016.04.007
Galante, F., Bracco, F., Chiorri, C., Pariota, L., Biggero, L., & Bifulco, G. N. (2018). Validity of mental workload measures in a driving simulation environment. Journal of Advanced Transportation, 2018. https://doi.org/10.1155/2018/5679151
Ihemedu-Steinke, Q. C., Sirim, D., Erbach, R., Halady, P., & Meixner, G. (2015). Development and evaluation of a virtual reality driving simulator. Mensch Und Computer 2015 - Workshop, 491–500. https://doi.org/10.1515/9783110443905-070
Kaptein, Nico A., Jan Theeuwes, and R. V. D. H. (1996). Driving Simulator Validity : Transportation Research Record, 1550, 30–36.
Lee, W. S., Kim, J. H., & Cho, J. H. (1998). A driving simulator as a virtual reality tool. Proceedings - IEEE International Conference on Robotics and Automation, 1(May), 71–76. https://doi.org/10.1109/ROBOT.1998.676264
McGuiness, B. (2004). 2004 Command and Control Research and Technology Symposium Quantitative Analysis of Situational Awareness ( QUASA ): Applying Signal Detection Theory to True / False Probes and Self-Ratings Barry McGuinness BAE SYSTEMS Quantitative Analysis of Situational. Command and Control Research and Technology Symposium.
Rizalmi, S. R. (2019). Analisis Pengaruh Interaksi Penumpang Dan Pengemudi Terhadap Situation Awareness Dan Driving Performance Pada Kondisi Sleep Deprivation. http://etd.repository.ugm.ac.id/home/detail_pencarian/173373
Shakouri, M., Ikuma, L. H., Aghazadeh, F., & Nahmens, I. (2018). Analysis of the sensitivity of heart rate variability and subjective workload measures in a driving simulator: The case of highway work zones. International Journal of Industrial Ergonomics, 66, 136–145. https://doi.org/10.1016/j.ergon.2018.02.015
Walch, M., Frommel, J., Rogers, K., Schüssel, F., Hock, P., Dobbelstein, D., & Weber, M. (2017). Evaluating VR driving simulation from a player experience perspective. Conference on Human Factors in Computing Systems - Proceedings, Part F1276(May), 2982–2989. https://doi.org/10.1145/3027063.3053202
Weidner, F., Hoesch, A., Poeschl, S., & Broll, W. (2017). Comparing VR and non-VR driving simulations: An experimental user study. Proceedings - IEEE Virtual Reality, 281–282. https://doi.org/10.1109/VR.2017.7892286
Wibisono, Y. T., & Hartono, B. (2015). Evaluasi Alat Pengukuran Situational awareness. In UGM (Vol. 13, Issue 3). http://etd.repository.ugm.ac.id/home/detail_pencarian/89599
Zhang, T., Kaber, D., & Hsiang, S. (2010). Characterisation of mental models in a virtual reality-based multitasking scenario using measures of situation awareness. Theoretical Issues in Ergonomics Science, 11(1–2), 99–118. https://doi.org/10.1080/14639220903010027
Anggadamari, B., & Wijayanto, T. (2015). Analisis Pengaruh Physical Workload Terhadap Situation Awareness Dan Performansi Mengemudi Di Pagi Dan Malam Hari [UGM]. http://etd.repository.ugm.ac.id/home/detail_pencarian/90089
Choi, M., Ahn, S., & Seo, J. O. (2020). VR-Based investigation of forklift operator situation awareness for preventing collision accidents. Accident Analysis and Prevention, 136(November 2019), 105404. https://doi.org/10.1016/j.aap.2019.105404
Cremer, J., Kearney, J., & Papelis, Y. (1996). Driving simulation: Challenges for VR technology. IEEE Computer Graphics and Applications, 16(5), 16–20. https://doi.org/10.1109/38.536270
de Winter, J. C. F., de Groot, S., Mulder, M., Wieringa, P. A., Dankelman, J., & Mulder, J. A. (2009). Relationships between driving simulator performance and driving test results. Ergonomics, 52(2), 137–153. https://doi.org/10.1080/00140130802277521
Fallahi, M., Motamedzade, M., Heidarimoghadam, R., Soltanian, A. R., & Miyake, S. (2016). Effects of mental workload on physiological and subjective responses during traffic density monitoring: A field study. Applied Ergonomics, 52, 95–103. https://doi.org/10.1016/j.apergo.2015.07.009
Faure, V., Lobjois, R., & Benguigui, N. (2016). The effects of driving environment complexity and dual tasking on drivers’ mental workload and eye blink behavior. Transportation Research Part F: Traffic Psychology and Behaviour, 40, 78–90. https://doi.org/10.1016/j.trf.2016.04.007
Galante, F., Bracco, F., Chiorri, C., Pariota, L., Biggero, L., & Bifulco, G. N. (2018). Validity of mental workload measures in a driving simulation environment. Journal of Advanced Transportation, 2018. https://doi.org/10.1155/2018/5679151
Ihemedu-Steinke, Q. C., Sirim, D., Erbach, R., Halady, P., & Meixner, G. (2015). Development and evaluation of a virtual reality driving simulator. Mensch Und Computer 2015 - Workshop, 491–500. https://doi.org/10.1515/9783110443905-070
Kaptein, Nico A., Jan Theeuwes, and R. V. D. H. (1996). Driving Simulator Validity : Transportation Research Record, 1550, 30–36.
Lee, W. S., Kim, J. H., & Cho, J. H. (1998). A driving simulator as a virtual reality tool. Proceedings - IEEE International Conference on Robotics and Automation, 1(May), 71–76. https://doi.org/10.1109/ROBOT.1998.676264
McGuiness, B. (2004). 2004 Command and Control Research and Technology Symposium Quantitative Analysis of Situational Awareness ( QUASA ): Applying Signal Detection Theory to True / False Probes and Self-Ratings Barry McGuinness BAE SYSTEMS Quantitative Analysis of Situational. Command and Control Research and Technology Symposium.
Rizalmi, S. R. (2019). Analisis Pengaruh Interaksi Penumpang Dan Pengemudi Terhadap Situation Awareness Dan Driving Performance Pada Kondisi Sleep Deprivation. http://etd.repository.ugm.ac.id/home/detail_pencarian/173373
Shakouri, M., Ikuma, L. H., Aghazadeh, F., & Nahmens, I. (2018). Analysis of the sensitivity of heart rate variability and subjective workload measures in a driving simulator: The case of highway work zones. International Journal of Industrial Ergonomics, 66, 136–145. https://doi.org/10.1016/j.ergon.2018.02.015
Walch, M., Frommel, J., Rogers, K., Schüssel, F., Hock, P., Dobbelstein, D., & Weber, M. (2017). Evaluating VR driving simulation from a player experience perspective. Conference on Human Factors in Computing Systems - Proceedings, Part F1276(May), 2982–2989. https://doi.org/10.1145/3027063.3053202
Weidner, F., Hoesch, A., Poeschl, S., & Broll, W. (2017). Comparing VR and non-VR driving simulations: An experimental user study. Proceedings - IEEE Virtual Reality, 281–282. https://doi.org/10.1109/VR.2017.7892286
Wibisono, Y. T., & Hartono, B. (2015). Evaluasi Alat Pengukuran Situational awareness. In UGM (Vol. 13, Issue 3). http://etd.repository.ugm.ac.id/home/detaCharacterization99
Zhang, T., Kaber, D., & Hsiang, S. (2010). Characterisation of mental models in a virtual reality-based multitasking scenario using measures of situation awareness. Theoretical Issues in Ergonomics Science, 11(1–2), 99–118.https://doi.org/10.1080/14639220903010027
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top