跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 06:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭奕岷
研究生(外文):Yi-Min Hsiao
論文名稱:細菌視紫質單層塗覆光電感測晶片的光控制自旋過濾特性探討
論文名稱(外文):Investigation of the light-controlled spin filtering characteristics of bacteriorhodopsin-monolayer coated photoelectric sensor chips
指導教授:陳秀美陳秀美引用關係
指導教授(外文):Hsiu-Mei Chen
口試委員:陳文逸葉旻鑫
口試日期:2022-01-25
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:139
中文關鍵詞:光電感測晶片細菌視紫質光控制自旋過濾
外文關鍵詞:photoelectric sensor chipbacteriorhodopsinlight-controlled spin filtering
相關次數:
  • 被引用被引用:2
  • 點閱點閱:70
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
含有光敏性細菌視紫質(bacteriorhodopsin, BR)的紫膜(purple membrane, PM),具有手性誘導自旋選擇性(chiral-induced spin selectivity, CISS),且具有光控制自旋過濾(light-controlled spin filtering)的效果。本研究針對實驗室先前所開發以單層PM為光電訊號轉換器的各式光電生物感測晶片,進行光控制過濾行為探討,檢測對象包含小分子核糖核酸、糖化血色素、抗生素、真菌以及革蘭氏陰性菌,且晶片分別以不同架橋來固定化感測辨識分子。首先,使用循環伏安法(cyclic voltammetry, CV)對各晶片製程中各塗覆層在不同光照及磁場控制下進行其氧化與還原峰電流值量測,並計算自旋極化率(spin polarization, SP)。結果發現各感測晶片之所有塗覆層的氧化與還原峰電流值在光激發時均大於無照光時;外加磁場時,氧化與還原峰電流值會增加,且當磁鐵內部磁力線方向(S→N極)與晶片層層塗覆方向同向時,效果會大於另一磁力線方向,因此晶片在光激發時其SP值會低於無照光時,此意味著BR的光驅動質子傳遞效應會增加晶片的氧化及還原峰電流值,但同時也會降低電子自旋過濾效果;此外,對各種檢測晶片,塗覆層種類變化與SP值下降程度間並無顯著相關性。其次,利用電化學阻抗頻譜法(electrochemical impedance spectroscopy, EIS)對各感測晶片製程中的各塗覆層進行量測,以了解不同塗覆層對晶片的阻抗變化影響以及CV峰電流值變化的原因。阻抗分析結果發現,晶片在光激發時均低於無照光時;外加磁場時阻抗值均會降低,且當磁鐵內部磁力線方向與晶片層層塗覆方向同向時,阻抗值會小於另一磁力線方向時。此結果隱喻晶片各塗覆層的阻抗變化會導致其氧化及還原峰電流值的變化,阻抗下降時其峰電流值會上升;此外,也顯示BR的光控制自旋過濾效果不會因塗覆層的增加或不同而消失。最後,將各種感測晶片對不同濃度目標物進行檢測並同時分析其阻抗值變化,結果發現,晶片阻抗值變化程度與目標物濃度間呈半對數線性關係,且同一種檢測晶片間的相對標準偏差(relative standard deviation, RSD)均低於2 %,顯示阻抗值可作為以單層PM為基底之生物感測晶片的一種檢測參數。
Purple membrane (PM), which is constituted of photoactive bacteriorhodopsin (BR), exhibits chiral-induced spin selectivity (CISS) and has a light-controlled spin filtering effect. This study investigates the light-controlled spin filtering behaviors of various photoelectric biosensing chips we have previously developed using a PM monolayer as the photoelectric transducer, which target antibiotics, fungi, glycated hemoglobins, gram-negative bacteria, and microRNAs, respectively, and are prepared using different crosslinkers to immobilize their respective recognition elements. First, cyclic voltammetry (CV) is employed to measure the oxidation and reduction peak currents of different top-layer coated chips, which are the intermediate products during the layer-by-layer chip fabrication process, under different illumination conditions and external magnetic fields, to determine the spin polarization (SP). The results show that for all kinds of sensing chips as well as their semi-finished chips coated with different top layers, light illumination enhances both of their oxidation and reduction peak currents. The peak currents increased when an external magnetic field is applied, with a greater enhancement when the field line inside the external magnet (S→N) is parallel to the layer-by-layer coating direction of the sensing chip than when the magnet is reversely oriented. This results in a decrease in SP values when the chips are illuminated, suggesting the light-driven proton transportation powered by BR enhances the oxidation and reduction peak currents of PM-coated chips, but nevertheless decreases their light-controlled spin filtering effect. For all kinds of sensing chips, the SP reduction level shows no correlation with the kinds of their top-coating layers. Subsequently, electrochemical impedance spectroscopy (EIS) is employed to measure the impedance of different top-layer coated chips to elucidate the variation of their oxidation and reduction peak currents. For all kinds of chips, the impedance increases when they are illuminated, but nevertheless decreases when an external magnetic field is applied. A greater reduction in impedance is observed when the field line inside the external magnet (S→N) is parallel to the layer-by-layer coating direction of the sensing chip than when the magnet is reversely oriented. This implies that the change of impedance for different top-layer coated chips results in the variation of their oxidation and reduction peak currents. Lower impedance leads to higher oxidation and reduction peak currents. Moreover, the light-controlled spin filtering effect of the immobilized BR on the sensing chips remains functional when different materials, in single or multilayer forms, are layered on its top. Finally, the impedance of all the sensing chips was measured after the detection of their respective targets at different concentrations. For all sensing chips, the impedance change-level correlates well with the target concentration with relative standard deviations less than 2 %, suggesting the impedance value can be a detection parameter for the biosensing chip using PM as the foundation layer.
中文摘要 I
英文摘要 III
致謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 序論 1
第二章 文獻回顧 3
2-1細菌視紫質(bacteriorhodopsin, BR) 3
2-1-1 BR結構 4
2-1-2光循環與質子傳遞 5
2-1-3 BR光電響應 8
2-1-4 PM單層固定化 11
2-1-5 PM晶片之應用 15
2-1-5-1鉛離子、ATP以及抗生素檢測晶片 15
2-1-5-2基因檢測晶片 16
2-1-5-3適體感測晶片 16
2-1-5-4免疫感測晶片 18
2-1-5-5微生物檢測晶片 18
2-2電子自旋過濾行為 23
2-2-1自旋電子學(Spintronics) 26
2-2-2手性誘導自旋選擇性 29
2-2-3自旋極化率 32
第三章 實驗 33
3-1實驗目的 33
3-2量測 42
3-2-1 Cuvette系統之D1、D2微分光電流量測 42
3-2-2電化學恆電位分析儀 43
3-2-2-1循環伏安法量測 44
3-2-2-2電化學阻抗頻譜法量測 44
第四章 結果與討論 46
4-1檢測各式PM感測晶片之光電流值 46
4-1-1磁場對於PM晶片進行光電流量測時之影響 55
4-2以循環伏安法探討各式PM感測晶片之光控制自旋過濾特性 56
4-2-1循環伏安法之量測結果 56
4-2-1-1 PM晶片 58
4-2-1-2 miR17-probe-PM複合晶片 60
4-2-1-3 Hb aptamer-PM複合晶片 64
4-2-1-4 chitin aptamer-PM複合晶片 66
4-2-1-5 Amp aptamer-PM複合晶片 69
4-2-1-6 LPS antibody-PM複合晶片 71
4-2-2計算各式PM感測晶片之自旋極化程度 74
4-2-3與文獻比較BR的光控制自旋過濾效應 81
4-3以電化學阻抗頻譜法分析各式PM感測晶片各塗覆層與彼此間關係 82
4-3-1電化學阻抗頻譜法之量測結果 82
4-3-1-1 miR17-probe-PM複合晶片 82
4-3-1-2 Hb aptamer-PM複合晶片 84
4-3-1-3 chitin aptamer-PM複合晶片 85
4-3-1-4 Amp aptamer-PM複合晶片 86
4-3-1-5 LPS antibody-PM複合晶片 88
4-3-2各式晶片各塗覆層之阻抗值趨勢與統整分析 89
4-3-2-1 miR17-probe-PM複合晶片 89
4-3-2-2 Hb aptamer-PM複合晶片 92
4-3-2-3 chitin aptamer-PM複合晶片 93
4-3-2-4 Amp aptamer-PM複合晶片 94
4-3-2-5 LPS antibody-PM複合晶片 97
4-3-3各式PM感測晶片以阻抗值為參數之檢測檢量線分析 99
4-3-3-1 miR17-DNA與miR17-DNA-AuNPs 100
4-3-3-2 HbA0 103
4-3-3-3 Saccharomyces cerevisiae 104
4-3-3-4 Ampicillin 106
4-3-3-5 E. coli K12 107
4-3-3-6比較電化學檢測與光電流檢測之結果 109
第五章 結論 114
第六章 參考文獻 117
Bader, S. D., & Parkin, S. S. P. Spintronics. Annu. Rev. Condens. Matter Phys., 2010, 1(1), 71-88.

Baibich MN, Broto JM, Fert A, Van Dau FN, Petroff F, Etienne P, Creuzet G, Friederich A, & Chazelas J. Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Physical review letters. 1988, 61(21), 2472.

Binasch G, Grünberg P, Saurenbach F, & Zinn W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical review B. 1989, 39(7), 4828.

Bondar, A.-N., Elstner, M., Suhai, S., Smith, J. C., & Fischer, S. Mechanism of primary proton transfer in bacteriorhodopsin. Structure, 2004, 12(7), 1281-1288.

Chen, H.-M., Jheng, K.-R., & Yu, A.-D. Direct, label-free, selective, and sensitive microbial detection using a bacteriorhodopsin-based photoelectric immunosensor. Biosensors Bioelectronics, 2017, 91, 24-31.

Chen, H.-M., Jheng, K.-R., Yu, A.-D., Hsu, C.-C., & Lin, J. H. Intercalating purple membranes into 2D β-alanine crystals to enhance photoelectric and nonlinear optical properties. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64, 1-8.

Chen, H.-M., Lin, C.-J., Jheng, K.-R., Kosasih, A., & Chang, J.-Y. Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports. Colloids Surfaces B: Biointerfaces, 2014, 116, 482-488.

Chen, W. Y., Hsu, M. Y., Tsai, C. W., Chang, Y., Ruaan, R. C., Kao, W. H., & Chung Chuan, H. Y. T. Kosmotrope-like hydration behavior of polyethylene glycol from microcalorimetry and binding isotherm measurements. Langmuir, 2013, 4259-4265.

Chiao, R. Y. Tunneling times and superluminality: A tutorial. In AIP Conference Proceedings. American Institute of Physics, 1999, Vol. 461, No. 1, pp. 3-13.

Datta S, & Das B. Electronic analog of the electro‐optic modulator. Applied Physics Letters. 1990, 56(7), 665-667.

Einati, H., Mishra, D., Friedman, N., Sheves, M., & Naaman, R. Light-controlled spin filtering in bacteriorhodopsin. Nano letters, 2015, 15(2), 1052-1056.

Hampp, N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chemical Reviews, 2000, 100(5), 1755-1776.

Haupts U, Tittor J, & Oesterhelt D. Closing in on bacteriorhodopsin: progress in understanding the molecule. 1999, 28(1), 367-399.

Hirohata, A., & Takanashi, K. Future perspectives for spintronic devices. Journal of Physics D: Applied Physics, 2014, 47(19), 193001.

Jin, Y., Honig, T., Ron, I., Friedman, N., Sheves, M., & Cahen, D. Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics. Chemical Society Reviews, 2008, 37(11), 2422-2432.

Johnson, M., & Silsbee, R. H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Physical review letters, 1985, 55(17), 1790.

Julliere, M. Tunneling between ferromagnetic films. Physics letters A, 1975, 54(3), 225-226.

Kawamura, I., Ohmine, M., Tanabe, J., Tuzi, S., Saitô, H., & Naito, A. Dynamic aspects of extracellular loop region as a proton release pathway of bacteriorhodopsin studied by relaxation time measurements by solid state NMR. Biochimica et Biophysica Acta -Biomembranes, 2007, 1768(12), 3090-3097.

Kurihara, M., & Sudo, Y. Microbial rhodopsins: wide distribution, rich diversity and great potential. Biophysics physicobiology, 2015, 12, 121-129.

Liao C-C, Chou P-L, Cheng C-W, Chang Y-S, Chi W-M, Tsai K-L, Chen W-J, Kung T-S, Tai C-C, & Lee K-WJJop. Comparative analysis of novel autoantibody isotypes against citrullinated-inter-alpha-trypsin inhibitor heavy chain 3 (ITIH3) 542–556 peptide in serum from Taiwanese females with rheumatoid arthritis, primary Sjögren's syndrome and secondary Sjögren's syndrome in rheumatoid arthritis. 2016, 141, 1-11.

Li, D., & Yu, G. Innovation of Materials, Devices, and Functionalized Interfaces in Organic Spintronics. Advanced Functional Materials, 2021, 2100550.

Lin, Y.-C., Lin, C.-Y., Chen, H.-M., Kuo, L.-P., Hsieh, C.-E., Wang, X.-H., Chen, Y.-S. Direct and label-free determination of human glycated hemoglobin levels using bacteriorhodopsin as the biosensor transducer. Sensors, 2000, 20(24), 7274.

Li Y-T, Tian Y, Tian H, Tu T, Gou G-Y, Wang Q, Qiao Y-C, Yang Y, & Ren T-LJS. A review on bacteriorhodopsin-based bioelectronic devices. 2018, 18(5), 1368.

Moodera JS, Kinder LR, Wong TM, & Meservey R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. 1995, 74(16), 3273.

Naaman, R., Paltiel, Y., & Waldeck, D. H. Chiral molecules and the spin selectivity effect. The journal of physical chemistry letters, 2020, 11(9), 3660-3666.

Naaman, R., & Waldeck, D. H. Chiral-induced spin selectivity effect. The journal of physical chemistry letters, 2012, 3(16), 2178-2187.

Oesterhelt D, & Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. 1971, 233(39), 149-152.

Ray K, Ananthavel S, Waldeck D, & Naaman R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. 1999, 283(5403), 814-816.

Sinova, J., & Žutić, I. New moves of the spintronics tango. Nature materials, 2012, 11(5), 368-371.

Soulen, R. J., Byers, J. M., Osofsky, M. S., Nadgorny, B., Ambrose, T., Cheng, S. F., & Coey, J. M. D. Measuring the spin polarization of a metal with a superconducting point contact. science, 1998, 282(5386), 85-88.

Spudich, J. L., Yang, C.-S., Jung, K.-H., & Spudich, E. N. Retinylidene proteins: structures and functions from archaea to humans. Annual review of cell developmental biology, 2000, 16(1), 365-392.

Tedrow P, & Meservey R. Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd. 1973, 7(1), 318.

Thomson W. XIX. On the electro-dynamic qualities of metals:—Effects of magnetization on the electric conductivity of nickel and of iron. Proceedings of the Royal Society of London. 1857, (8), 546-550.

Torres-Cavanillas, R., Escorcia-Ariza, G., Brotons-Alcázar, I., Sanchis-Gual, R., Mondal, P. C., Rosaleny, L. E., Tatay, S. Reinforced Room-Temperature Spin Filtering in Chiral Paramagnetic Metallopeptides. Journal of the American Chemical Society, 2000, 142(41), 17572-17580.

Wang, J.-P., Yoo, S.-K., Song, L., & El-Sayed, M. A. Molecular mechanism of the differential photoelectric response of bacteriorhodopsin. The Journal of Physical Chemistry B, 1997, 101(17), 3420-3423.

Wang, J. Vectorially oriented purple membrane: characterization by photocurrent measurement and polarized-Fourier transform infrared spectroscopy. Thin Solid Films, 2000, 379(1-2), 224-229.

Wu, H.-H., Liao, X.-Q., Wu, X.-Y., Lin, C.-D., Jheng, K.-R., Chen, H.-R., Chen, H.-M. J. S. Versatile protein-A coated photoelectric immunosensors with a purple-membrane monolayer transducer fabricated by affinity-immobilization on a graphene-oxide complexed linker and by shear flow. 2018, 18(12), 4493.

Žutić, I., Fabian, J., & Sarma, S. D. Spintronics: Fundamentals and applications. Reviews of modern physics, 2004, 76(2), 323.

王翔禾,紫膜生物光電晶片之DNA檢測條件再適化與Micro-DNA之初步檢測,國立臺灣科技大學化學工程研究所碩士論文,2019

王詠毅,紫膜生物光電晶片之類風濕性關節炎檢測應用與原子力顯微鏡分析,國立臺灣科技大學化學工程研究所碩士論文,2018

洪子程,開發氨苄青黴素和卡納黴素之紫膜生物光電感測晶片,國立臺灣科技大學化學工程研究所碩士論文,2020

陳泓任,檢測三磷酸線苷、革藍氏陽性菌和白血球之紫膜生物光電晶片開發,國
立臺灣科技大學化學工程研究所碩士論文,2018

曾聖翔,紫膜複合生物光電晶片應用於腦癌血清miRNA與免疫檢測之探討,國
立臺灣科技大學化學工程研究所碩士論文,2021

黎閔哲,即時檢測抗體及核酸適體於紫膜生物光電晶片上之固定化穩定性及開發大腸桿菌檢測晶片,國立臺灣科技大學化學工程研究所碩士論文,2018

鄭存孝,紫膜生物光電晶片檢測寡核苷酸與即時監測基因合成之應用,國立臺灣科技大學化學工程研究所碩士論文,2017

鄭智文,以紫膜生物光電晶片檢測遷離子及糖化血紅素,國立臺灣科技大學化
學工程研究所碩士論文,2018

鄭凱如,新型紫膜複合材料與晶片之光電與光學特性研究暨應用,國立臺灣科技大學化學工程研究所博士論文,2018

賴銀德,檢測真菌、革蘭氏陽性與陰性菌之紫膜生物光電晶片開發,國立臺灣科
技大學化學工程研究所碩士論文,2019

謝承恩,糖尿病與類風濕性關節炎病患之紫膜生物光電晶片檢測分析,國立臺灣科技大學化學工程研究所碩士論文,2019
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊