|
1. DiMeglio, J.L. and J. Rosenthal, Selective Conversion of CO2 to CO with High Efficiency Using an Inexpensive Bismuth-Based Electrocatalyst. Journal of the American Chemical Society, 2013. 135(24): p. 8798-8801. 2. He, Y., et al., High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 2015. 168: p. 1-8. 3. Su, X., et al., Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions. Journal of energy chemistry, 2017. 26(5): p. 854-867. 4. Beuls, A., et al., Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst. Applied Catalysis B: Environmental, 2012. 113: p. 2-10. 5. Swalus, C., et al., CO2 methanation on Rh/γ-Al2O3 catalyst at low temperature:“In situ” supply of hydrogen by Ni/activated carbon catalyst. Applied Catalysis B: Environmental, 2012. 125: p. 41-50. 6. Behrens, M., Heterogeneous catalysis of CO2 conversion to methanol on copper surfaces. Angewandte Chemie International Edition, 2014. 53(45): p. 12022-12024. 7. Jiraskova, Y., et al., Effect of Iron Impurities on Magnetic Properties of Nanosized CeO2 and Ce-Based Compounds. Metals, 2019. 9(2): p. 222. 8. Younis, A., D. Chu, and S. Li, Cerium oxide nanostructures and their applications. Funct. Nanomater, 2016. 3: p. 53-68. 9. Sun, C., H. Li, and L. Chen, Nanostructured ceria-based materials: synthesis, properties, and applications. Energy & Environmental Science, 2012. 5(9): p. 8475-8505. 10. Yang, C., et al., Defect Engineering on CeO2‐Based Catalysts for Heterogeneous Catalytic Applications. Small Structures, 2021. 2(12): p. 2100058. 11. Gu, Z., et al., Enhanced reducibility and redox stability of Fe 2 O 3 in the presence of CeO 2 nanoparticles. Rsc Advances, 2014. 4(88): p. 47191-47199. 12. Schwarz, K., Materials design of solid electrolytes. Proceedings of the National Academy of Sciences, 2006. 103(10): p. 3497-3497. 13. Ma, S., et al., Effects of Zr doping on Fe2O3/CeO2 oxygen carrier in chemical looping hydrogen generation. Chemical Engineering Journal, 2018. 346: p. 712-725. 14. Galvita, V.V., et al., CeO2-modified Fe2O3 for CO2 utilization via chemical looping. Industrial & Engineering Chemistry Research, 2013. 52(25): p. 8416-8426. 15. Zhu, X., et al., Chemical-looping steam methane reforming over a CeO2–Fe2O3 oxygen carrier: evolution of its structure and reducibility. Energy & fuels, 2014. 28(2): p. 754-760. 16. Ma, Z., S. Zhang, and R. Xiao, Insights into the relationship between microstructural evolution and deactivation of Al2O3 supported Fe2O3 oxygen carrier in chemical looping combustion. Energy Conversion and Management, 2019. 188: p. 429-437. 17. Zhao, J., et al., A La, Sm co-doped CeO 2 support for Fe 2 O 3 to promote chemical looping splitting of CO 2 at moderate temperature. Sustainable Energy & Fuels, 2022. 6(5): p. 1448-1457. 18. Galvita, V. and K. Sundmacher, Redox behavior and reduction mechanism of Fe2O3–CeZrO2 as oxygen storage material. Journal of materials science, 2007. 42(22): p. 9300-9307. 19. 黃敬庭, 鐵鈰混合氧化物應用於中溫二氧化碳脫氧反應, in 化學工程系. 2019, 國立臺灣科技大學: 台北市. p. 109. 20. Li, K., et al., Microstructure and oxygen evolution of Fe–Ce mixed oxides by redox treatment. Applied surface science, 2014. 289: p. 378-383. 21. Liu, B., et al., Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catalysis, 2018. 8(11): p. 10446-10456. 22. Qin, J., et al., Amorphous Fe2O3 improved [O] transfer cycle of Ce4+/Ce3+ in CeO2 for atom economy synthesis of imines at low temperature. Journal of Catalysis, 2019. 371: p. 161-174. 23. Zhang, Z., et al., Determination of active site densities and mechanisms for soot combustion with O2 on Fe-doped CeO2 mixed oxides. Journal of Catalysis, 2010. 276(1): p. 16-23. 24. Wang, D., et al., Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3. Energy, 2018. 162: p. 542-553. 25. Sharma, A., et al., Electronic structure study of Ce 1− x A x O 2 (A= Zr & Hf) nanoparticles: NEXAFS and EXAFS investigations. Physical Chemistry Chemical Physics, 2014. 16(37): p. 19909-19916. 26. Garvie, L.A.J. and P.R. Buseck, Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. Journal of Physics and Chemistry of Solids, 1999. 60(12): p. 1943-1947. 27. Gong, Z.-J., et al., Direct copolymerization of carbon dioxide and 1, 4-butanediol enhanced by ceria nanorod catalyst. Applied Catalysis B: Environmental, 2020. 265: p. 118524. 28. Li, M., et al., Effect of dopants on the adsorption of carbon dioxide on ceria surfaces. ChemSusChem, 2015. 8(21): p. 3651-3660. 29. Koeppel, R.A., et al., Carbon dioxide hydrogenation over Au/ZrO 2 catalysts from amorphous precursors: catalytic reaction mechanism. Journal of the Chemical Society, Faraday Transactions, 1991. 87(17): p. 2821-2828. 30. Sanchez-Escribano, V., et al., On the mechanisms and the selectivity determining steps in syngas conversion over supported metal catalysts: An IR study. Applied Catalysis A: General, 2007. 316(1): p. 68-74. 31. Baltrusaitis, J., et al., Carbon dioxide adsorption on oxide nanoparticle surfaces. Chemical Engineering Journal, 2011. 170(2-3): p. 471-481. 32. Nguyen, T.H., H.B. Kim, and E.D. Park, CO and CO2 Methanation over CeO2-Supported Cobalt Catalysts. Catalysts, 2022. 12(2): p. 212. 33. Alexeev, O.S., et al., In situ FTIR characterization of the adsorption of CO and its reaction with NO on Pd-based FCC low NOx combustion promoters. Catalysis today, 2007. 127(1-4): p. 189-198. 34. Baltrusaitis, J., J.H. Jensen, and V.H. Grassian, FTIR spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe2O3 and Al2O3. The Journal of Physical Chemistry B, 2006. 110(24): p. 12005-12016. 35. Huynh, H.L., et al., Promoting effect of Fe on supported Ni catalysts in CO2 methanation by in situ DRIFTS and DFT study. Journal of Catalysis, 2020. 392: p. 266-277.
|